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F E A T U R EF E A T U R E

I
n this article, we use a robotic arm to calibrate a
triaxial accelerometer and magnetometer. In par-
ticular, we estimate the sensitivity and bias of
each of the three accelerometers and three mag-
netometers that comprise the triaxial sensor.
Although it is ideal

to have the three
accelerometers and the
three magnetometers
aligned orthogonally from
one another, perfect align-
ment cannot be assumed.
Therefore, we also deter-
mine the angles between each pair of accelerometers
and each pair of magnetometers.

To perform this calibration, the sensor is mounted
to the end effector of a robotic arm. The robot has six
joints. Accelerometer measurements are recorded as
the robot moves three of the six joints, performing

rotational movements in roll, pitch, and yaw, which
correspond to rotations about the x-axis, y-axis, and z-
axis of a cartesian frame, respectively. This motion is
sufficiently slow that gravity is effectively the only
acceleration acting on the accelerometers.

As the robot arm
rotates the sensor, the
accelerometer provides
voltage readings, which
are modeled as the true
acceleration multiplied by
the sensitivity of the
accelerometer and added

to an offset term. These voltage readings are recorded
for several thousand orientations of the sensor. Then,
the data are used within an optimization algorithm to
estimate the sensitivity, offset, and relative orientation
of each accelerometer. The magnetometers are calibrat-
ed using the same procedure. A related method for
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calibrating a sensor was used in [1], where a calibration
platform for an inertial measurement unit with four global
positioning system (GPS) antennas was designed using a
carpal wrist and turntable.

Two parameter-estimation problems are formulated
using least-squares optimization to calibrate the
accelerometers and magnetometers. In the first parameter-
estimation problem, each accelerometer is individually cal-
ibrated, which allows us to examine the integrity of the
data, model, and sensor by comparing the calibration
results from each accelerometer. The second parameter-
estimation problem calibrates the accelerometers simulta-
neously. The separate and simultaneous least-squares
optimization problems are also used for parameter estima-
tion in the magnetometer calibrations. In addition, the
accelerometer is calibrated with both simulated and
empirical data to assess the accuracy of the numerical
parameter estimates.

The triaxial accelerometer and magnetometer consid-
ered in this article are encompassed in a 3DM solid-state
three-axis pitch, roll, and yaw sensor supplied by Micros-
train, Inc. Taps were added to the sensor by the vendor,
allowing us to obtain analog voltage readings directly
rather than using postprocessed digital readings. The taps
are connected to a Q8 high-performance HIL control board
manufactured by Quanser, Inc., which implements analog-
to-digital conversion for data acquisition. The board has
14-bit resolution and an input range of ±10 V. The robotic
arm is a six-degrees-of-freedom A465 Robot Arm manufac-
tured by CRS Robotics Corporation.

Kinematic Model
We first consider the problem of calibrating the accelerom-
eters, beginning with the derivation of a kinematic model.
Let the subscript rb denote the robot base frame, let the
subscript ee denote the end-effector frame, and let 




ı̂ee

̂ee

k̂ee


 ,




ı̂rb
̂rb
k̂rb


 (1)

denote mutually orthogonal unit coordinate vectors fixed
to the end-effector frame and the robot base frame, respec-
tively. For i = 1, . . . , 6, let




ı̂i
̂i

k̂i


 (2)

denote mutually orthogonal coordinate vectors fixed to
the i th joint frame of the robot. Furthermore, assume that
the base of the robot, which is not necessarily level, is
located at the origin of an inertial frame. All motion is suffi-
ciently slow that the only acceleration sensed by each

accelerometer is that due to gravity. Let �g denote the grav-
itational acceleration vector, which, in the robot base
frame, is resolved as

�g|rb =



gx

gy

gz


 . (3)

The gravity vector is not a parameter of interest in our
accelerometer calibration. However, its direction does affect
the estimates of other parameters that are of concern. To
illustrate, suppose that the gravity vector points in the −k̂rb

direction and that an accelerometer’s axis points in the +k̂rb

direction so that the accelerometer measures 1 g. Rotate the
orientation vector of the accelerometer 180◦ about the k̂rb-
axis, followed by a 90◦ rotation about the îrb-axis. The
accelerometer now measures 0 g. Assume that gravity points
in the −ı̂rb direction and the accelerometer’s axis points in
the +ı̂rb direction so that the accelerometer again measures 1
g. After performing the same sequence of rotations, the
accelerometer reads −1 g. Since this reading is inconsistent
with the previous reading after the two rotations, the direc-
tion in which gravity points does affect the data readings and
must be taken into account in formulating the system model.
Similar comments apply to the magnetometer and the Earth’s
magnetic field. Since we did not attempt to precisely level the
robot base, the direction of gravity is unknown, and thus we
estimate the direction of gravity as part of the calibration.

Each accelerometer measures a scalar component of
the acceleration vector due to gravity in the direction of its
axis (referred to as an orientation vector) resolved in the
end-effector frame. We resolve the orientation vector of
each accelerometer in the robot base frame by transform-
ing each vector from the end-effector frame.

Let the subscript k = 1, 2, 3 denote an accelerometer.
Rotating the unit vector ı̂ee through an angle β about the
̂ee-axis and then through an angle γ about the k̂ee-axis
yields the unit orientation vector P̂k of the k th accelerome-
ter in the end-effector frame. For the k th accelerometer,
the transformation (or rotation) matrix that describes a
rotation about the ̂ee-axis by an angle βk is given by 

R̂ (βk) =



cos(βk) 0 sin(βk)

0 1 0
− sin(βk) 0 cos(βk)


 , (4)

and the transformation matrix for a rotation about the
k̂ee-axis by an angle γk is given by

Rk̂(γk) =



cos(γk) − sin(γk) 0
sin(γk) cos(γk) 0

0 0 1


 . (5)
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Therefore, the unit orientation vector P̂k resolved in the
end-effector frame is given by

P̂k|ee = Rk̂(γk)R̂ (βk)ı̂ |ee. (6)

To resolve P̂k in the robot base frame, we require the
transformation matrix from the end-effector frame to the
robot base frame. The Denavit-Hartenberg table for the
robot, given by Table 1, can be used to formulate this
transformation matrix [2]. Table 1 specifies the rotations
from the end-effector frame to the robot base frame,
thereby determining the rotation matrix for each joint of
the robot arm.

In Table 1, 1 ≤ i ≤ 6 denotes a robot joint, i = 0 corre-
sponds to the robot base, αi is the angle between the 
k̂i-axis of the i th joint and the k̂i−1-axis of the i − 1th joint
for a rotation about the ı̂i -axis, and θi is the angle
between the ı̂i−1-axis and the ı̂i-axis for a rotation about
the k̂i−1-axis. Here, the right-hand rule determines posi-
tive rotations. As a result of its definition and the man-
ner in which the robot arm is rotated, αi is constant for
each joint. Joints 2, 3, and 4 of the robot are locked dur-
ing the experiment; thus, θ2, θ3, and θ4 are constants.
The angles θ1, θ5, and θ6 are varied, and voltage readings
are recorded. Joints 1, 5, and 6 and the robot base are
shown in Figure 1.

The general form of the rotation matrix from the i th
joint frame to the i − 1th joint frame is given by 

R(θi, αi)=



cos(θi) − sin(θi) cos(αi) sin(θi) sin(αi)

sin(θi) cos(θi) cos(αi) − cos(θi) sin(αi)

0 sin(αi) cos(αi)


 .

(7)

Therefore, the orientation vector P̂k resolved in the end-
effector frame can be transformed into the robot base
frame as

P̂k|rb = R1(θ1, α1)R2(θ2, α2)R3(θ3, α3)

× R4(θ4, α4)R5(θ5, α5)R6(θ6, α6)P̂k|ee. (8)

For the k th accelerometer, let Sk and δk denote the sen-
sitivity and offset, respectively, and let ak denote the com-
ponent of acceleration in the direction of the k th
accelerometer’s axis. Then, the voltage reading Vk for the
k th accelerometer is modeled as

Vk = Skak + δk. (9)

Since, by assumption, the only acceleration felt by the
accelerometers is due to gravity, the component of gravity
measured by the k th accelerometer is

ak = |�g||P̂k| cos φk = �g|Trb P̂k|rb, (10)
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i αααi θθθiii
1 π/2 θ1

2 0 π/2
3 0 −π

4 π/2 0
5 −π/2 θ5
6 0 θ6

Table 1. Denavit-Hartenberg table for the six-degrees-of-
freedom robotic arm. Three joints provide roll, pitch, and
yaw rotations. However, each joint must be taken into
account when transforming a vector from the end-effec-
tor frame to the robot base frame.

Figure 1. Six-degrees-of-freedom robotic arm built by CRS
Robotics Corporation. The robot base is mounted on a wooden
table and remains stationary. Three of the six joints are used
to rotate the Microstrain 3DM triaxial sensor, which serves as
the end effector. Joints 1, 5, and 6 provide yaw, pitch, and
roll, respectively. 

End Effector
Robot Base

Joint 1

Joint 6

Joint 5



where φk is the angle between �g|rb and P̂k|rb. Therefore, the
voltage reading of the k th accelerometer is given by

Vk = Sk�g|Trb P̂k|rb + δk, (11)

where P̂k|rb and P̂k|ee are defined in (8) and (6), respectively.

Robot Kinematic Maneuver
To obtain data for calibration, we rotate the accelerometer
in roll, pitch, and yaw, and record voltage readings. As a
result of (10) and (11), the voltage
reading of each accelerometer is pro-
portional to the cosine of the angle
between the accelerometer’s orienta-
tion vector and  gravitational vector.
Since the magnitude of the cosine
function’s derivative is greatest when
φk is close to 90◦, the voltage readings are most sensitive
to changes in sensor orientation when φk is close to 90◦.
Hence, in this range, the voltage readings are most useful
for data analysis. Therefore, it is necessary to rotate the
arm so that φk is close to 90◦ for each accelerometer. How-
ever, the orientation vector of each accelerometer is
unknown with respect to the end-effector frame. We thus
devise a maneuver that allows each accelerometer to pro-
vide a large number of voltage readings where cos φk is
close to 0◦.

In our experiment, Joint 1 of the robot arm is rotated
θ1 degrees about the k̂rb-axis, performing yaw. As Joint 1 is
rotated, Joint 5 of the robot arm is rotated θ5 degrees in
pitch while Joint 6 is rotated θ6 degrees, performing roll.
The average angular velocities for Joints 1, 5, and 6 are
3.1 ◦/s, 0.87 ◦/s, and 13.9 ◦/s, respectively. The entire
maneuver takes 27.74 min to complete. Figure 2 depicts
this movement.

Data are collected at 166,400 joint orientations at a
sampling rate of 100 Hz. When analyzing the data, every
25th data point is taken so that the sampling rate is effec-
tively 4 Hz. Since each orientation of the robot arm is close
to that of the previous orientation, we assume that the
robot arm is static; this assumption allows us to ignore
translational acceleration and angular velocity.

Each accelerometer has a range of ±2 g, with an output
reading between 0–5 V. In addition, accelerometers 1, 2,
and 3 have root-mean-squared (RMS) noise levels of
approximately 13.4, 13.6, and 14.6 mV, respectively. These
noise values were found by locking the arm in an orienta-
tion for 200 s at a sampling rate of 1 kHz. Performing this
procedure for three different orientations of the robot
arm, the RMS noise was then calculated for each of the
three orientations, and the mean of these three values
was taken as an approximation of the RMS noise level.

From these values, accelerometers 1, 2, and 3 are found to
have dynamic ranges of 51.4, 51.3, and 50.7 dB, which are
equivalent to 8.54, 8.52, and 8.42 bits, respectively [3].

Parameter Estimation
To calibrate the triaxial accelerometer from the collected
data, we formulate a least-squares optimization problem
using (11). Function minimization is performed using the
MATLAB function fminunc, which employs quasi-Newton
minimization with numerical gradients. The function
fminunc thus utilizes the voltage readings from the
accelerometers, the angular orientations of the robot

joints, the function to be optimized, and an initial estimate
of the parameters. fminunc finds a local minimizer starting
from the initial estimate. The initial estimates of the para-
meters are chosen so that each accelerometer’s orienta-
tion vector is in the +ı̂ee direction, each sensitivity is 1 V,
and each bias is 2.5 V.

Two parameter-estimation problems are formulated.
First, a least-squares function is defined and optimized to
calibrate each accelerometer individually. Next, one least-
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Figure 2. Graphical representation of the kinematic maneu-
ver. Joint 1 rotates in yaw 340º in a back-and-forth sweep
motion 15 times, forming the basis of the circle. As Joint 1
performs this maneuver, Joint 5 rotates in pitch 180º in a
nodding motion seven times, creating the torus shape. Since
Joint 1 rotates 15 times and Joint 5 rotates seven times, the
rotations of the joints are out of phase with each other, and
joint orientations are not repeated. The figure shows the
superposition of all 15 sweeps and seven nods, decimated for
clarity. Joint 6 continually rotates in a roll-type motion about
each of the bristles that represent the motion of Joint 5.
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squares function is defined and optimized to calibrate all
three accelerometers simultaneously. We first calibrate

the accelerometers separately to determine whether any
of the sensors are faulty and whether the model is appro-
priate. Specifically, if the direction of gravity estimates
obtained from the separate calibration vary by more than
a few degrees, then the sensor, data, or model may need
to be reexamined. Likewise, if each direction-of-gravity esti-
mate in the separate calibration is within a few degrees,
but the error in the estimates is large, we must examine
the data and model for the cause of the large error. 

Separate Accelerometer Calibration
First, we calibrate each accelerometer separately,
assuming that the direction of gravity in the robot base

frame is unknown. Therefore, the estimates of the direc-
tion of gravity can be different for each accelerometer.

The magnitude of gravity g is assumed to be 9.8
m/s2. Let φ and ψ denote angular rotations about
the ̂rb-axis and k̂rb-axis of the robot base frame,
respectively. Therefore, the direction of gravity ĝk

relative to the k th accelerometer resolved in the
robot base frame is

ĝk|rb = Rk̂(ψk)R̂ (φk)ı̂rb, (12)

where R̂ (φk) and Rk̂(ψk) are the respective Euler rotation
matrices about the ̂rb -axis and k̂rb -axis for the k th
accelerometer. The voltage reading Vk for the k th
accelerometer is given by

Vk = 9.8 Sk ĝk|Trb P̂k|rb + δk, (13)

and the function to be optimized for the k th accelerometer
with six unknown parameters is

Jk
(

Sk,ĝk |rb, P̂k|rb, δk

)
�

n∑
j=1

[
Vk, j −

(
9.8 Sk ĝk|Trb P̂k|rb + δk

)]2
.

(14)

Here Vk, j is the j th voltage reading from the kth accelerome-
ter for a set of angles (θ1 , θ5 , θ6 ) that determine the
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Accelerometer βk (º) γk (º) Sk (V-s2/m) δk (V) 

1 −89 2 0.1 2.45
2 1 93.5 0.15 2.55
3 −3.75 −2 0.095 2.3

Table 2. Parameter values used to generate the simulated
data. The numerical simulation is used to assess possible
inconsistency in the presence of noise.

Figure 3. Parameter estimates S1 and δ1 for accelerometer 1 with an increasing number of simulated data points, using sepa-
rate accelerometer calibration. White noise is added to the simulated data, suggesting the possibility of a slight inconsistency.
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orientation of the end effector with respect to the robot base
frame, taken n times, and P̂k|rb is defined by (6) and (8).

Simultaneous Accelerometer Calibration
After calibrating the accelerometers separately and exam-
ining the results, we calibrate the three accelerometers
concurrently. Therefore, the estimate of the direction of
gravity is the same for each accelerometer; that is, there is
only one unknown unit gravity vector in the optimization
rather than three as in the separate calibration case. The
accelerometer measurement model is the same as in (13),
and the function to be minimized with respect to the 14
unknown parameters is

J
(

S1, S2, S3, ĝ|rb, P̂1|rb, P̂2|rb, P̂3|rb, δ1, δ2, δ3

)

�
3∑

k=1

Jk

(
Sk, ĝk|rb, P̂k|rb, δk

)
. (15)

Parameter Estimation
with Simulated Data
To assess the effectiveness of the least-squares optimiza-
tion approach for obtaining parameter estimates, we cali-
brate the sensors using simulated data. We specify the
sensitivity, bias, and orientation of each accelerometer as
well as the direction of gravity. We use these specified
parameters to generate simulated voltage readings at 6,656
joint orientations. In addition, we add white noise to the
simulated measurements. The resulting parameter esti-
mates are compared to the actual parameter values to
assess the accuracy of the estimates.

Separate Accelerometer Calibration
First, we consider the precision of the least-squares opti-
mization involving (14). For convenience, let gravity
point in the −k̂rb direction, although this direction is
unknown to the optimization procedure. Assume there is
no noise in the measurements. The parameters used to
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Figure 4. Parameter estimates S1 and δ1 for accelerometer 1 with an increasing number of simulated data points, using
simultaneous accelerometer calibration. White noise is added to the simulated data to assess the possibility of a lack of con-
sistency in the estimates. The estimates appear to be converging to the actual parameter values.
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Accelerometer βk (º) γk (º) Sk (V-s2/m) δk (V) φk (º) ψk (º)

1 85.3089 89.8536 0.14259 2.3757 89.7507 351.3317
2 −1.2396 0.89466 0.14251 2.4491 89.9933 94.3114
3 1.2837 272.1405 0.14197 2.1096 89.8723 216.0829

Table 3. Parameter estimates computed using separate accelerometer calibration. The angle estimates φφφ1, φφφ2, and φφφ3
determine that the direction of gravity estimates are within 0.25º of pointing in the −−−k̂rb-axis. However, the estimates
of ψψψ1, ψψψ2, and ψψψ3 are greater than 100º from each other. Since the estimates of φφφ1, φφφ2, and φφφ3 are all within 0.25º
of 90º, and thus the estimated gravity vector is 0.25º from pointing straight down with respect to the robot base frame,
rotations ψψψk about the ẑrb-axis do not change the direction of the gravity vector as much as if φφφk were closer to 0º. In
other words, the discrepancy among ψψψ1, ψψψ2, and ψψψ3 is meaningless.



generate the simulated data are given in Table 2. When
there is no noise, the optimization yields highly accurate
parameter estimates.

Next, white noise is added to the simulated data. The
optimization is performed with randomly generated white

noise distributed normally on an interval centered about
zero. The standard deviation of the noise is chosen to be
equal to the RMS noise level of the respective accelerome-
ter to simulate the actual noise in the system. Then, the
standard deviation is increased by a factor of ten to deter-
mine the sensitivity of the parameter estimates to the
noise level. The notation N(a, b) denotes the normal distri-
bution with mean a and standard deviation b. For
accelerometer 1, the two noise distributions used are
N(0, 0.0134) and N(0, 0.134).

Parameter estimation with noisy simulated data is per-
formed for an increasing number of data points. If the para-
meter estimates converge to the actual parameter values
as the number of data points used in the optimization
increases, then the estimator may be consistent [4].

Figure 3 shows that estimates of S1 and δ1 nearly con-
verge to the actual estimates when the noise has a distribu-
tion of N(0, 0.0134). For the sensitivity of accelerometer 1,

the estimate is close to the actual value at about 1,000 data
points. In addition, the offset estimate of accelerometer 1
appears to be converging to the actual parameter value.
From about 2,500 data points onward, the estimate for the
offset stays within 0.0001 V of the actual value. Therefore,

when we calibrate the accelerometers
using this procedure, the estimator
might be slightly inconsistent. For the
case in which the noise has a distribu-
tion of N(0, 0.134) , the estimates
appear to be converging. For the sen-
sitivity and offset of accelerometer 1,
the last estimates taken are within
0.0002 V-s2/m and 0.0008 V of the actu-
al parameter values, respectively.

Simultaneous Accelerometer Calibration
For the function defined in (15), we examine the consis-
tency of the parameter estimates in the same manner. The
actual parameters are those given in Table 2, and the mea-
surement noise is the same as for the separate accelerom-
eter calibration. When there is no noise, the optimization
provides accurate estimates with small errors, as in the
separate calibration procedure. In addition, when white
noise is added to the simulated data, the estimates appear
to converge to the actual parameter values.

When the noise of accelerometer 1 has a distribution of
N(0, 0.0134), the sensitivity estimates shown in Figure 4
reach the actual parameter value at about 1,000 data
points. The offset estimate is within 0.0003 V of the actual
parameter value at about 6,500 data points, which suggests
that this estimate may be slightly inconsistent. If the noise
distribution has a greater standard deviation, then the
accuracy of the estimates degrades. For the case in which
the noise has a distribution of N(0, 0.134), accelerometer
1’s sensitivity and offset estimates at about 6,500 data
points remain within 0.0002 V-s2/m and 0.0010 V of the
actual parameter values, respectively.

Parameter Estimation
with Experimental Data
We now calibrate each accelerometer with experimen-
tal data. Using the data generated by the kinematic
maneuver, we optimize the functions (14) to estimate
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Accelerometer βββk (º) γγγk (º) Sk (V-s2/m) δδδk (V) φφφ (º) ψψψ(º)

1 85.3089 89.8537 0.14259 2.3754 90.0023 11.0511
2 −1.2394 0.8943 0.14251 2.4491 90.0023 11.0511
3 1.2829 272.1489 0.14198 2.1096 90.0023 11.0511

Table 5. Parameter estimates for simultaneous accelerometer calibration. The estimates of S1, S2, and S3 are within
0.00001 V-s2/m of the corresponding estimates using separate accelerometer calibration. The estimates of δδδ1, δδδ2, and δδδ3
are within 0.0003 V of the corresponding estimates using separate accelerometer calibration. The estimate of φφφ is within
0.2416º of the estimates of φφφ1, φφφ2, and φφφ3, obtained using separate accelerometer calibrations.

Accelerometers Angle Between (º)

1 and 2 91.1503
1 and 3 93.4037
2 and 3 88.7825

Table 4. Parameter estimates for the angles between the
accelerometers using separate accelerometer calibration.
The angle estimates suggest that the accelerometers are
within 4º of being mutually orthogonal.

Accelerometer measurements are
recorded as the robot moves three of
its six joints, performing rotational
movements in roll, pitch, and yaw.



the sensitivity, bias, and unit orientation vector of each
accelerometer, as well as the direction of gravity.

Separate Accelerometer Calibration
Optimizing (14) for each accelerometer yields the results
shown in Tables 3 and 4. The data-fit errors in the parameter
estimates for accelerometers 1, 2, and 3 are 18, 26, and 26 mV,
respectively. Note that the estimates of the angles φk and ψk

that determine the direction of gravity vary slightly. However,
since φk varies by less than 0.25◦, the estimates ĝk|rb are in
approximately the same direction for each accelerometer.
Therefore, it appears that our model may not have a funda-
mental problem discernible from separate estimation of ĝk|rb,
and we now calibrate the accelerometers simultaneously.

Simultaneous Accelerometer Calibration
Minimizing (15) yields the results displayed in Tables 5
and 6. The data-fit error in the parameter estimates for
accelerometers 1, 2, and 3 is 41 mV. This error is less
than the sum of the errors in the separate calibration
case, suggesting that the simultaneous calibration para-
meter estimates may be more accurate than the parame-
ter estimates obtained from the separate
calibration procedure.

To analyze the dependence of the para-
meter estimates in Table 5 on the chosen
data subset, we perform the same opti-
mization 25 times. Specifically, we take
each 25th data point of the entire set of
166,400 data points, perform the optimiza-
tion, and then repeat with an offset data
set. The mean and standard deviation of
the 25 estimates of each parameter are
shown in Table 7. The parameter esti-
mates in Table 5 are within one standard
deviation of the corresponding mean para-
meter estimate, indicating that the esti-
mates are independent of the data subset.

Magnetometer
In addition to calibrating the triaxial
accelerometer, we calibrate the triaxial
magnetometer packaged in the 3DM sen-
sor. The magnetometer measures the

Earth’s magnetic field, displaying these readings from 0–5
V. The RMS noise levels of magnetometers 1, 2, and 3 (found
in the same manner as for the accelerometers) are 8.5, 6.8,
and 11.7 mV, respectively. The dynamic ranges of magne-
tometers 1, 2, and 3 are 55.4, 57.3, and 52.6 dB, which are
equivalent to 9.20, 9.52, and 8.74 bits, respectively.

Define a vector �B representing the Earth’s magnetic
field as felt by each magnetometer, resolved in the robot
base frame, to be
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Accelerometers Angle Between (º)

1 and 2 91.1501
1 and 3 93.4044
2 and 3 88.7738

Table  6. Parameter estimates for the angles between
accelerometers using simultaneous accelerometer
calibration. As in the case of separate accelerometer
calibration, the angle estimates suggest that the
accelerometers may be within 4º of being mutually
orthogonal. Each estimate of the angle between the
accelerometers is within 0.009º of the corresponding angle
estimate found using separate accelerometer calibration.

Accelerometers Parameter Mean Std. Dev.

1 S1 (V-s2/m) 0.1426 2.8356 × 10−5

1 δ1 (V) 2.3755 1.8572 × 10−4

1 β1 (º) 85.3442 0.0170
1 γ1 (º) 89.8377 0.1579
2 S2 (V-s2/m) 0.1425 4.1989 × 10−5

2 δ2 (V) 2.4492 2.6657 × 10−4

2 β2 (º) −1.2566 0.0230
2 γ2 (º) 0.8681 0.0265
3 S3 (V-s2/m) 0.1421 5.0368 × 10−5

3 δ3 (V) 2.1093 2.8925 × 10−4

3 β3 (º) 1.3023 0.0199
3 γ3 (º) 272.1241 0.0320
gravity φ (º) 90.0159 0.0288
gravity ψ (º) 134.1036 88.7530

Table 7. Analysis of the simultaneous accelerometer calibration using 
25 data sets. The parameters estimated from one data set applying
simultaneous accelerometer calibration are within one standard
deviation of the mean of the parameter estimates from 25 data sets.

Magnetometer βββk (º) γγγk (º) Sk (V/G) δδδk (V) φφφk (º) ψψψk (º)

1 0.96609 270.1986 1.3014 2.4216 59.5327 81.4606
2 −85.628 185.9308 1.329 2.3965 59.2785 80.7460
3 −4.0163 1.216 1.3342 2.7643 59.4192 81.3364

Table 8. Parameter estimates found using separate magnetometer calibration. The angle estimates φφφ1, φφφ2, and φφφ3,
which in part determine the direction of the Earth’s magnetic field, are within 0.2542º of each other, and the
estimates of ψψψ1, ψψψ2, and ψψψ3 are within 0.716º of each other.



�B|rb =



Bx

By

Bz


 . (16)

The magnetic flux density of the Earth’s magnetic field felt
by the magnetometers is assumed for convenience to be
1 G, where G denotes Gauss and 1 G = 10−4 kg/s-Coulomb.
The voltage reading Vk of the k th magnetometer is

Vk = SkBk + δk, (17)

where Sk, δk, and Bk are the sensitivity of the k th magne-
tometer, the offset of the k th magnetometer, and the
Earth’s magnetic field at the axis of the k th magnetometer,
respectively. Let the unit orientation P̂|rb of each magne-
tometer resolved in the robot base frame be defined by (6)
and (8), and let φk be the angle between �B|rb and P̂k|rb.
Therefore, the component of the Earth’s magnetic field felt
by the k th magnetometer is

�Bk = �B|Trb P̂k|rb = | �B||P̂k| cos φk, (18)

and the voltage reading Vk for the k th magnetometer is

Vk = Sk �B|Trb P̂k|rb + δk. (19)

Magnetometer Calibration
To estimate the unknown magnetometer parameters Sk, δk,
�Bk|rb, and P̂k|rb, we perform two different calibrations, as for
the accelerometers. Again, this approach provides a check of
the fundamental structure of the model and integrity of the

data. The kinematic maneuver described earlier is used to
generate the experimental data used for parameter estimation.

First, we define a function to separately calibrate the
magnetometers. Therefore, the Earth’s magnetic field
located at the magnetometer’s axis is estimated in each
function optimization. The function to be minimized for
the k th magnetometer with six unknown parameters is

Jk(Sk, B̂k|rb, P̂k|rb, δk) �
n∑

j=1

[
Vk, j − (SkB̂k|Trb P̂k|rb + δk)

]2
.

(20)

Optimization of (20) results in the parameter estimates
given in Tables 8 and 9. The data-fit errors in the parame-
ter estimates of magnetometers 1, 2, and 3 are 0.1179,
0.150, and 0.1257 V, respectively. These error values are all
approximately 0.1 V greater than the corresponding errors
for the separately calibrated accelerometers, suggesting
that the parameter estimates for the magnetometers may
not be as accurate as the parameter estimates for the
accelerometers. One possible cause for the greater data-fit
error could be stray magnetic fields. The estimates of φk

and ψk are within 0.26◦ and 0.72◦, respectively.
Next, we calibrate the magnetometers simultaneously.

One function is formulated and optimized for all three mag-
netometers, and a single estimate of the Earth’s magnetic
field vector is obtained. Similar to the case of simultaneous
accelerometer calibration, the resulting cost function with
14 unknown parameters is

J
(

S1, S2, S3,B̂|rb, P̂1|rb, P̂2|rb, P̂3|rb, δ1, δ2, δ3

)

�
3∑

k=1

Jk(Sk, B̂k|rb, P̂k|rb, δk). (21)

Minimizing (21) yields the parameter estimates given in
Tables 10 and 11. The error in the parameter estimates is
0.2285 V. This error is less than the sum of the errors in
the separate magnetometer calibrations, which suggests
that calibrating the magnetometers simultaneously pro-
duces more accurate parameter estimates with a smaller
error than calibrating the magnetometers separately.
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Magnetometers βββk (º) γγγ k (º) Sk (V/G) δδδk (V) φφφk (º) ψψψk (º)

1 0.96237 270.2059 1.3006 2.4216 59.4127 81.402
2 −85.6307 185.8359 1.3283 2.3967 59.4127 81.402
3 −4.0172 1.2153 1.3342 2.7643 59.4127 81.402

Table 10. Parameter estimates using simultaneous magnetometer calibration. The estimates of S1, S2, and S3 are within
0.0008 V/G of the corresponding estimates using separate magnetometer calibration. The estimates of δδδ1, δδδ2, and δδδ3 are
within 0.0002 V of the corresponding estimates using separate magnetometer calibration. The parameter estimates φφφ and
ψψψ are within 0.1342º and 0.6560º of φφφk and ψψψk, respectively, obtained using separate magnetometer calibrations.

Magnetometers Angle Between (º)

1 and 2 90.5314
1 and 3 91.0743
2 and 3 90.3379

Table 9. Parameter estimates for the angles between
magnetometers using separate magnetometer calibration.
The angle estimates suggest that the magnetometers are
within about 1º of being mutually orthogonal.



To analyze the dependence of the parameter estimates
resulting from the optimization of (21) on the data subset,
we perform the optimization 25 times using the same pro-
cedure as for the accelerometers. The mean and standard
deviation of the parameter estimates are displayed in
Table 12. The parameter estimates in Table 10 are all with-
in one standard deviation of the corresponding mean esti-
mates in Table 12. This closeness suggests that the
estimates are independent of the data subset.

Conclusions
In this article, we derived a kinematic model and kinematic
maneuver to calibrate a triaxial accelerometer and magne-
tometer. The calibration was accomplished by implement-
ing this maneuver on a six-degrees-of-freedom robotic arm.
Analysis of the accuracy of our experimental results was
performed by generating simulated data and formulating
two least-squares optimization problems. By first calibrating
the accelerometers with simulated data, we evaluated the
possibility of inconsistency in our estimator. By calibrating
the accelerometer and magnetometer separately, we were
able to check for discrepancies in the data and model. The
simultaneous calibrations produced smaller errors for both
the magnetometer and accelerometer compared to the sep-
arate calibrations, suggesting that the results from the
simultaneous calibrations may be more accurate. In addi-
tion, we tested the dependence of the parameter estimates
on the data subset by repeating the simultaneous calibra-
tions of the accelerometer and magnetometer 25 times with
different data sets and, then, computing the mean and stan-
dard deviation of the 25 estimates. The results of this analy-
sis suggest that varying the data set may not change the
estimate by a significant amount, implying that the para-
meter estimates for the simultaneous calibration are inde-
pendent of the chosen data subset of the collected data.
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Magnetometers Angle Between (º)

1 and 2 90.5314
1 and 3 91.0742
2 and 3 90.3379

Table 11. Parameter estimates for the angles between
magnetometers using simultaneous magnetometer
calibration. As in the case of separate magnetometer
calibration, the angle estimates suggest that the
magnetometers are within about 1º of being mutually
orthogonal. Each estimated angle between a pair of
magnetometers is within 0.0001º of the corresponding angle
estimate found using separate magnetometer calibration.

Magnetometers Parameter Mean  Std. Dev. 

1 S1 (V/G) 1.3013 2.7656 × 10−4

1 δ1 (V) 2.4217 1.2231 × 10−4

1 β1 (º) 0.9672 0.0091
1 γ1 (º) 270.2025 0.0074
2 S2 (V/G) 1.3285 1.8814 × 10−4

2 δ2 (V) 2.3967 1.3098 × 10−4

2 β2 (º) −85.6327 0.0082
2 γ2 (º) 185.9310 0.1691
3 S3 (V/G) 1.3344 2.3063 × 10−4

3 δ3 (V) 2.7643 1.0935 × 10−4

3 β3 (V) −4.0152 0.0073
3 γ3 (V) 1.2193 0.0113
Magnetic Field φ (º) 59.4153 5.4911 × 10−5

Magnetic Field ψ(º) 81.2401 2.0431 × 10−4

Table 12. Analysis of simultaneous calibration for the
magnetometers using 25 data sets.  The parameters
estimated from each data set by applying simultaneous
accelerometer calibration are all within one standard
deviation of the mean of the parameter estimates
obtained from all 25 data sets.




