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Abstract: This paper proposes a procedure for identifying the inertia matrix of a
rotating body. The procedure based on Euler equation governing rotational motion
assumes errors-in-variables models in which all measurements, torque as well as
angular velocities, are corrupted by noises. In order for consistent estimation, we
introduce an extended linear regression model by augmenting the regressors with
constants and the parameters with noise-contributed terms. A transformation,
based on low-pass filtering, of the extended model cancels out angular acceleration
terms in the regressors. Applying the method of least correlation to the extended
and transformed model identifies the elements of inertia matrix. Analysis shows
that the estimates converge to the true parameters as the number of samples
increases to infinity. Monte Carlo simulations demonstrate the performance of the
algorithm and support the analytical consistency.
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1. INTRODUCTION

It is a trend to use smaller, lighter and cheaper
instruments for systems, which usually means
that measurements are more corrupted by noise.
This is true for uninhabited air or space vehicles,
where there is a premium on size and weight.
Control requirements, however, may be stricter
than those of conventional vehicles in order to
meet the needs for clustering or formation flight
(Giulietti et al., 2000; Zetocha et al., 2000). Many
existing algorithms for identifying inertial param-
eters in space use the method of least squares
(Hahn and Niebergall, 2001; Kim et al., 2003;
Lee and Wertz, 2002; Peck, 2000; Tanygin and
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Williams, 1997). Least-squares estimation, devel-
oped in the 18th century, is still the most popular
approach to obtain the best fit to a given struc-
ture, but it exhibits high sensitivity to errors in
regressors (van Huffel and Vandewalle, 1991). The
regressors in identification models are composed
of measurements, such as angular velocity, angu-
lar acceleration and attitude, which are not free
from noise (Hahn and Niebergall, 2001; Kim et
al., 2003; Lee and Wertz, 2002; Peck, 2000; Tany-
gin and Williams, 1997). The models, where input
as well as output measurements are contaminated
by noise, are known as errors-in-variables(EIV)
models (Soderstrom et al., 2002; van Huffel and
Lemmerling, 2002). It is known that the least-
squares method tends to generate error-prone es-
timates for EIV models (van Huffel and Vande-
walle, 1991). Making the problem worse is that
the regressors in the estimation models are not



linear in the measurements whether the models
are based on Euler equation (Hahn and Nieber-
gall, 2001; Kim et al., 2003; Tanygin and Williams,
1997) or derived from angular-momentum conser-
vation (Lee and Wertz, 2002; Peck, 2000).

The method of least correlation has a capability to
cope with the noisy measurements of all variables
provided that the regressors are linear in the vari-
ables (Jun and Bernstein, 2006). An extension of
the method of least correlation provides consistent
estimates for a type of nonlinear systems which
are described by polynomials in the variables
(Jun and Bernstein, 2007). This paper describes
an application of the least-correlation methods
for identifying the inertia matrix of a rotating
body. In this work we assume that the external
torque and angular velocity are measured with
noise, but the angular acceleration is not available.
The estimation model based on Euler equation of
motion is formulated via two steps - extending
the linear regression model by augmenting the
regressors with constants and the parameters with
noise-contributed terms, and transforming the ex-
tended model to an equivalent form without an-
gular acceleration terms. Applying the method of
least correlation to the extended and transformed
model gives an algorithm identifying the inertia
matrix of a rotating body with consistency.

The estimation method introduced in this work
can be applied to various kinds of systems such
as spacecraft (Lee and Wertz, 2002; Peck, 2000;
Bergmann et al., 1987; Tanygin and Williams,
1997), robots (Hahn and Niebergall, 2001) and
other rotating structures (Kim et al., 2003;
Schwartz et al., 2003). Analysis shows that the
procedure gives consistent estimates, that is, the
estimates converge to the true parameters as the
number of samples increase to infinity. Simulation
results for an example confirm the performance of
the estimation method numerically.

2. PROBLEM AND ASSUMPTIONS

The rotational motion of a rigid body is governed
by the Euler equation

Jω̇∗(t) + ω∗(t)× Jω∗(t) = M∗(t), (1)

where J ∈ R3×3 denotes the inertia matrix
which is constant, symmetric and positive definite,
ω∗(t) ∈ R3 is the angular velocity vector, M∗(t) ∈
R3 is the external moment (or torque) acting on
the body about its mass center. Let ω(t) ∈ R3 and
M(t) ∈ R3 denote the measurements of ω∗(t) and
M∗(t), respectively, that is,

ω(t) , ω∗(t) + ζ(t), (2)

M(t) , M∗(t) + η(t), (3)

where ζ(t) ∈ R3 and η(t) ∈ R3 are measurement
noises. Assuming that ω(t) is measured, but ω̇(t)
is not. Our goal is to identify all components of J
by using ω(t) and M(t).

Measurements are frequently described as stochas-
tic processes with deterministic components. For a
common framework for deterministic and stochas-
tic signals (Ljung, 1999, pp.33–34), we assume
that all measurements are quasi-stationary and
employ the notation

Ē[f(kh)] , lim
N→∞

1
N

N∑

k=1

E[f(kh)] (4)

for discrete-time signal f(kh), k = 1, 2, . . . , N
with sampling interval h, where E denotes the
usual mathematical expectation. We implicitly
assume that the limit in (4) exists.

We introduce the following assumptions.
A1. Measurements ω(kh) and M(kh) are quasi-
stationary and jointly quasi-stationary (Ljung,
1999, p.34).
A2. Noises ζ(kh) and η(kh) are zero-mean and
finitely cross-correlated with ω(kh), that is, there
exists τ > 0 such that

Ē
[
ω(kh)ζT (kh− sh)

]
= 0 for all |s| ≥ τ, (5)

Ē
[
ω(kh)ηT (kh− sh)

]
= 0 for all |s| ≥ τ. (6)

A3. For τ given by A2, ω(kh) satisfies

rank
{
R̄ωω(k, k′, N) + R̄ωω(k′, k, N)

}
= 3, (7)

where k′ = k − τ , N denotes the number of sam-
ples and the empirical correlation R̄ωω(k1, k2, N)
is defined by

R̄ωω(k1, k2, N) , 1
Nτ

N∑

k=1+τ

ω(k1h)ωT (k2h) (8)

where Nτ = N − τ and k1 = k, k2 = k − τ or
k1 = k − τ, k2 = k.

3. ESTIMATION OF INERTIA MATRIX

By using (2) and (3), (1) is written as

J
(
ω̇ − ζ̇

)
+(ω − ζ)×J (ω − ζ) =M − η (9)

where the time t is omitted for convenience. For
an arbitrary vector x , [ x1 x2 x3 ]T , let us define
two operators (Ahmed et al., 1998)

L(x) ,




x1 0 0 0 x3 x2

0 x2 0 x3 0 x1

0 0 x3 x2 x1 0


 , (10)



x× ,




0 −x3 x2

x3 0 −x1

−x2 x1 0


 , (11)

and a parameter vector

θ ,
[
J11 J22 J33 J23 J13 J12

]T
, (12)

so that Jx = L(x)θ. Then with the regressor
matrix φ(t) ∈ R6×3 defined by

φT (t) , L
(
ω̇ − ζ̇

)
+ (ω − ζ)× L(ω − ζ), (13)

(9) is equivalent to the linear regression equation

z(t) = φT (t)θ, (14)

where z(t) , M∗(t) = M(t)− η(t).

Let us split φ(t) into three parts as

φ(t) = ψ(t)− δ(t)− ξ(t), (15)

where

ψT (t) , L (ω̇) + ω×L(ω), (16)

δT (t) , L
(
ζ̇
)
− ζ×L(ζ), (17)

ξT (t) , ω×L(ζ) + ζ×L(ω). (18)

Letting

ω(t) ,
[
p q r

]T
, ζ(t) ,

[
ζp ζq ζr

]T

gives the expressions of all elements consisting
of ψ, δ, ξ in (16)-(18). Substituting (15) into (14)
yields an EIV model

y(t) = ψT (t)θ + e(t), (19)

e(t) = η(t)− δT (t)θ − ξT (t)θ, (20)

where y(t) , M(t).

Let us consider how to treat the noise included in
ψ(t). Assume for the moment that ω̇(t) is given.
Employing the method of least correlation for
(19)-(20) yields estimates with biases even if the
noises satisfy A2. The bias comes from ω(t), ζ(t)
since the second terms of the right-hand side
of (16),(17) contain some quadratic components
of p, q, r and ζp, ζq, ζr, respectively. According to
the extended least-correlation estimates (Jun and
Bernstein, 2007), the augmented regressor matrix
ψa(t) ∈ R9×3 and the extended parameter vector
θa(t) ∈ R9 are defined as follows:

ψa(t) =
[
ψT (t) −I3

]T
, (21)

θa(t) =
[
θT θ7(t) θ8(t) θ9(t)

]T
, (22)

where I3 ∈ R3×3 is the identity matrix and
θ7, θ8, θ9 are defined by

θ7 ,−J22ζqζr + J33ζqζr + J23

(
ζ2
q − ζ2

r

)

+J13ζpζq − J12ζrζp, (23)

θ8 , J11ζrζp − J33ζrζp − J23ζpζq

+J13

(
ζ2
r − ζ2

p

)
+ J12ζqζr, (24)

θ9 ,−J11ζpζq + J22ζpζq + J23ζrζp

−J13ζqζr + J12

(
ζ2
p − ζ2

q

)
. (25)

Using (21)-(22) gives an extended EIV model

y(t) = ψT
a (t)θa(t) + ea(t), (26)

ea(t) = η(t)− L(ζ̇)θ − ξT (t)θ. (27)

Let us recall that ψa(t) in (26) is still not available
because ω̇(t) is not measured. With a differential
operator p , d/dt and a constant γ > 0, we intro-
duce a low-pass filter (Johansson, 1993, p.284)

λ =
1

1 + γp
(28)

in order to get rid of ω̇(t) from (26)-(27). Applying
the operator (28) to (26)-(27) yields

yf (t) = ψT
af

(t)θaf
(t) + eaf

(t), (29)

eaf
(t) = ηf (t)− L

(
ζ − ζf

γ

)
θ − ξT

f (t)θ (30)

since
[
λ

(
ψT

a (t)θa(t)
)]

(t) = ψT
af

(t)θaf
(t), where

(·)f (t) , [λ(·)](t), (·)f (0) , 0 and ψaf
(t), θaf

(t)
are defined as, respectively,

ψaf
(t) ,

[
ψT

f (t) −I3

]T
, (31)

θaf
(t) ,

[
θT θT

[7−9]f
(t)

]T

, (32)

ψT
f (t) , L

(
ω − ωf

γ

)
+ λ

(
ω×L(ω)

)
(33)

θ[7−9]f (t) ,
[
θ7f

(t) θ8f
(t) θ9f

(t)
]T

. (34)

It is noted that ψaf
(t) and eaf

(t) do not contain
ω̇(t) and ζ̇, respectively.

Now let us work with sampled measurements.
Given an arbitrary estimate θ̄af

, consider the
criterion

J2(θ̄af
, τ,N) =

(
1

Nτ

(
Y0 −Ψ0θ̄af

)T (
Yτ −Ψτ θ̄af

))2

, (35)

where Y0, Yτ ∈ R3Nτ and Ψ0, Ψτ ∈ R3Nτ×9 are
defined by

Y0 ,




yf (Nh)
yf (N1h)

...
yf (h + τh)


 , Yτ ,




yf (Nτh)
yf (Nτ+1h)

...
yf (h)


 , (36)



Ψ0 ,




ψT
af

(Nh)
ψT

af
(N1h)
...

ψT
af

(h + τh)


 , Ψτ ,




ψT
af

(Nτh)
ψT

af
(Nτ+1h)

...
ψT

af
(h)


 . (37)

In the criterion J2, J is an empirical correlation
between the residuals of the estimate θ̄af

. We note
that J turns to the criterion of the least-squares
estimate when τ = 0.

Minimizing (35) with respect to θ̄af
gives

θ̂af
(τ, N) =

(
ΨT

0/τΨτ/0

)−1

ΨT
0/τYτ/0, (38)

where

Ψ0/τ ,
[
Ψ0

Ψτ

]
, Ψτ/0 ,

[
Ψτ

Ψ0

]
, Yτ/0 ,

[
Yτ

Y0

]
.(39)

The matrix ΨT
0/τΨτ/0 ∈ R9×9 in (38), given as

ΨT
0/τΨτ/0 =

N∑

k=1+τ

[
ψf (kh)ψT

f ((k − τ)h) −ψf (kh)
−ψT

f ((k − τ)h) I3

]
+

N∑

k=1+τ

[
ψf ((k − τ)h)ψT

f (kh) −ψf ((k − τ)h)
−ψT

f (kh) I3

]
,

is nonsingular owing to A3. The estimate (38) has
following property.

Theorem 1. Suppose that A1-A3 are satisfied.
Then as N goes to infinity, the least-correlation
estimate (38) for the model (29)-(30) converges
to the expectation of θaf

(kh), that is,

lim
N→∞

θ̂af
(τ, N) = E

[
θaf

(kh)
]

(40)

for all k.

Proof. The proof is sketched in Appendix A. 2

Note that (38) is a consistent estimate of θ, which
is clear from the componentwise expression of (40)
written as

lim
N→∞

[
θ̂(τ,N)

θ̂[7−9]f (τ, N)

]
=

[
θ

E
[
θ[7−9]f (kh)

]
]

(41)

for all k.

If each component of ζ(kh) is independent, iden-
tically distributed (i.i.d.) and has the same vari-
ance, then the step, augmenting the regressor ma-
trix and extending the parameter vector, is not
necessary since Ē [θi(kh)] = 0, i = 7, 8, 9 for all k
from (23)-(25). That is, the estimate

θ̂f (τ, N) =
(
Ψo T

0/τΨo
τ/0

)−1

Ψo T
0/τYτ/0 (42)

is consistent, where the relevant matrices are
defined by

Ψo
0/τ ,

[
Ψo

0

Ψo
τ

]
, Ψo

τ/0 ,
[
Ψo

τ

Ψo
0

]
, (43)

Ψo
0 ,




ψT
f (Nh)

ψT
f (N1h)

...
ψT

f (h + τh)




, Ψo
τ ,




ψT
f (Nτh)

ψT
f (Nτ+1h)

...
ψT

f (h)




. (44)

4. NUMERICAL EXAMPLE

As an example we consider a body with inertia

J =




1.20 0.11 −0.18
0.11 1.70 0.16
−0.18 0.16 2.13


 . (45)

The system (1) with (45) is driven by M∗(t) in
Figure 1. We assume that η(t) = 0 since it does
not contribute to the bias errors of identification.
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Fig. 1. Moment M(t) applied to the body

In each simulation, we sample M(t) and ω(t)
at 100Hz rate. The measurement noise ζ(t) is
Gaussian with zero mean and covariance

Cov
[
ζ(t)ζT (t)

]
=




σ2
p 0 0
0 σ2

q 0
0 0 σ2

r


 .

Since ζ(kh) is uncorrelated with ω((k − τ)h) if
|τ | ≥ 1, we choose τ = 1 or τh = 0.01 sec. And
γ = 10 is chosen for a small bandwidth of the
low-pass filter (28).

Table 1 and Table 2 summarize the simulation
results from 100 Monte Carlo runs. Each table
shows the estimation errors defined by

θ̆i =
1
|θi|

{¯̃
θi ± σ̄(θ̃i)

}
, i = 1, · · · , 6, (46)



Table 1. Identification errors in case of
finitely correlated measurements

(σp, σq , σr) Alg. J̆11 [%] J̆22 [%] J̆33 [%]

(0.3,0.2,0.1) LS -29± 0.5 -30± 0.4 -6.7± 0.2

deg/sec. LC -1.3± 1.8 -0.8± 2.0 0.5± 0.7

ELC 0.4± 1.8 0.4± 2.1 0.5± 0.8

(0.1,0.2,0.3) LS -3.3± 0.2 -24± 0.3 -52± 0.5

deg/sec. LC 1.2± 0.4 1.7± 2.2 -1.0± 5.2

ELC 0.3± 0.3 1.2± 2.2 0.6± 5.7

(σp, σq , σr) Alg. J̆23 [%] J̆13 [%] J̆12 [%]

(0.3,0.2,0.1) LS -148± 2.4 92± 1.5 -325± 3.6

deg/sec. LC -17± 10 7.9± 5.6 17± 18

ELC -4.3± 12 0.6± 6.7 2.6± 20

(0.1,0.2,0.3) LS -404± 3.9 41± 1.8 -67± 2.2

deg/sec. LC -7.4± 34 1.9± 12 -2.7± 13

ELC 3.1± 36 -0.6± 12 -3.3± 13

where ¯̃
θi and σ̄(θ̃i) denote the empirical mean and

the empirical standard deviation of ith parameter
error θ̃i. In the tables, ‘LC’ stands for the least-
correlation estimate (42), ‘LS’ denotes the least-
squares estimate which is obtained from (42) by
setting τ = 0, and ‘ELC’ denotes the extended
least-correlation estimate in (38). Table 1 shows
that both the LC and ELC outperform the LS.
Moreover, the ELC yields more accurate estimates
than the LC.

Table 2. Identification errors in case
of infinitely correlated measurements,

(σp, σq, σr) = (0.4, 0.3, 0.2) deg/sec.

Alg. τ J̆11 [%] J̆22 [%] J̆33 [%]

LS 0 -9.7 ± 1.1 -15 ± 1.2 -6.4 ± 0.9

ELC 4 -4.0 ± 1.7 -6.4 ± 1.8 -2.6 ± 1.3

8 -1.5 ± 1.7 -2.4 ± 1.9 -1.0 ± 1.3

16 -0.1 ± 2.1 -0.0 ± 2.6 -0.2 ± 1.8

Alg. τ J̆23 [%] J̆13 [%] J̆12 [%]

LS 0 -109 ± 8.2 54 ± 4.8 -134 ± 8.7

ELC 4 -48 ± 13 27 ± 7.7 -59 ± 17

8 -19 ± 15 12 ± 8.5 -24 ± 18

16 -4.3 ± 19 5.2 ± 11 -2.9 ± 22

According to Theorem 1, (38) gives consistent
estimates provided that the measurement noise
in regressor matrix is at most finitely correlated.
We, however, try to show numerically that the es-
timates can be applied to problems with infinitely
correlated noise violating A2. For this case we use
the angular velocity measurements given by

ω(t) , ω∗(t) +
1

1 + βp
ζ(t) (47)

instead of (2), where we choose β = 0.04 sec. Table
2 shows that the ELC works well on the infinitely
correlated noise provided that A3 is satisfied with
a large value of τ . According to Table 2 when
τh = 0.16 sec. (τ = 16) is four times of β = 0.04,
the ELC algorithm generates the best results.

5. CONCLUDING REMARKS

This paper introduces a procedure for identifying
the inertia matrix of a rotating body. The esti-
mation algorithm is based on the Euler equation
governing rotational motion and assumes errors-
in-variables models in which all variables are cor-
rupted by noise. The main idea is composed of
three steps - extending regressors and parame-
ters, filtering out angular acceleration terms, and
employing the method of least correlation. In the
first step, the regressor matrix is augmented by
the identity matrix with proper size and the pa-
rameter vector is augmented by terms contributed
by noisy measurements. The second step is to
transform the errors-in-variables model of the Eu-
ler equation, which contains angular acceleration
terms, to a model which does not contain the com-
ponents. The last step, employing the method of
least correlation to the extended and transformed
model, gives an estimate of the inertia matrix.
Analysis shows that the estimates are consistent
in the sense that the estimates converge to the
true values as the number of samples increases to
infinity. Monte Carlo simulations demonstrate the
performance and support the analytical results.

Given the measurements of translational acceler-
ations, attitude angles and external forces of a
translating and rotating rigid body, the proposed
algorithm can be extended to the problem (Hahn
and Niebergall, 2001) which identifies all inertial
parameters including mass and center of mass
as well as inertia matrix. We expect that this
extension gives reasonable results even though the
estimates are not free from bias. If the attitude
angles are measured almost free from noise, then
the proposed procedure gives good estimates of
the complete set of inertial parameters.

Appendix A. PROOF OF THEOREM 1

Equation (38) is equivalent to

θ̂af
(τ, N)=

(
R̄ψaf

ψaf
(k1, k2)+R̄ψaf

ψaf
(k2, k1)

)−1

×
(
r̄ψaf

yf
(k1, k2)+r̄ψaf

yf
(k2, k1)

)
, (A.1)

where the empirical correlations are defined by

R̄ψaf
ψaf

(k1, k2),
1

Nτ

N∑

k=1+τ

ψaf
(k1h)ψT

af
(k2h),

r̄ψaf
yf

(k1, k2),
1

Nτ

N∑

k=1+τ

ψaf
(k1h)yf (k2h)

with either k1 = k, k2 = k − τ or k1 = k −
τ, k2 = k. Using the discrete-time equivalence of
(29) to r̄ψaf

yf
(k1, k2) gives



r̄ψaf
yf

(k1, k2) = t̄ψaf
ψaf

θaf
(k1, k2, k2)

+ r̄ψaeaf
(k1, k2), (A.2)

where t̄ψaf
ψaf

θaf
, the empirical bicorrelation (Koh

and Powers, 1985) and r̄ψaf
eaf

are defined by

t̄ψaf
ψaf

θaf
, 1

Nτ

N∑

k=1+τ

ψaf
(k1h)ψT

af
(k2h)θaf

(k2h),

r̄ψaf
eaf

, 1
Nτ

N∑

k=1+τ

ψaf
(k1h)eaf

(k2h),

respectively.

When N goes to infinity, R̄ψaf
ψaf

(k1, k2) con-
verges to Rψaf

ψaf
(τ) due to the ergodic theory

(Ljung, 1999, Theorem 2.3 in p.43) and A1, i.e.,

lim
N→∞

R̄ψaf
ψaf

(k1, k2) = Rψaf
ψaf

(τ). (A.3)

Applying above approach to (A.2) yields

rψaf
yf

(τ) = tψaf
ψaf

θaf
(τ, τ) + rψaeaf

(τ), (A.4)

where each term is evaluated as follows:

tψaf
ψaf

θaf
(τ, τ) = Rψaf

ψaf
(τ)E[θaf

(kh)], (A.5)

rψaf
eaf

(τ) = 0. (A.6)

Using (A.4)-(A.6), r̄ψaf
yf

(k1, k2) at N → ∞ is
expressed as

lim
N→∞

r̄ψaf
yf

(k1, k2)=Rψaf
ψaf

(τ)E[θaf
(kh)](A.7)

for all k. Applying (A.3) and (A.7) to

lim
N→∞

θ̂af
(τ,N) = R−1

ψaf
ψaf

(τ)rψaf
yf

(τ),(A.8)

which is an expression of (A.1) at N →∞, yields
(40).
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