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Abstract 
With intense current interest in active noise control, 

it is desirable to develop models of acoustic phenomena 
that are useful for state-space-based control methodolo- 
gies. Consequently, this paper extends the one-dimensional 
modeling of acoustic transfer functions developed in ear- 
lier work to the case of two-dimensional acoustics. This 
extension must therefore account for the phenomenon of 
evanescent waves, which are non-propagating and thus af- 
fect only the near field. While evanescent waves are well 
understood within the context of wave models, their pres- 
ence is less apparent in state space-based model modals. 
This paper thus presents a derivation of state space models 
for two-dimensional acoustics which are shown to predict 
the presence of evanescent waves. 

1. Introduction 
The study of waves in elastic media is primarily 

concerned with the spatial characteristics of the response 
to harmonic inputs and is of fundamental importance in 
acoustics and structural mechanics [2, 4, 61. Wave models 
have been used as the basis for active vibration control [l, 
51. However, the traditional approach to feedback control 
is to base the analysis and design of controllers on transfer 
function models of the system. 

Transfer function models differ from wave models in 
two key respects. First, whereas wave models are gener- 
ally based on the response to harmonic inputs, transfer 
function models predict structural response in the time 
domain as well. Secondly, transfer functions predict the 
response of a structure between fixed locations. Hence, 
transfer functions do not directly predict the spatial prop- 
agation of waves, but can be used to recover the same. 

In view of the distinctions between wave propagation 
and transfer function models, it is of significant interest 
to understand how certain phenomena that are predicted 
by one type of model are manifested in the other. In par- 
ticular, this paper is concerned with the phenomenon of 
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evanescent modes which are of fundamental importance in 
acoustics and vibrations. Evanescent waves arise from the 
excitation of waveguide modes below their cutoff frequency 
in acoustic ducts [4], pp. 218-22, [SI, pp. 492-495. 

in a colocated 
sensor-actuator configuration, a sensor may measure the 
effects of both evanescent and propagating waves, thus af- 
fecting the performance. The use of state space models 
that include these effects can help the controller distinguish 
between these phenomena. The purpose of this paper is to 
develop such models for acoustics that capture evanescent 
wave behavior. 

Section 2 summarizes the classical analysis of evanes- 
cent waves from a wave modeling point of view. The subse- 
quent sections device a way of modeling these effects in an 
acoustic duct with an end-speaker actuator and with the 
other end open. The analysis in the closed case being very 
similar to the open case is not be covered. We then ob- 
tain state space model and transfer functions from modal 
analysis and temporal Laplace transforms and compare for 
validity with the predictions of wave theory. Parametriz- 
ing these models in terms of the output location yields a 
spatial behavior of the duct which agrees with the classical 
wave theory. 

In the near field of an actuator, such 

2. Review of Evanescent Waves 
Consider a two-dimensional acoustic duct of semi 

infinite length and width b with rigid side walls. Let x and 
y denote the coordinates along and across the acoustic duct 
respectively. Assuming that there is no mean flow in the 
duct, the wave equation governing the dynamics of acoustic 
pressure in the duct is given by 

Ptt - C2bm +P,,) = 0, (1) 
where p ( x ,  y, t ) ,  denotes acoustic pressure at  location (2, y) 
inside the duct at time t and c is the speed of sound in the 
medium. 

The duct is excited by an harmonic acoustic source of 
frequency w (wavelength X = %) at x = 0. This suggests a 
wave pattern consisting of standing waves in the transverse 
direction y and traveling in x direction. The acoustic pres- 
sure response p ( x ,  y, t )  of the duct to the excitation can be 
decomposed as a sum of eigenfunctions of the form [4] 

p j ( ~ ,  y, t )  = Aj COS(~,:,~Y) d w t - ' * j z )  (2) 
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where kyj = f .  Substituting (2) in the wave equation (1) 
yields 

It can be seen from (3) that if w < Ckyk then k,k is imagi- 
nary and pk(X, y, t) decays exponentially in x. Hence, the 
cut-off frequency of the kth eigenfunction is given by 

kzj = (w/c)~ - k i j  (3) 

(4) 

An eigenfunction is said to be evanescent since it does 
not propagate through the acoustic duct. Consequently, 
for input frequencies higher than the cut-off frequency, the 
wave propagates along the duct. Note that all eigenfunc- 
tions except the fundamental p,-,(x, y, t) have non-zero cut- 
off frequencies. Thus the fundamental, if excited, is always 
transmitted and can never be evanescent. Setting k = 1, 
we define 

A a c  
wco = - 

b '  
as the global cut-off frequency. Comparing (4) and (5), it 
can be seen that all the eigenfunctions pj(x, y, t) for j > 0 
are evanescent if w 5 wco. 

To further illustrate the phenomenon of evanescent 
waves, recall the concept of group velocity cg [2, 4, 61 of 
propagating waves which characterizes a notion of speed 
of energy propagation along the x direction. The group 
velocity of pk(x, y, t), cg = ccos6, where 6 is defined by 

(5) 

For w > Wco,k, (3 denotes the angle between the direction of 
propagation and the longitudinal direction. If the bound- 
ary input frequency is high so that 6 is small, then cg is 
approximately equal to c. As w decreases or 6 increases, 
the direction of propagation becomes predominantly along 
the transverse direction rather than along axial direction. 
When w reaches the critical value Wco,k, it follows that 
8 = and thus cg = 0 so that no energy propagates down 
the duct. This is the well-known cut-off phenomenon. 

Furthermore, note that if w 5 wco then using ( 5 )  the 
wavelength of the boundary input X satisfies X = 3 = 
% 2 E = 2b. This shows that if the wavelength of the 
input X is greater than the maximum allowable wavelength 
2b, then there is no sound propagation, in which case the 
wave is said to be 'too big to fit' inside the duct of width 
b. 

3. Two-Dimensional Duct with 

Consider a two-dimensional acoustic duct of length 
L and width b. Let x be the spatial coordinate along the 
length of the duct with one end at x = 0 and the other at 
x = L, and let y be the spatial coordinate along the width 
of the duct, with y = 0 and y = b the sides of the duct. A 
speaker (boundary input) with a fixed displacement profile 

Commandable Boundary Input 

$bc : [0, b] 4 R is mounted at x = 0 and the end x = L 
is either open or closed. The wave equation (1) describes 
the acoustic pressure dynamics in the duct. 

It can be shown that the velocity potential @(x, y, t) 
also satisfies (1) where p(x, y, t) and +(x, y, t) are related 
by Euler's equation p = --@ [4, 71. Noting that the 
particle velocity at  a location (x,y) is given by G = ?@, 
the boundary conditions for p(x,y,t) at the speaker end 
are 

(7) 

where Vbc(y, t )  = $bc(Y)U(t) is cone velocity of the speaker. 
The boundary conditions for p(x, y, t) at x = L axe 

p(L,y,t> = 0, if x = L is open. (8) 

If the end x = L is closed, then p z ( L ,  y, t )  = 0 instead. 
The boundary conditions on the sides of the duct are given 
by 

Py(X10, t )  = 0, P,(X, b, t )  = 0. (9) 
However, for (7) and (9) to co-exist on the set of points 
{(O,O), (0 ,  b ) } ,  $Lc(y) must vanish on y = 0 and y = b. 
The boundary condition (8) neglects the radiation effects 
due to the nonuniform flow and nonuniform pressure dis- 
tribution across the open end of the duct. The bound- 
ary condition (9) assumes that the walls of the acoustic 
duct are rigid. Note that the boundary condition (7) is 
non-homogeneous and time varying. To homogenize the 
boundary conditions (7)-(9), we define the shifted pressure 
by @(x, y, t) = p ( z ,  y, t )  - U ( x ,  y, t), where U(x, y , t )  satis- 
fies all the boundary conditions. Hence (1) becomes 

@tt - c2(@zz + @yy) = -Utt + c2(Uzz + Uyy). (10) 

The choice of shifting function V(x, y, t) is not unique. We 
choose 

X 
U(x,y,t) = J?$'$bc(y)c(t)(l - E), if x = L i s  open, (11) 

U(x,y,t) = sLp'$bc(y)c(t)(l - E ) ~ ,  if x = L is closed. (12) 
1 X 

4. State space model for the 
speaker-open duct 

In this section we derive the state space form for 
the speaker-open duct. Using the shifting function for the 
open duct given by ( l l ) ,  equation (10) becomes 

with homogeneous boundary conditions 
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To use separation of variables, let To reduce (22) to a state space form with an undifferenti- 

The eigenfunctions of (13)  with the boundary conditions 
( 1 4 )  are given by 

Hence, it follows from (22) that 

k ( t )  = Az(t) + Bu(t), (26) 
(2i + 1)nz 

where B = A3& +AB2 = [ B l l  0 ... B,, ( ) I T ,  
(16) 

Define the modal frequencies wij as Bij = -W?.b 23 1,ij + b2,ij = - 2 C 2 P E f b c , j .  L 

2 
w i j = c / (  (2i 2L + 1)7r )’.($), i , j = 0 , 1 , 2  ,.... 

(17) 
Substituting (15 )  into (13) ,  multiplying by v o k ( Z ) W o l ( y )  

and double integrating over [0, L] x [0, b] yields 

8L 
bl ,k l  = 

where fbc,i and QbcJ are Ith Fourier coefficients of the co- 
sine series of $bc(y) and $tC(y), respectively. That is, 

Now, consider a pressure sensor at location (zs, ys). 
The measured pressure ym(t) = p(zs,  ys, t )  is given in terms 
of the shifted pressure by 

A A where C = [Cii 0 ... Cmn 01 with Cij = 
Voi(~s)Woj(ys ) .  Using the Fourier series identity 1 - f = 

Ego cos (v), it follows from (16), (19)  
and (20) that CA&iL(t) = -pL(1 - ~ ) $ b c ( y s ) z i ( t )  = 
- U ( x s , y S , t ) .  Hence from (27) we obtain 

gm(t)  = ~ ( z s ,  ys, t )  = Cz(t)-  (28) 
n=O 

00 

n=O 

Equations (26) and (28) define the state space model of 
the open duct. The state space model of the speaker-close 
duct can be obtained by choosing the appropriate shifting 
function U ( z ,  y, t )  and following the analysis presented in 
this section. 

‘$&(!l) = Sbc,n cos ( y)  . (20) 

Noting that $L,(y) vanishes at y = 0 and y = b, it can be 
shown that gbc,k = -(?)’fbc,k. 

5. Transfer Functions for Two 
Dimensional Acoustic Duct 

In this section we obtain the transfer function of 

To obtain a finite-dimensional state space model, we 
retain m axial modes and n transverse modes, and define 
the 2mndimensional state vector 

(21) the speaker-open duct from input ~ ( t )  to measurement 
yYm(t) in two ways. Firstly, using the state space model 
(26), (28), the transfer function for the open duct is 

?;.(t) 6 [ Q l l ( t )  4llW . ‘ *  QmnM 4mn(t) lT.  

Then equation (18)  can be written in matrix form as 

where 

A = block-diag ([ 
2c2p s c o s ( ~ ) c o s ( ~ )  

. (29) s2 + w e  = L f b c , j  
O I) (23) i=O j = O  

0 1  1, .  . . , [ -wkn -w:1 

This transfer function is in a sum-of-modes form with 
modal frequencies wij and modal residue Rij = CijBij Bi = [ O  bi,ii * . e  0 bi,,tlIT7 

B 2  = [ O  ... 0 b2,mnlT.  (24) for the (ij)th mode. 
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A transfer function can also be obtained using tem- 
poral Laplace transform of (1). Let P (z ,y , s )  denote the 

Next we write the partial fractions 

03 

* (38) 
Laplace transform of p ( z ,  y, t )  with respect to t ,  where s sinh(Pz,n(s)(L - zs)) - 1,s + km 
is the Laplace variable. Let P(z,  y, s) be of the sererated Pz,n(s) cosh(Pz,n(s)L) - m=O s2 + W k n  

variable form P(z ,  y, s) = X ( z ,  s)Y(y, s). The Laplace 
transform of (1) yields To determine 1, and k,, multiply both sides of (38) by 

2c2 (2m + l)nzs 
2L 

k, = - cos ( 
L (39) 

2 7 = P m  + P ; ( 4 .  
Thus X ( z ,  s) and Y ( y ,  s) are given by 

By substituting (38) and (39) into (36), we obtain the sum 
of modes transfer function given in (29). Thus the irra- 
tional transfer function of the open duct agrees with the 
transfer function obtained using modal analysis. A simi- 
lar argument holds for irrational transfer function of the 

(30) 

X ( z , s )  = al(s)sinh@,(s)z +a2(s)cosh/3,(s)z, 
Y(y,s) = bl(s) sinhPy(s)y + b2(S)CoSh~y(S)3, (31) closed duct. 

where ak(s) and bk(s ) ,  k = 1,2  are arbitrary constants to 
be determined. 

Substituting (31) in (9) yields bl = 0 and PY(s) = 
y , n  = 1,2 , .  . ., where 3 = a. We define 

A n r  / ly ,n=T,  n = 1 , 2  ,..., 

and hence from (30) we define 

Hence the pressure P(z ,  y, S) = Girropen(S) u(s) ,  where 
Girropen(S) is given by 

Girropen(S) = 

Next we compare the irrational transfer function (36) with 
the transfer functions (29) derived using the state space 
model. Using the infinite product expansions of cosh(z) 
and equations (17), (32) and (33) we can write 

6. Evanescent Waves in State Space 
Models 

In this section we show that the models obtained 
in previous sections capture the evanescent wave behavior 
discussed in Section 2.. Let k be an integer such that, for an 

( k - l ) r r  arbitrary boundary input frequency w ,  py,k--l = b <  
W < k =  - Py,k .  Now, letting s = 3w and using (32) and 
(33), note that Pz , j ( jw )  is real for all j 2 k and purely 
imaginary otherwise. Each term in the irrational transfer 
function (36) can be written as 

A 
where & j ( y , ~ w )  = c o ~ ( & , , j y ) ~ ~ ~ ~ , ’ .  Here Pz,j s 
Pz , j ( jw ) .  For j 2 k, it can be seen that T j (z , y ,3w)  
decays exponentially to zero as z + L and for j < k, 
Tj(z, y , j w )  is sinusoidal, thus a propagating solution in z. 
For a semi-infinite duct (as in section Z.), & j ( j w ) L  >> 1 
hence T ’ ( z , y , j w )  x &j(y,jw)e-P*si(JW)Z for j > k. 

Comparing these analytical results with the theory in 
section 2. it is apparent that Tk(z, y , j w )  corresponds to the 
eigenfunction pk (2, y, t )  and CPy,k = wco,k is the ‘cut-off’ 
frequency for Tk (2, g, j w ) .  The fundamental mode, hence, 
is described by To(x, y , ~ w ) .  

Moreover if $bc(y) such that its first Fourier coeffi- 
cient fbc,O = 0 and if w 5 wco,l then all the term in the 
summation (36) decay to zero exponentially as z + L. 
Consequently there is no sound propagation in the duct or 
waveguide. This is the global cut-off frequency (5) defined 
in Section 2.. However if fbc,O # 0 then only the fundamen- 
tal mode To(z,y,3w) is propagated. This is in accordance 
with the behavior discussed in Section 2. and hence the 
irrational transfer function (36) does capture the cut-off 
phenomenon. The angle B defined in (6) can be shown to 
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be the same as the angle between the propagation vector 

As an example, consider a duct 5 m long and 0.15 
m wide. For simplicity, consider a boundary input such 

The summation in (36) then reduces to a single term 
Tz(x,y,~w) which is plotted as a function of w for sev- 
eral values of sensor location z, (see Figure l(a)). Below 
the cut-off frequency wc0,2, as x, -+ L, T~(x,~,Jw) -+ 0. 
However resonant peaks are observed above the cut-off fre- 
quency. 

A comparison of sum-of-modes transfer function (29) 
and (36) is plotted in Figure l(b). The plot shows the 
magnitude of sum-of-modes transfer function with m = 
100,1500 for sensor located at xs = L/5. Although the 
sum-of-modes transfer function agrees well beyond the cut- 
off frequency, there is a disparity of orders of magnitude 
below the cut-off frequency. This is because an exponen- 
tial solution cannot be approximated by a finite sum of 
sinusoids. However it is observed that the sum-of-modes 
transfer function does show evanescent behavior as x, + L. 

In summary, in this paper we develop state space mod- 
els for a two-dimensional acoustic ducts using modal de- 
composition of the response to an arbitrary boundary in- 
put issued by a speaker located at one end of the duct. 
This paper also derives irrational transfer functions us- 
ing Laplace transforms which exactly capture the cut-off 
phenomenon or the evanescent wave behavior observed 
in acoustic ducts. The sum-of-modes transfer functions 
derived from the state space models are shown to agree 
with the irrational transfer functions. Note, however, 
that a one-dimensional acoustic model which essentially is 
the fundamental T~(z,y,jw) is insufficient to capture the 
evanescent behavior. 

2 & , k i  i- &si and the x direction. 

that ‘7)bc($!) COS(2Ty/b) SO that fbc,k # 0 Only if k = 2. 

evanescent modes (open duct) 
1 0 0 ,  I 

Evanescent 
behavior 

1 , 
-300 0 I 

x-,vs. I 

. !WCP . -350 
1 o3 104. 106 frequency in rad/sec. 
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Figure 1: (a) Magnitude plots of the transfer function (36) for different values of xs. (b) Comparison 
of transfer functions (29) and (36). 
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