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his article is a personal account of T my experiences in developing con- 
trol experiments for the purpose of con- 
trol research. The article does not address 
the important questions surrounding the 
development of control experiments for 
undergraduate education. Rather, the 
emphasis is on research, specifically, the 
role that control experiments can play in 
motivating new theoretical ideas. To 
stimulate discussion about these issues I 
organized a session for tkle 1997 Ameri- 
can Control Conference entitled “Con- 
trol Experiments: What Do We Learn 
From Them?”The reader is invited to pe- 
ruse the various papers that were contrib- 
uted to that session for further insights 
into this question. 

Is “Control Experiment” 
an Oxymoron? 

Control is a contradictory subject 
when it comes to experimentation. On the 
one hand, if there was ever a subject that 
cried out for hardware application, it is 
control. After all, the purpose of control is 
to control something, ancl real-world ap- 
plications inspired fundamental develop- 
ments by Watt, Maxwell, Routh, Nyquist, 
Bode, Black, and many others. On the 
other hand, control theory grew up as a 
branch of applied mathematics in the 
hands of mathematicians such as Wiener, 
Bellman, Kalman, and Pontryagin. Al- 
though other branches of engineering 
such as fluid mechanics and structural 
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mechanics are major users of mathemat- 
ics, none is as mathematical in style and 
spirit as is control. When was the last time 
you saw a theorem-proof format in a flu- 
ids or structures journal? 

Nevertheless, when I left industry and 
came to the University of Michigan, the de- 
sire to actually control something gnawed 
at me. I saw my colleagues in the Aero- 
space Engineering Department building all 
sorts of exotic experiments and I wondered 
why there was no fundamental need to ex- 
periment with anything in control. In the 
department there had been a hardware tra- 
dition in control dating back to the pioneer- 
ing development of analog simulators by 
the Gilbert brothers and Robert Howe. 
These developments, which contributed 
greatly to aerospace technology during the 
Apollo years, had long since given way to 
purely theoretical research. Since I knew re- 
searchers in the control community who 
regularly conducted control experiments 
(for example, Gary Balas, John Hauser, 
Carl Nett, Umit Ozguner, and Steve Yurko- 
vich) I was motivated to 
develop some experiments 
of my own. 

I thought about it at 
great length, however. 
and even began to ques- 
tion the very phrase “con- 
trol  experiment.” If 
control results were es- 
sentially mathematical 
statements that were self 
consistent and provably 
correct, then it seemed to 
me that it would be scien- 
tifically pointless to build 

them. In addition. I found it difficult to 
think of an hypothesis that a control ex- 
periment might settle and therefore would 
warrant testing. I wondered whether the 
phrase “control experiment” was in fact 
an oxymoron. While a chemist or fluid 
dynamicist can run experiments to dis- 
cover and explore new phenomena (how 
exciting!), it seemed to me that a controls 
researcher could at best hope to demon- 
strate how proficient they were at build- 
ing hardware that served no other purpose 
than to mimic the assumptions of some 
mathematical theorem. Any residual 
questions could always be addressed by 
numerical simulation. 

Or so it seemed. 
There was only one path out of my di- 

lemma. I teamed up with Pete Washa- 
baugh, a structures experimentalist in my 
department, and he and I drove up to 
Michigan State to visit Clark Radcliffe 
and seek his advice. Here was someone 
with a lab full of interesting control ex- 
periments. Clark had his own (and good) 

. .  

an experiment to test Fig. 1. Acoustic duct experiment. ’ 
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Fig. 2 .  Ideiitifed model of the acoustic duct using 
,4RMAKOVIToeplitzlERA identification. 

Fig. 3. Open- and closed-loop response of the acoustic duct. 

reasons for building control experiments, 
but I had to learn these for myself. 

Like a true experimentalist, Pete im- 
mediately suggested all kinds of control 
experiments. Although I still had nagging 
doubts, I went along in the hope that my 
questions would somehow be answered. 
It seemed to me that the best strategy was 
to suppress my concerns and proceed at 
full speed. For the time being I assumed, 
and eventually learned, 

Lesson 1. In order to understand why 
control experiments are valuable for con- 
trol research, you mustfirst do control ex- 
periinents. 

Being in an a,.i.tyvc;' cii!*iiit\ci.iiiy ,L*- 
I)nrlment. i t  u x  iioi t l 1 1 1 ' 1 ~ ~ i i 1 1  i t )  I I I I ,~ \ill- 

dents ulio \WIY i i i l L * i k ~ ~ i ~ ~ t l  i i i  ~~\twI,iii:: t j i i  

control cqxrinit*iii\. 1 1 1  1x1. I 1 ~ u i i i t 1  i11.11 

in:in! enpinecriiig stutlenrs thrived on 
them. I a h  Timiid iliac a l l  ol~liose useless 
sliills that were suplwc.;secl in  my aca- 
demic career (like working with tools) 
were suddenly useful. However, I had no 

idea how I would relate my 
theoretical work to experi- 
ments or where this would 
lead. Yet I had to press on. 

The Acoustic Duct 
Experiment 

Within a day of our 
visit to Clark's lab and in- 
spired by some noise con- 
trol experiments we saw 
there, Pete picked up some 
four-inch-diameter PVC 
pipe at Builders Square 
and some speakers and mi- 
crophones at Radio Shack, 
and set up an acoustic duct 
experiment (see Fig. 1). 
With a stereo to serve as 
an amplifier, our invest- 
ment was less than $200. 
Finding a suitable control 
computer was another 
matter, however, and this 
held us up for a while. A 
variety of audio proces- 
sors and data acquisition 
boards seemed like they 
might work, but none was 
configured for true real- 
time 1/0 (many had ADS 
with large delays or had 
limited buses, for exam- 
ple). Over the years I had 
heard stones of control ex- 
perimentalists stymied by 

the lack of processors that could do real- 
time control. While I wanted to do control 
experiments, I did not want to have to de- 
s ign  a control computer as well. Unfortu- 
nately, it was difficult to fiid a salesperson 
who could communicate about computers 
and control systems; mentioning "A$,C" 
often led to a blank stare. Pete and I spoke to 
several vendors including, 
thanks to Carl Nett's sug- 
gestion, dSPACE Inc., 
which was the only com- 
pany we found at the time 
to offer a PC-based real- 
time control processor 
board. We later found that a 
~ ~ ~ ~ ~ ~ ~ l i ~ i i i i  .iii;il! Ler was an 
:\~:iiii:~I I G ~ t ~ ~ *  of labora- 
itii.! L ~ t l t i i p l l , ~ i i l .  as was an 
:I~\OI~IIII~~III (11' .<'opes, mul- 
timeters, power supplies, 
amplifiers, and fiiters. 

ment because of its rich dynamics, the 
availability of good sensors and actuators, 
and low cost. In fact, an attempt to use 
high-quality microphones revealed that 
they had significant phase lag, and we 
thus returned to the inexpensive variety. I 
simply had to explain to people that the 
purpose of our first control experiment 
was to control a plant made out of, well, 
air. Even this had its advantages, since in- 
stability merely resulted in a blown fuse. 
We bought them by the dozen. 

We began our experimental activities 
by learning to model the acoustic dynm-  
ics of the duct. However, it quickly be- 
came clear that the dynamics of the 
speakers and microphones had a major 
impact on the transfer functions, and it 
was challenging to account for the 
electrical-mechanical-acoustic inter- 
faces. Meanwhile, Pete taught me that 
every sensor, actuator, filter, and ampli- 
fier needs to be tested and calibrated since 
manufacturers' specs are often mislead- 
ing and are almost always incomplete. 
The application of mathematical results 
was preceded by nontrivial effort, as 
every component needed to be modeled, 
tested, and verified. 

As my students and I learned to build 
models and as we implemented control- 
lers, astrangeprocess tookplace. Years of 
control theory began to assume a new di- 
mension for me. Theoretical concepts 
such as gain and phase margin, poles and 
zeros, and sensitivity were no longer ab- 
stractions. The students measured not 
only the closed-loop response, but also 
the loop gain and gain margin in order to 
understand the interaction between the 
plant and the controller. Although gain 
margin and sensitivity were invisible and 
abstract to "non-control" visitors to the 
lab, we were gaining firsthand experi- 

, 8  /\.. 
It turned out that con- f i  . 

trolling noise in a duct was 
an excellent first experi- Fzg 4 Rotationalltranslational actuator (RTAC) experiment 
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Fig. 5. Integrator backstepping control of the RTAC with saturation. 

ence with their existence and meaning. 
We relied on these concepts to get control- 
lers to work. 

But the honeymoon Wiis soon over as 
we began to notice strange phenomena that 
the textbooks mentioned briefly but omi- 
nously. For example, when we collected 
data at different disturbance levels, the 
plant transfer function wasn’t the same. At 
frequencies for which the plant gain was 
low, such as near zeros, we couldn’t even 
collect good data. The perfect Nyquist 
plots of the loop transfer function I was 
used to seeing in textbooks (especially 
those fanciful ones that wrapped around at 
infinity, not to mention those unobtainable 
ones corresponding to unstable loop trans- 
fer functions) just didn’t ‘exist in the lab. 
The notion of poles and zeros got fuzzier 
and fuzzier, and those perfect root locuses 
couldn’t be found either. Relative degree 
became suspect, and I began to question 
my faith in rational functions. As we began 
to recognize nonlinemities and realized 
that noise was everywhere, things reached 
crisis proportions. The self-consistent 
theorems of control theory didn’t seem as 
powerful as they used to seem. The real 
world was an amazingly rnessy place, and 
our ability to probe it was impeded by a 
fundamental fact of life given by 

Lesson 2. All real data is finite and 
noisy. 

Through all of this, I developed a new 
feeling for the meaning of an “assump- 
tion.” While an assumption in mathematics 
always means an unquestioned axiom, an 
assumption in the physical world serves as 
an approximation to reality. Expertise in 
an area of physics or engineering is needed 
to determine the realism and accuracy of 
any given assumption. I learned to accept 
the fact that no mathematical assumption, 
whether it is of a deterministic or stochastic 
nature, is ever satisfied in the real world, 
while Lesson 2 taught me that the ability to 
verify the validity of any assumption is in- 
herently limited. 

Nevertheless, we eventually devel- 
oped a sense of the limits to linear model- 
ing and proceeded to construct linear 
dynamical models as the basis for active 
noise control [ 1,2]. However, we soon re- 
alized that because of sensor and actuator 
dynamics, analytical modeling could not 
be trusted to provide reliable models. We 
therefore learned to obtain useful models 
(nominal plus uncertainty) of the duct dy- 
namics using identification techniques, 
namely, the inverse FRF/ERA and AR- 
MARKOVRoepIitziERA methods [ 3 -51 

Fig. 6. Virtual absorber subsystem for con- 
trolling the RTAC. 

. . .  
_ .  
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Fig. 7. Unbalanced rotating shaft eqerimeat. 

(see Fig. 2). With the effectiveness of 
these techniques and the difficulties we 
experienced trying to obtain precise ana- 
lytical models, we learned 

Lesson 3. An ounce of identification is 
worth 10 pounds of modeling. 

Since acoustic dynamics are inher- 
ently linear and have high modal density, 
they provide an ideal testbed for linear, 
robust control [6-131. Our f i s t  attempt 
was to colocate the measurement sensor 
and control actuator in order to exploit in- 
herent stability robustness. However, this 
sensor/actuator arrangement led to spillo- 
ver, which appeared as amplification of 
the open-loop gain by the controller in a 
given frequency range. (Here we are re- 
ferring to spectral spillover, although 
spatial spillover occurs as well.) In fact, 
the experiment immediately focused our 
attention on this phenomenon for the 
simple reason that we heard it. In addi- 
tion, since spillover occurred no matter 
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Fig. 8. Adaptive virtual autobalancing conti-ol of the 
unbalanced rotating shaft experiment during spinup 

and difficult to captur-e in 
numeTical simulation. 

The RTAC 
Experiment 

The next experiment 
we built was an attempt to 
rein in Mother Nature. The 
RTAC (rotational/transla- 
tional actuator) is a me- 
chanical device with two 
degrees of f reedom,  
iiamely, a translating os- 
cillator and a rotational 
motor with a mass 
mounted on an eccentric 
arm [15] (see Fig 4) 

For the RTAC, we de- 
signed and implemented 
dissipative controllers, 
which require only the an- 
gular velocity of the arm 
[16,17], as well as integra- 
tor backstepping control- 
l e rs ,  which requi re  

Fig 9 CAD drawing of the control-moment-gyro experiment full state feedback [18] 
Experiments focused our 
attention on two issues 
First, the integrator back- 
stepping controllers re- 
quired far larger control 
inputs than the dissipative 
controller>, which thus 
presented saturation diffi- 
culties (see Fig 5). How- 
ever ,  the  dissipative 
controllers, which are 
based upon the reaction of 
the arm to the oscillator 
motion, cease to be effec- 
tive at low oscillation am- 
plitudes due to stiction On 
the other hand, the integra- 
tor backstepping control- 

& 
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Fig 10 Coirtrol-mornent-gyr o exper iment 

how accurately we the plant, we lers, which are full-state feedbaclc 
that was not a controllers, react to the translational mo 

quence Of uncertanty We 
that the Bode lntegId constraint on SenS’ 

tion ofthe cart and thus are more effective 
at low amplitudes. B~ observlng the ef- 

tivitY was at work here and that appropriate iects of saturation and stiction on the 
placement of sensors and actuators was es- 
sential [14] While the feedforward noise 
control community had known this for a 
long time, we were forced to learn it from a 
feedback perspective By exploiting &mi- 

cal results from singular LQG control that 
depend upon nonminimum phase transfer 
functions, we saw the spillover disappear 
(see Fig 3) We had learned 

ous control algorithms, we learned 

Lesson 5.A control experiment can r-e 
ben1 whether the niathematzcal assump- 
tlO77S of control theory ai c realisiic and 
c m  help zdentzb which physical effects 
a7 e ~ n ~ p o r  tunt 

Later, we learned to control the RTAC 
by manipulating the flow of energy be- 
tween the oscillator and the arm as well as 
into and out of the plant To do this, we de- 
veloped control strategies involving vil- 

Lesson 4. Control expel znients often 
focus attention on performance and zm- 
plenientation issues that are ovei looked 

tual absorbers which are reset at various 
times, thereby instantaneously removing 
energy from the system (see Fig. 6). Al- 
though resetting a virtual absorber by ze- 
roing out computer states would appear to 
have no effect on the real energy of the 
system, in fact, the true effect of the reset- 
ting procedure is to prevent the control 
system from reintroducing energy into 
the plant [19, 201. Only by observing this 
effect in the lab did we convince ourselves 
that this was a viable control strategy. The 
development of resetting virtual absorb- 
ers was a consequence of 

Lesson 6. Control experiments can 
suggest new research problenzs and di- 
rections as well as new control ap- 
proaches. 

The Rotating Shaft Experiment 
Next we built an experiment to sup- 

press vibrations due to an unbalanced ro- 
tor. This is a universal problem in rotating 
machinery where rotating masses induce 
vibrations due to imbalance. Previously, 
we had developed theoretical results for 
controlling the spinning top, first for the 
symmetric (balanced) case [21, 221 and 
then for the asymmetric (unbalanced) 
case [23]. To develop a realizable control 
experiment we needed a suitable actuator, 
and we were fortunate that Brad Paden 
provided us with a magnetic bearing. We 
then designed the rotating shaft experi- 
ment to allow us to implement coritrol al- 
gorithms for counteracting the effects of 
mass imbalance. In our experimental 
setup we mounted the shaft vertically to 
avoid the need for shaft levitation in order 
to focus on imbalance compensation (see 
Fig. 7). In developing viable controllers 
for imbalance compensation we realized 
that accurate measurements of the inertia 
matrix of the shaft were extremely diffi- 
cult to obtain. In fact, any realistic control 
strategy for compensating rotor imbal- 
ance must be effective in the presence of 
unknown and possibly changing inertia. 
The strategy we adopted was physically 
motivated and sought to emulate the mo- 
tion of passive weights confined to a 
fluid-filled annulus surrounding the shaft. 
While mechanical devices based on this 
principle have been known since the 
1930s, adaptive virtual autohalancing 
[24, 251 was an attempt to capture this 
idea as an active control algorithm. Ex- 
perimentally, the algorithm worked suc- 
cessfully (see Fig. 8), while analysis 
showed (rather surprisingly) that the pas- 
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As the article suggesx iny original conccntration as an undergraduate w a s  in 
matliematics. specifically, applied mathematics at Brown U niversity. There were 
several reasons for this choice. not the least of which was that Brown University 
has an excellenl proprani in applied inaihcrnntics. Howevcr. equally relevant w a s  
the fact that whilc 1 k n w  what mathematics was, having had calculus in high 
school, I had had no cxpxure to engineering as a potential academic major. I was 
fortunate to discover corilrols while I wits a n  undergradua~c a1 Brown, where I cn- 
rolled in a graduate-level control coursc taught by doctoral student Panos Antsak- 
lis. 1 eventually transitioned over to engineering through the Computer. 
Information, and Conlrol Engineering Program at the IJnivcrsily of Michigan, 
where my advisor was Elmer Gilhcrt. The history of control engineering is itsclra 
study in the interaction of applicatioiis and theory. 1 am excited by the possibility 
that control cngincering can benefit immensely from thc intcraction of theory and 
expcrimcnt. Experiments can emphasize implcmentaiion issues, subject assunip- 
tioils to hiddcn cffccts, and guide thcorctical effort. Experimcnts can bring back the 
joy of screndipily. the unexpected discovery that pcrvades science and engineering 
but which is often lacking in the niatheinalical world of control theory. Finally. ex- 
periments can aid in thc [ransition of ncw control ideas and tcchnology to applica- 
tions. For morc details and ;I picturc. see D.S. Bcrnstein. '''4 Student's Guide to 
Classical Control," IELC Conrr. Sys. M q . ,  vol. 17. pp. 96- 100, August 1997. 

--Dennis Beriistein 

sive mechanical device being emulated 
can be viewed as the embodiment of an in- 
ternal model controller. This experiment 
reinforced Lesson 6. 

A challenging aspect of the rotating 
shaft experiment is the fact that the mag- 
netic bearing actuator has a permanent 
magnet bias which has the tendency to 
snap the shaft from one side to the other 
unless there is a minimal level of control 
authority to effect stabiliziition. To coun- 
teract this instability without a physical 
stiffness (which we included for this rea- 
son at the base of the shaft) we needed a 
good actuator model, which was difficult 
to obtain empirically in the presence of the 
instability. A deliberate sign change in the 
feedback loop with the shaft spinning at 
1,000 rpm causes the shaft to ricochet vio- 
lently and gives a graphic demonstration 
of the consequences of instability. This 
lesson had been stressed by Gunter Stein 
in the title of his classic Bode Lecture 
which taught us 

Lesson 7. Respect the unstable. 

The Actively Controlled 
Control-Moment Gyro 

Since nonlinearities arose whenever 
we least expected them, we decided to 
build an experiment that was intentionally 
nonlinear and had more degrees of free- 
dom than the RTAC. This objective led to 
the design of an actively controlled 
control-moment gyro (CNLG), which con- 
sists of three rigid bodies whose dynamics 
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involve large-angle nonlinear gyroscopic 
effects [26]. Attached to a spacecraft and 
with a rapidly spinning rotor, a CMG pro- 
vides stiffness for the spacecraft and, by 
applying torques to the gimbals, can be 
used to slew the spacecraft. The CMG in- 
volves an outer gimbal and an inner gim- 
bal, both of which are actuated by motors. 
The inner gimbal is controlled by a pair of 
matching motors to double the available 
torque and to balance the motor mass. At- 
tached to the inner gimbal is a fourth mo- 
tor that drives a rotor. For control 
experiments, we can attach various rotors 
to perform a wide range of control experi- 
ments involving slewing of the rotor and 
imbalance compensation. We can also in- 
vert the outer gimbal to stabilize a rotating 
spherical pendulum. While a CAD draw- 
ing illustrates the basic design (see Fig. 9). 
a photo of the actual testbed shows added 
mass and stiffness due to cabling, connec- 
tors, and other hardware (see Fig. 10). 
These considerations, as well as effects 
such as stiction, emphasize 

Lesson 8. The needfor nonlinear iden- 
tificcition is pervasive. 

While nonlinear identification is es- 
sential due to both large-angle nonlineari- 
ties and modeling uncertainty, the CMG 
experiment motivated us to develop an at- 
titude control technique for spacecraft 
tracking that is adaptive with respect to in- 
ertia [27] .  To avoid singularities in an 
Euler angle representation, the approach 

in [27] is based upon quaternions to repre- 
sent attitude. 

Active Control of Combustion 
As a much more challenging control 

experiment, we undertook the problem of 
controlling combustion instability. It 
turned out that the combustion program in 
the Aerospace Engineering Department 
involved research on a 300 kW natural 
gas combustor (see Fig. 11) which exhib- 
its thermo-acoustic instabilities in the 
form of loud rumbling when operated in 
certain regimes. This combustor was 
available for a two-month period, and we 
were allowed six weeks to try to control it. 

Our approach to controlling the com- 
bustor was to use speakers to counteract 
the instability caused by the interaction of 
the flame and the acoustic dynamics. The 
trick was to insert acoustic energy suffi- 
ciently close to the flame in order to 
achieve the greatest possible advantage 
(and without melting the speaker!). To do 
this we exhausted numerous strategies, 
including (carefully) inserting a speaker 
directly into the natural gas fuel line (see 
Fig. 12). Ultimately, we realized that the 
design of the combustor did not accom- 

Fig.  11.300 kW natural gus combustor. 

Fig. 12. Speaker housing attacked to the 
natural gas fuel line of the combustor. 
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modate acoustic control. What we really 
needed were fast servovalves which 
would entail actuator development. We 
fully appreciated 

Lesson 9. Control experiments allow 
oiie to practice the “outer loop” of con- 
trol design, namely, the specification, 
design, and implementation of sensors 
and actuators. 

This lesson taught us that “off-the- 
shelf” control experiments deprive ex- 
perimentalists of one of the most impor- 
tant aspects of control engineering. 

Whereas for the acoustic duct experi- 
ment we tested controllers with machine- 
generated disturbance signals, in the 
world of fluids and flames Mother Nature 
creates the disturbance through complex 
dynamics. In this case one cannot count 
on mathematical assumptions such as sta- 
tionarity, Gaussian, etc., to hold. This 
taught us 

Lesson 10. The diflerence between a 
“toy” control experiment and a “real” 
control experiment is whether the distur- 
bance is of your own constvuction OY is 
thrown at you by Mother Nuture herself. 

Adaptive Control Experiments 
Our experience with the combustor 

motivated us to focus on adaptive control 
techniques that would work in the pres- 
ence of poor plant models and unknown 
disturbance spectra. While control tech- 
nology has had a long and successful his- 
tory in electrical, mechanical, aerospace, 
and other technological applications, 
adaptive feedforward algorithms were de- 
veloped independently for noise cancella- 
tion. These techniques include LMS (least 
mean square) algorithms with FIR and IIR 
controllers, lattice filter techniques, and 
numerous variants. The theoretical foun- 
dation for these techniques varies greatly 
from method to method, as does their per- 

/ ::: ;,; \ / ( \ /  \ / ( h i l l  I ; . l ; ’ : .  ,; ,,,, :):,;( .,;::. t . ’ .  :’,*,;, I”::: 
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formance in practice. In 
contrast to classical feed- 
back techniques, adaptive 
feedforward algorithms 
have limited modeling 
requirements and are ro- 
bust to disturbance spec- 
trum uncertainty. These 
features have been ex- 
ploited in applications 
with good success. 

Although a rigorous 
theoretical foundation for 
adaptive cancellation al- 
gorithms is often lacking, 
experimental implemen- 
tation of these algorithms 
can be used to assess their 

,;:,*: ’.’:,’. * ; , ‘ , , ‘ , : ‘ b , !  ~ 

effectiveness. We there- 
fore implemented various 
adaptive cancellation al- 
gorithms along with an 
ARMARKOViToeplitz- 
based algorithm [2S-30]. 
This algorithm converged 
in the presence of single- 
tone,  dua l - tone ,  and 
broadband disturbances. 
Figs. 13 and 14 show the 
open-loop and converged 
closed-loop response of 
the ARMARKOVIToe- 
plitz-based algorithm for 
dual-tone and white-noise 
disturbances. Note the 
presence of harmonic 
Overtones due to speaker 
stiffness nonlinearity, 

Fig. 14. ARMARKOVlToeplitz adaptive cancellation with 
white-noise disturbance. 
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which emphasizes Lesson 5 and Lesson S. 
In keeping with Lesson 10, this algorithm 
was also tested with random noise gener- 
ated by an Ah4 radio tuner set between sta- 
tions (see Fig. 15). 

Adaptive control algorithms are excit- 
ing to observe in the lab. The ideal con- 
troller would work with an initially poor 
model, leam and improve with age, and 
change when the plant changes. That is 
the Holy Grail of adaptive control. How- 
ever, since adaptive controllers change in 
response to changing disturbances and 
plant dynamics, their behavior and reli- 
ability is difficult to ascertain by means of 
theory alone. Control experiments thus 
provide a convenient means for testing 
variants of adaptive control algorithms. 
On numerous occasions we learned 

Lesson 11. Control experimentspro- 
vide a quick way to identify control 
methods that seem to work under real- 
world conditions as well as  those that 
cleasly don’t. 

Thus, in a m l y  experimental spirit, 
control experiments are useful for discov- 
ering promising new algorithms. In a 
similar vein, we also learned 

Lesson 12. Control methods based on 
rigomus theory may fail for unknown rea- 
sons, while heuristic control methods may 
work for  equally unexplained reasons. 

Both of these lessons motivate theo- 
retical research to explain both unex- 
pected failures and unexpected successes. 
In any event, our experience with hard- 
ware taught us that control experiments 
are an effective arbiter of whether an 
adaptive control method will work under 
real-world conditions. 

Why Do Control Experiments? 
The above discussion does not in any 

way reflect the hard work required to de- 
sign, build, and operate a control experi- 
ment for control-systems research. 
Design of a control experiment is an itera- 
tive process that depends upon extensive 
analysis to size and select appropriate 
components. In addition, the reliable op- 
eration of the hardware components as 
well as all of the supporting real-time soft- 
ware (an often-underemphasized aspect 
of the control curriculum) can be a major, 
time-consuming task. 

Ironically, although a control experi- 
ment can take months or years to build and 
render operational, reporting experimen- 
tal results may occupy only a small frac- 
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tion of a research paper, with the 
theoretical portion receiving top billing. 
However, as noted in Lesslon 1 1, a work- 
ing control experiment ha!; the ability to 
reveal very quickly which control ap- 
proaches are promising and which are not, 
thus suggesting the most fruitful research 
directions. I believe that this guidance is 
of inestimable value to control research 
und technology. In addition, we found that 
control experiments invariably motivated 
the development of new control algo- 
rithms and techniques. 

It is fair to say that control as an experi- 
mental science has had far too little em- 
phasis. Control research c m  be enriched 
in innumerable ways by proper emphasis 
on control experiments. A control experi- 
ment can bring out important physical 
phenomena that a theorist would not think 
of considering. We live in an excellent 
time for undertaking control experiments, 
especially because of fast processors for 
real-time control. Let Mother Nature be 
our teacher! 

Finally, the most profound lesson I 
learned was 

Lesson 13. Control research without 
experiments is like music without sound. 
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