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Abstract— In this paper, we introduce the concept of input
and state observability, that is, conditions under which both
the unknown input and state can be estimated from the output
measurements. We discuss sufficient and necessary conditions
for a discrete-time system to be input and state observable. Next,
we derive an unbiased minimum-variance filter to estimate the
unknown input and the state, when the state space matrices
are known. We show that the Kalman filter and other filters
in the literature are special cases of the filter derived in this
paper. Finally, we present an illustrative example.

I. INTRODUCTION

Systems with unknown inputs have received consid-

erable attention in the past [3–8, 10–23, 25–28]. An active

area of research is state reconstruction with known model

equations and unknown inputs. Among the popular ap-

proaches are full-order observers [4, 6, 15, 16, 28], reduced-

order observers [7, 8, 19, 21], geometric approach [3], gen-

eralized inverse approach [19, 21], trial-and-error approach

[26], and the singular value decomposition [8]. A widely

used approach is to model the unknown inputs as outputs of

a known dynamic system and incorporate the input dynamics

with the plant dynamics [1, 13]. However, this approach

increases the dimension of the observer and is limited to

specific types of inputs.

The unknown inputs in a dynamical system may rep-

resent unknown external drivers, input uncertainty, state

uncertainty, or instrument faults. Thus unknown-input recon-

struction has several important applications in uncertainty

estimation and fault detection. Input reconstruction also has

applications in filtering and coding theory. In some early

work, input reconstruction is achieved through system inver-

sion [23, 25]. More recently, methods for input reconstruction

using optimal filters are developed in [4, 10, 14, 27].

An unbiased minimum-variance filter for discrete-time

stochastic systems with arbitrary unknown inputs is derived

in [16]. Finally, [9] presents an alternative derivation of the

filter in [16] and uses the filter to reconstruct the unknown

inputs. A related filter is presented in [24].

A related problem is the concept of input and state

observability, which is the ability to reconstruct the inputs

and states using only output measurements. Necessary and

sufficient conditions for input and state observability for
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continuous-time systems in terms of the invariant zeros of

the system are presented in [4, 8, 12, 14, 19]. Input and state

observability for discrete-time systems are considered in

[14].

In this paper, we adopt a rigorous approach to examine

conditions under which both the input and state can be esti-

mated from the output measurements. We discuss necessary

and sufficient conditions for a discrete-time system to be

input and state observable and derive simple tests for input

and state observability. Since no assumptions on the input

are made, the unknown input can be either an unmodeled

exogenous signal or an unknown function of the states.

Once the necessary and sufficient conditions for input

and state observability are presented, we develop optimal

filtering techniques that take advantage of input and state

observability. The Kalman filter and the filters derived in [16,

24] are shown to be special cases of the unbiased minimum-

variance filter derived in this paper.

Finally, we present an example to illustrate the methods.

II. INPUT AND STATE OBSERVABILITY

A. No Feedthrough Case

Consider the time-varying system

xk+1 = Akxk + Hkek, (II.1)

yk = Ckxk, (II.2)

where xk ∈ R
n, ek ∈ R

p, yk ∈ R
l, Ak ∈ R

n×n, Hk ∈
R

n×p, and Ck ∈ R
l×n. Without loss of generality,

we assume l ≤ n, maxk[rank(Ck)] = l > 0, and

maxk[rank(Hk)] = p > 0. No assumption on the inputs ek

are made. Hence, the signal ek can either be an exogenous

input or a nonlinear function of the states. For the sake of

simplicity, we assume that the initial time k0 = 0.

Throughout this paper, r denotes a nonnegative integer.

Furthermore, for convenience, every vector or matrix with

zero rows or zero columns is an empty matrix. Define the

data vectors Yr ∈ R
(r+1)l and Er ∈ R

(r+1)p as

Yr
△
=











y0

y1

...

yr











, Er
△
=











e0

e1

...

er











. (II.3)

Definition II.1. Let r ≥ 1. Then the input and state

Proceedings of the 2007 American Control Conference
Marriott Marquis Hotel at Times Square
New York City, USA, July 11-13, 2007

FrC04.6

1-4244-0989-6/07/$25.00 ©2007 IEEE. 5712



unobservable subspace Ur of (II.1), (II.2) is the subspace

Ur
△
=

{[

x0

Er−1

]

∈ R
n+rp : Yr = 0

}

. (II.4)

We define Γr ∈ R
(r+1)l×n, Mr ∈ R

(r+1)l×rp, and Ψr ∈
R

(r+1)l×(n+rp) by

Γr
△
=















C0

C1A0

C2A1A0

...

CrAr−1 · · ·A0















, Mr
△
=















0 0 · · · 0
C1H0 0 · · · 0

C2A1H0 C2H1 · · · 0
...

...
. . .

...

CrAr−1 · · ·A1H0 CrAr−1 · · ·A2H1 · · · CrHr−1















,

(II.5)

and

Ψr
△
=

[

Γr Mr

]

. (II.6)

Note that M0 is an empty matrix and thus Ψ0 = Γ0 = C0.

Next, from (II.1), (II.2), we can write

Yr = Γrx0 + MrEr−1 = Ψr

[

x0

Er−1

]

, (II.7)

so that

Ur = N(Ψr), (II.8)

where N denotes null space. Next, define the positive integer

r0
△
=

{

max{⌈ n−l
l−p

⌉, 1}, p < l,

1, p = l,
(II.9)

where ⌈a⌉ denotes the smallest integer greater than or equal

to a. Note that r0 is not defined in the case p > l.

Proposition II.1. Assume that n ≥ 2 and p ≤ l. Then

r0 ≤ n − 1.

Proof. Suppose p = l. Then n − 1 ≥ 1 = r0. Next,

suppose p < l. If ⌈ n−l
l−p

⌉ ≤ 1 then n − 1 ≥ 1 = r0. If

⌈ n−l
l−p

⌉ > 1, then, since n − 1 > n − l and l − p ≥ 1, it

follows that r0 = ⌈ n−l
l−p

⌉ ≤ ⌈n− l ⌉ ≤ ⌈n−1⌉ = n−1.

Proposition II.2. Let r ≥ 1. If Ur = {0}, then the

following statements hold:

1) p ≤ l.

2) If p = l, then p = l = n.

3) r ≥ r0.

4) rank(Γn−1) = n.

5) rank(CrHr−1) = p.

Proposition II.3. Assume that either p < l or p = l = n.

Then n + rp ≤ (r + 1)l for all r ≥ r0.

Proof. Suppose p = l = n. Then n + rp = (r + 1)l
for all r > 0. Next, suppose p < l, let r ≥ r0 and assume

(r + 1)l < n + rp so that rl − rp < n − l. Hence r < n−l
l−p

,

and thus ⌈ n−l
l−p

⌉ ≤ r0 < n−l
l−p

, which is a contradiction. Thus

n + rp ≤ (r + 1)l.

Proposition II.3 implies that if p < l or p = l = n, then

for all r ≥ r0 the number of columns of Ψr is less than or

equal to the number of rows of Ψr.

Definition II.2. The system (II.1), (II.2) is input and

state observable if Ur = {0} for all r ≥ r0.

Definition II.2 implies that if (II.1), (II.2) is input and

state observable, then, for all r ≥ r0, the initial condition x0

and input sequence {ei}
r−1
i=0 are uniquely determined from

the measured output sequence {yi}
r
i=0.

Theorem II.1. The following statements are equivalent:

1) (II.1), (II.2) is input and state observable.

2) For all r ≥ r0, Yr = 0 if and only if

[

x0

Er−1

]

= 0.

3) For all r ≥ r0, rank(Ψr) = n + rp.

4) rank(Ψn−1) = n + (n − 1)p and for all r ≥ r0,

rank(CrHr−1) = p.

Proof. From Definition II.1 and Definition II.2 it follows

that 1) ⇒ 2). Using (II.7), 2) ⇒ 3). To prove 3) ⇒ 4),
since for all r ≥ r0, rank(Ψr) = n + rp, it follows that

rank(CrHr−1) = p. Hence, for all r̂ ≥ r0 rank(Ψr̂) =
rank(Ψr̂−1) + p. Hence, since n − 1 ≥ r0, we have

rank(Ψn−1) = n + (n − 1)p. Finally to show 4) ⇒ 1),
we consider two cases. First, suppose n = 1. In this case

Ck and Hk are nonzero scalars, and hence it follows that

rank(Ψr) = n + rp for all r ≥ r0 and hence Ur = {0} for

all r ≥ r0. Next, suppose n ≥ 2. In this case, 4) implies

that rank(Ψr) = rank(Ψr−1) + p for all r ≥ r0. Next, since

n − 1 ≥ r0, it follows that, for all r ≥ r0, rank(Ψr) =
rank(Ψn−1)+ (r−n+1)p. Thus rank(Ψr) = n+ rp for all

r ≥ r0 and hence Ur = {0} for all r ≥ r0.

Theorem II.1 shows that (II.1), (II.2) is input and state

observable if and only if Ψr has full column rank for all

r ≥ r0. In this case the unique solution of (II.7) is
[

x0

Er−1

]

= Ψ†
rYr, (II.10)

where † represents the Moore-Penrose generalized inverse

Ψ†
r = (ΨT

r Ψr)
−1ΨT

r .

B. Feedthrough Case

Next, we consider the system

xk+1 = Akxk + Hkek, (II.11)

yk = Ckxk + Gkek, (II.12)

where Gk ∈ R
l×p, while Ak, Hk, Ck, xk, ek, and yk

are defined as in (II.1), (II.2). Without loss of general-
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ity, we assume l ≤ n, maxk[rank(Ck)] = l > 0, and

maxk

(

rank

[

Hk

Gk

])

= p > 0. Due to the term Gkek,

the output yk is directly affected by ek as well as by the

past values of ek. Therefore, we have

Yr = Ψ̄r

[

x0

Er

]

, (II.13)

where Ψ̄r
△
=

[

Γr M̄r

]

∈ R
(r+1)l×[n+(r+1)p], and

M̄r =










G0 0 · · · 0 0

C1H0 G1 · · · 0 0

.

.

.
.
.
.

. . .
.
.
.

Cr−1Ar−2 · · ·A1H0 Cr−1Ar−2 · · ·A2H1 · · · Gr−1 0

CrAr−1 · · ·A1H0 CrAr−1 · · ·A2H1 · · · CrHr−1 Gr











.

(II.14)

Furthermore, we have the following definition.

Definition II.3. Let r ≥ 0. Then the input and state

unobservable subspace Ūr of (II.11), (II.12) is the subspace

Ūr
△
=

{[

x0

Er

]

∈ R
n+(r+1)p : Yr = 0

}

. (II.15)

The input and state unobservable subspace is given by

Ūr = N(Ψ̄r). Next, if p < l then define the integer

r̄0
△
= ⌈ n

l−p
⌉ − 1. (II.16)

Since n > l − p it follows that r̄0 ≥ 1.

Proposition II.4. Let r ≥ 0. If Ūr = {0}, then the

following statements hold:

1) p < l.

2) n > 1.

3) r ≥ r̄0.

4) rank(Γn−1) = n.

5) rank(Gr) = p.

Definition II.4. The system (II.11), (II.12) is input and

state observable if Ūr = {0} for all r ≥ r̄0.

Theorem II.2. The following statements are equivalent:

1) (II.11), (II.12) is input and state observable.

2) For all r ≥ r̄0, Yr = 0 if and only if

[

x0

Er

]

= 0.

3) For all r ≥ r̄0 rank(Ψ̄r) = n + (r + 1)p.

4) rank(Ψ̄n−1) = n(p + 1) and for all k ≥ r0,

rank(Gk) = p.

Finally, if (II.11), (II.12) is input and state observable,

then Theorem II.2 implies that Ψ̄r is full column rank for

all r ≥ r̄0. In this case the unique solution of (II.13) is
[

x0

Er

]

= Ψ̄†
rYr. (II.17)

III. UNBIASED MINIMUM-VARIANCE FILTER FOR INPUT

AND STATE OBSERVABLE SYSTEMS

Consider the time-varying system

xk+1 = Akxk + Bkuk + Hkek + wk, (III.1)

yk = Ckxk + Dkuk + Gkek + vk. (III.2)

where xk, yk, ek, Ak, Ck, Hk and Gk are defined as in

section 2, while uk ∈ R
m, Bk ∈ R

n×m and Dk ∈ R
l×m. We

assume that Ak, Bk, Ck, Dk, Hk, and Gk are known, while

ek is unknown. wk ∈ R
n and vk ∈ R

l are unknown Gaussian

white noise sequences with known covariances Qk and Rk

respectively. We say that (III.1), (III.2) is input and state

observable if it is input and state observable with Bk ≡ 0
and Dk ≡ 0. We assume that (III.1), (III.2) is input and state

observable.

We consider a filter of the form

x̂k+1|k+1 = x̂k+1|k + Lk+1(yk+1 − Ck+1x̂k+1|k

−Dk+1uk+1), (III.3)

x̂k+1|k = Akx̂k|k + Bkuk. (III.4)

The state estimation error is

εk
△
= xk+1 − x̂k+1|k+1, (III.5)

and the error covariance matrix is defined as

Pk+1|k+1
△
= E

[

εk+1ε
T
k+1

]

, (III.6)

where E is the expected value. The filter is unbiased if and

only if

E[xk+1 − x̂k+1|k+1] = 0. (III.7)

Furthermore, (III.7) can be written as

E[Akεk + Hkek + wk − Lk+1(Ck+1Akεk

+Ck+1Hkek + Ck+1wk

+vk+1 + Gk+1ek+1)] = 0. (III.8)

Since ek is arbitrary, (III.8) implies

Lk+1Gk+1 = 0, (III.9)

and

(I − Lk+1Ck+1)Hk = 0. (III.10)

Lemma III.1. If (III.9) and (III.10) are satisfied, the

error covariance matrix Pk+1|k+1 is given by

Pk+1|k+1 = Lk+1R̃k+1L
T
k+1 − Fk+1L

T
k+1

−Lk+1F
T
k+1 + Pk+1|k, (III.11)

where

Pk+1|k
△
= AkPk|kAT

k + Qk, (III.12)

R̃k+1
△
= Ck+1Pk+1|kCT

k+1 + Rk+1, (III.13)

Fk+1
△
= Pk+1|kCT

k+1. (III.14)
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Proof.

Pk+1|k+1

= E
[

εk+1ε
T
k+1

]

= E
[(

Akxk + Hkek + wk − Akx̂k|k

−Lk+1(Ck+1Akxk + Ck+1Hkek + Ck+1wk

+Gkek+1 + vk+1 − Ck+1Akx̂k|k)
)

×
(

Akxk + Hkek + wk − Akx̂k|k

−Lk+1(Ck+1Akxk + Ck+1Hkek + Ck+1wk

+Gkek+1 + vk+1 − Ck+1Akx̂k|k)
)T

]

. (III.15)

Since (III.9) and (III.10) are satisfied, (III.15) becomes

Pk+1|k+1

= E [([I − Lk+1Ck+1]Akεk + Lk+1vk+1

−[I − Lk+1Ck+1]wk)

× ([I − Lk+1Ck+1]Akεk + Lk+1vk+1

−[I − Lk+1Ck+1]wk)
T
]

. (III.16)

Noting that E[εkwT
k ] = 0, E[εkvT

k+1] = 0 and E[wkvT
k+1] =

0, we have that

Pk+1|k+1 = Lk+1Rk+1L
T
k+1

+(I − Lk+1Ck+1)[AkPk|kAT
k + Qk]

×(I − Lk+1Ck+1)
T (III.17)

Furthermore, using (III.12) - (III.14) and (III.17), it follows

that (III.11) holds.

Next, we define the cost function J as the trace of the

error covariance matrix

J(Lk+1) = trE[εk+1ε
T
k+1] = trPk+1|k+1. (III.18)

Theorem III.1. The unbiased minimum-variance gain

Lk+1 in the filter (III.3) that minimizes the cost function

(III.18) subject to the constraints (III.9) and (III.10) is given

by

Lk+1 =
(

Fk+1

−Ωk+1(Φ
T
k+1R̃

−1
k+1Φ

T
k+1)

−1ΦT
k+1

)

R̃−1
k+1,

(III.19)

where

Φk+1
△
=

[

−Gk+1 Vk+1

]

(III.20)

Vk+1
△
= Ck+1Hk, (III.21)

Ωk+1
△
=

[

0n×p Hk

]

− Fk+1R̃
−1
k+1Φk+1 (III.22)

Proof. The cost function J can be written as

J(Lk+1) = trPk+1|k+1

= tr[Lk+1R̃k+1L
T
k+1 − Fk+1L

T
k+1

−Lk+1Ck+1Pk+1|k + Pk+1|k].

(III.23)

Thus the optimization problem is to minimize the cost

function (III.23) subject to the constraints (III.9) and (III.10).

If Λk ∈ R
n×2q is the matrix of Lagrange multipliers, then

the Lagrangian is

L(Lk+1)
△
= J(Lk+1)

+2tr(
[

Lk+1Gk+1 (I − Lk+1Ck+1)Hk

]

ΛT
k+1).

(III.24)

Differentiating with respect to Lk+1 and setting it to zero,

we get

2R̃k+1L
T
k+1 − 2Ck+1Pk+1|k

+2
[

Gk+1 −Ck+1Hk

]

ΛT
k+1 = 0,

(III.25)

while differentiating with respect to Λk+1 and setting it

to zero yields the constraints (III.9) and (III.10). Further,

assuming Rk to be positive definite, we write (III.25) as

LT
k+1 = R̃−1

k+1(Ck+1Pk+1|k − Φk+1Λ
T
k+1). (III.26)

Using (III.26) in (III.9) and (III.10), we obtain the matrix of

Lagrange multipliers

Λk+1 = Ωk+1(Φ
T
k+1R̃

−1
k+1Φ

T
k+1)

−1. (III.27)

Substituting (III.27) into (III.26), yields the optimal solution

for Lk+1 as

Lk+1 =
(

Fk+1

−Ωk+1(Φ
T
k+1R̃

−1
k+1Φ

T
k+1)

−1ΦT
k+1

)

R̃−1
k+1. ¤

It is straightforward to check that Lk+1 given by (III.19)

satisfies the constraints (III.9) and (III.10). We now show

that the filters presented in [16, 24] and the Kalman filter are

special cases of the filter (III.19).

Proposition III.1. Suppose Hk ≡ 0 in (III.1), then

the unbiased minimum-variance filter gain Lk+1 satisfying

(III.9) is given by

Lk+1 =
[

Fk+1 − Fk+1R̃
−1
k+1Gk+1

× (GT
k+1R̃

−1
k+1Gk+1)

−1GT
k+1

]

R̃−1
k+1. (III.28)

Furthermore, the covariance update equation is given by

Pk+1|k+1 = Pk+1|k − Fk+1R̃
−1
k+1[I − Gk+1

(GT
k+1R̃

−1
k+1Gk+1)

−1GT
k+1R̃

−1
k+1]F

T
k+1 (III.29)

Proof. Substituting Hk = 0 in equation (III.19) yields

(III.28). Next, we note that when Hk = 0 and (III.9) is

statisfied, Pk+1|k+1 is again given by (III.11). Furthermore,

using the expression for Lk+1 from (III.28) in (III.11), we

get (III.29).

Proposition III.1 concides with the output-correction

filter developed in [24]. Next, the following result is given

in [16].
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Proposition III.2. Suppose Gk ≡ 0 in (III.2) and

assume (III.1), (III.2) is input and state observable. Then

the unbiased minimum-variance filter gain Lk+1 satisfying

(III.10) is

Lk+1 = HkΠk + Fk+1R̃
−1
k+1(I − Vk+1Πk), (III.30)

where Πk is defined as

Πk
△
= (V T

k+1R̃
−1
k+1Vk+1)

−1V T
k+1R̃

−1
k+1.

(III.31)

Furthermore, the covariance update equation becomes

Pk+1|k+1 = Pk+1|k − Fk+1R̃
−1
k+1F

T
k+1+

(Hk − Fk+1R̃
−1
k+1Vk+1)(V

T
k+1R̃

−1
k+1Vk+1)

−1

×(Hk − Fk+1R̃
−1
k+1Vk+1)

T. (III.32)

Proof. The proof follows directly from Proposition III.1

and (III.11).

Proposition III.3. If Gk = 0 and Hk = 0 in (III.1),

(III.2), then the unbiased minimum-variance filter gain Lk+1

reduces to the Kalman filter gain

Lk+1 = Fk+1R̃
−1
k+1, (III.33)

and the covariance update equation reduces to the Kalman

filter covariance update equation

Pk+1|k+1 = Pk+1|k − Fk+1R̃
−1
k+1F

T
k+1. (III.34)

Proof. Setting Hk = 0 and Gk = 0 in (III.19) and

(III.11), we get (III.33) and (III.34) respectively.

So far, we have discussed unbiased estimation of the

state xk in the presence of arbitrary unknown inputs ek. Next,

we discuss how the unknown inputs ek are estimated, using

the unbiased estimates x̂k|k of the states xk.

Proposition III.4. Consider (III.1), (III.2), and suppose

that x̂k|k is an unbiased estimate of xk in (III.1). Then

êk = G
†
k(yk − Ckx̂k|k − Dkuk), (III.35)

is an unbiased estimate of ek.

Proof. Since l > p, we can define êk as

êk = G
†
k(yk − Ckx̂k|k − Dkuk), (III.36)

Taking expected value on both sides of (III.36) yields

E[êk] = E[G†
k(Gkek + Ckεk + vk)] (III.37)

Since x̂k|k is an unbiased estimate of xk, the state estimation

error εk satisfies

E[εk] = 0. (III.38)

Using (III.38) and noting that vk is zero mean, (III.37)

becomes

E[êk] = E[G†
kGkek]

= E[ek]. ¤

Proposition III.5. Consider (III.1), (III.2) and let Gk =
0. Suppose that x̂k|k is an unbiased estimate of the states xk

of (III.1). Then

êk = H
†
kLk+1(yk+1 − Ck+1x̂k+1|k − Dk+1uk+1),

(III.39)

is an unbiased estimate of ek.

Proof. Since l ≥ p, we can define êk as

êk = H
†
kLk+1(yk+1 − Ck+1x̂k+1|k − Dk+1uk+1),

(III.40)

where † denotes the Moore-Penrose generalized inverse.

Next, we use (III.3) and (III.40) to get

êk = H
†
k(x̂k+1|k+1 − x̂k+1|k)

= H
†
k(xk+1 + εk+1 − Akx̂k|k − Bkuk)

= H
†
k(xk+1 − Akxk − Bkuk + εk+1 − Akεk)

= H
†
k(Hkek + wk + εk+1 − Akεk). (III.41)

Further, taking expected value on both sides of (III.41), yields

E[êk] = E[H†
k(Hkek + wk + εk+1 − Akεk)],

(III.42)

Finally, noting that E[εk] = 0 and the fact that wk is zero-

mean, we get

E[êk] = H
†
kHkE[ek] = E[ek]. ¤

IV. EXAMPLE

We consider a discrete-time model of the Van der Pol

oscillator
[

x1,k+1

x2,k+1

]

=

[

x1,k + Tsx2,k

x2,k + Ts[(1 − x2
1,k)x2,k − x1,k]

]

,

(IV.1)

where Ts is the sampling interval. We assume that the linear

part of the dynamics is known perfectly, that is, the initial

model is the linear part of the equations while Tsx
2
1,kx2,k

is assumed to be unknown and thus acts as the unknown

input ek. Measurements of the state x2 are available, thus

the output matrix is Ck =
[

0 1
]

. Since the nonlinear

term appears only in the equation of the second state we

take Hk =

[

0
1

]

. Figure 1 shows a plot of the actual

states, the states from an open-loop simulation of the known

model, and the estimates of the states from the unbiased

minimum-variance filter. It is seen from the plot that the state

estimates from the unbiased minimum-variance filter based

on the known model approximates the actual states closely.

Once the estimates of the states are obtained we then obtain a
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least squares estimate êk of the unknown signal ek by using

(III.39). Figure 2 shows the actual unknown signal ek and

the estimate êk of the unknown signal.

V. CONCLUSIONS

In this paper, we introduced the concept of input and

state observability, that is, conditions under which both

the unknown input and state can be estimated from the

output measurements. We discussed sufficient and necessary

conditions for a discrete-time system to be input and state

observable. Next, we derived an unbiased minimum-variance

filter to estimate the unknown input and the state. Finally, we

presented an illustrative example.
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Fig. 1. Discrete-time Van-der Pol Oscillator Example. Comparison
of the actual states of the system, the state estimates from the
unbiased minimum-variance filter, and the states from an open-
loop simulation of the known model equations.

Fig. 2. Discrete-time Van-der Pol Oscillator Example. A plot
showing the actual unknown input and the estimated unknown
input.

FrC04.6

5717


