
Magnetic-field Estimation Using Measurements from a Floating Buoy

Harish J. Palanthandalam-Madapusi, Dennis S. Bernstein, and Aaron J. Ridley

Abstract— Magnetic-field fluctuations caused by solar storms
can overload and destroy transformers, power grids and
sensitive instrumentation on satellites, planes, and ships. To
monitor these magnetic-field fluctuations, it is proposed to
install magnetometers on floating buoys in the oceans. To
obtain meaningful measurements from these magnetometers,
it is important to know the orientation of the axes of the
magnetometers with respect to the Earth. In this paper, we
estimate the orientation of a floating buoy with respect to
Earth using gyro measurements of angular velocity of the
buoy. Since the angular position states are unobservable from
the angular velocity measurements, we construct an additional
fictitious measurement based on physical insights. In addition,
to accommodate the additional fictitious measurement, we use
an alternative nonlinear model for the buoy dynamics and use
nonlinear filtering techniques to estimate the orientation of the
buoy.

I. INTRODUCTION

The Sun’s atmosphere flows supersonically away from

the Sun past the Earth and the other planets in the form of

the solar wind. The Sun’s magnetic field, which is commonly

referred to as the interplanetary magnetic field (IMF), is

embedded in the solar wind [9]. Although the solar wind

typically flows at about 400 km/s, large expulsions of plasma

from the Sun, called coronal mass ejections (CMEs) or solar

storms, can attain speeds of over 900 km/s.

High-energy CMEs interact with the Earth’s magnetic

field causing geomagnetic storms, which entail ionospheric

currents and aurora in both the northern and southern polar

regions. Most of the time, the aurora and the ionospheric

currents are weak and have minimal effect on technology.

During a solar storm, however, the aurora and ionospheric

currents increase, heating and expanding the upper atmo-

sphere, which causes increased drag on satellites. In addition,

large ionospheric current fluctuations can induce currents in

power lines that can overwhelm and destroy transformers

and electrical networks [10]. Additionally, as discussed in

[11], solar storms can adversely affect animals, humans, and

aircraft. It is therefore important to monitor magnetic-field

fluctuations caused by solar storms, to be able to predict

when and where large ionospheric current fluctuations are

likely to occur.
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The magnetic perturbations caused by the interaction of

the solar wind and the magnetosphere are measured on the

Earth by ground-based magnetometer stations. Numerous

ground-based magnetometer stations are spread over North

America and Canada, Northern Europe, Russia, and Green-

land. In addition, there are ground-based magnetometer sta-

tions, although fewer in number, in the southern hemisphere.

These large number of ground-based magnetometer stations

provide a good picture of the magnetic fluctuations on the

surface of land masses.

However, there are no magnetometers in the oceans and

the seas and magnetic-fluctuations in the oceans are not

measured. Since infrastructure that may be affected by

solar storms include undersea cables and instrumentation

on ships and submarines, it is important to place magne-

tometers in several locations in the oceans. Currently, tt is

being proposed that magnetometers be installed on floating

buoys. In contrast to ground-based magnetometers, buoys

are constantly moving due to wind and waves. Therefore to

obtain meaningful measurements from the magnetometers,

it is important to know the orientation of the axes of the

magnetometers with respect to the Earth.

The goal of this paper is to estimate the orientation of a

floating buoy with respect to Earth using gyro measurements

of angular velocity of the buoy. We start with a second-order

linear model for the buoy dynamics driven by random forces.

Since the angular position states are unobservable from the

angular velocity measurements, we construct an additional

fictitious measurement based on physical insights. In addi-

tion, to accommodate the additional fictitious measurement,

we construct an alternative nonlinear model for the buoy

dynamics and use nonlinear filtering techniques to estimate

the orientation of the buoy.

II. PROBLEM FORMULATION

For simplicity, we consider the yawing (spinning) mo-

tion of the buoy alone, that is, we assume that the buoy does

not roll or pitch. Let φ be the yaw angle of the buoy. Then

defining the states to be x
△
=

[

φ φ̇
]T

, the equations of

motion of the buoy in the state space form are

ẋ =

[

0 1
0 −c

]

x +

[

0
1

]

w, (2.1)

where c represents the damping coefficient due to water drag,

and w represents the effect of random forces on the buoy due
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to wind and waves. We assume that a rate gyro is mounted

on the buoy, thus the output equation is

y =
[

0 1
]

x + v, (2.2)

where v is the measurement noise. Thus,

A =

[

0 1
0 −c

]

, B =

[

0
0

]

(2.3)

C =
[

0 1
]

, D = 0, (2.4)

and Q
△
= E

[[

0
w

]

[

0 w
]

]

=

[

0 0
0 σ2

w

]

, where E

denotes the expected value and σ2
w

△
= E

[

w2
]

.

Next, let BN and BE denote the north-south and east-

west component of the Earth’s magnetic field, respectively.

Let BT
△
=

√

B2
N + B2

E be the total magnetic field of the

Earth and θ
△
= tan−1

(

BE

BN

)

be the clockwise angle from the

total magnetic field to the north-south direction. Next, let Bx

and By be the components of the magnetic field measured

by the magnetometer fixed on the buoy. Since φ is the yaw

angle of the buoy, it follows that

Bx = BT cos(φ − θ), (2.5)

By = −BT sin(φ − θ). (2.6)

The relationship between the various components of the

magnetic field are shown in Figure 1.

Throughout this paper, for simulations, we use the value

c = 0.2 for the damping coefficient in (2.1). The disturbances

w and v are chosen to be a gaussian white noise signals. The

north-south component of the magnetic field BN is chosen

to be a random white signal with mean 20, 000nT, while

the east-west component of the magnetic field BE is chosen

to be a random white signal with mean 0nT. These mean

values are typical.

The problem can then be stated as

Problem 1. Using the magnetometer measurements Bx

and By along with the gyro measurements of φ̇, estimate

the components of the Earth’s magnetic field BN and BE in

the Earth-fixed coordinate frame.

From Figure 1, it follows that

BN = Bx cos(φ) − By sin(φ), (2.7)

BE = Bx sin(φ) + By cos(φ). (2.8)

Since, Bx and By are measured, Problem 1 is equivalent to

the following problem.

Problem 2. Using the magnetometer measurements Bx

and By along with the gyro measurements of φ̇, estimate

the yaw angle φ of the buoy.

BN

BE

BT

Bx

By

θ

φ

Fig. 1. Schematic of relationship between components of
magnetic field in an Earth-fixed frame and body-fixed frame.

Since φ is an unmeasured state of the linear system

(2.1), (2.2), we consider state estimation for linear systems.

For ease of application of estimation techniques, we use a

discrete-time version of the state-space equations (2.1), (2.2).

We briefly review the Kalman filter.

A. Kalman Filter

For the linear stochastic discrete-time dynamic system

xk = Ak−1xk−1 + Bk−1uk−1 + Gk−1wk−1, (2.9)

yk = Ckxk + vk, (2.10)

where Ak−1 ∈ R
n×n, Bk−1 ∈ R

n×p, Gk−1 ∈ R
n×q,

and Ck ∈ R
m×n are known matrices, the state-estimation

problem can be described as follows. Assume that, for all

k ≥ 1, the known data are the measurements yk ∈ R
m,

the inputs uk−1 ∈ R
p, and the statistical properties of

x0, wk−1 and vk. The initial state vector x0 ∈ R
n is

assumed to be Gaussian with mean x̂0 and error-covariance

P xx
0 , E

[

(x0 − x̂0)(x0 − x̂0)
T
]

. The process noise wk−1 ∈
R

q , which represents unknown input disturbances, and the

measurement noise vk ∈ R
m, concerning inaccuracies in the

measurements, are assumed white, Gaussian, zero mean, and

mutually independent with known covariance matrices Qk−1

and Rk, respectively. Next, define the cost function

J(xk) , ρ(xk|(y1, . . . , yk)), (2.11)

which is the conditional probability density function of the

state vector xk ∈ R
n given the past and present measured

data y1, . . . , yk. Under the stated assumptions, the maxi-

mization of (2.11) is the state estimation problem, while the

maximizer x̂k of J is the optimal state estimate.

The optimal state estimate x̂k is given by the Kalman filter
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[6], whose forecast step is given by

x̂k|k−1 = Ak−1x̂k−1 + Bk−1uk−1, (2.12)

P xx
k|k−1 = Ak−1P

xx
k−1A

T
k−1 + Gk−1Qk−1G

T
k−1,

(2.13)

ŷk|k−1 = Ckx̂k|k−1, (2.14)

P yy
k|k−1 = CkP xx

k|k−1C
T
k + Rk, (2.15)

P xy
k|k−1 = P xx

k|k−1C
T
k , (2.16)

where P xx
k|k−1 , E

[

(xk − x̂k|k−1)(xk − x̂k|k−1)
T
]

,

P yy
k|k−1 , E

[

(yk − ŷk|k−1)(yk − ŷk|k−1)
T
]

, and

P xy
k|k−1 , E

[

(xk − x̂k|k−1)(yk − ŷk|k−1)
T
]

, and whose

data-assimilation step is given by

Kk = P xy
k|k−1(P

yy
k|k−1)

−1, (2.17)

x̂k = x̂k|k−1 + Kk(yk − ŷk|k−1), (2.18)

P xx
k = P xx

k|k−1 − KkP yy
k|k−1K

T
k , (2.19)

where P xx
k , E

[

(xk − x̂k)(xk − x̂k)T
]

is the error-

covariance matrix and Kk is the Kalman gain matrix. The

notation ẑk|k−1 indicates an estimate of zk at time k based

on information available up to and including time k − 1.

Likewise, ẑk indicates an estimate of z at time k using

information available up to and including time k. Model

information is used during the forecast step, while measure-

ment data are injected into the estimates during the data-

assimilation step, specifically, (2.18).

III. YAW ANGLE ESTIMATION USING GYRO

MEASUREMENTS

Since (A, C) in (2.3), (2.4) is unobservable, the Kalman

filter estimates x̂k are not guaranteed to converge to xk and

may drift. As seen in Figure 2, due to the unobservability of

the system, there is drift in the estimates.

To resolve the problem of observability, we use insights

from physics to construct an additional fictitious measure-

ment. However, as described in the following section, to

accommodate this additional measurement, we modify the

model equations.

IV. PHYSICS-BASED FICTITIOUS MEASUREMENT

From the knowledge of physics we know that over long

periods of time, the median of the total magnetic field BT

points north. That is, over long periods of time, the median

of θ is 0. We make the assumption that the mean of θ is also

zero over a long period of time.
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g
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Actual φ

Estimated φ

Fig. 2. Actual yaw angle and the estimate of the yaw angle using a
linear Kalman filter with rate gyro measurements. Since the yaw angle
is unobservable from the rate gyro measurements, the estimates do not
converge to the actual angles.

First, we note that

tan−1

(

By

Bx

)

= φ − θ. (4.1)

Next, let Nw be a sufficiently large window length. Then it

follows that

1

Nw

k
∑

i=k−Nw+1

tan−1

(

By,i

Bx,i

)

=
1

Nw

k
∑

i=k−Nw+1

(θi − φi)

= −
1

Nw

k
∑

i=k−Nw+1

φi. (4.2)

The last step follows from the fact that the mean of θ over

a long period of time is zero. This physics-based fictitious

measurement is a function of φk from Nw consecutive time

steps. Therefore, to use this measurement, we modify the

model equations to include Nw time steps. Thus, by defining

the states as

xk =

















φk−Nw+1

φ̇k−Nw+1

φk−Nw+2

φ̇k−Nw+2

· · ·

φ̇k

















T

∈ R
2Nw (4.3)

and writing the state-space differential equation in terms of

the new state, the output equation then becomes

yk = Cxk, (4.4)
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where

C =















0 1 0 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · 1
− 1

Nw
0 − 1

Nw
0 · · · 0















(4.5)

∈ R
Nw+1×2Nw .

The first Nw rows of C represent rate gyro measurements,

while the last row represent the fictitious physics-based

measurement computed from (4.2) and real measurements

of Bx,k and By,k.

Augmenting the measurement equations with the physics-

based fictitious measurement described above makes the

system equations observable. The effect of the additional

physics-based fictitious measurement is aparent in Figure 3,

where the estimates of the yaw angle of the buoy match the

actual yaw angle.
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Fig. 3. Actual yaw angle of the buoy and it’s estimate. For small angles,
a linear Kalman filter based on the linear model equations and the rate
gyro measurements along with the physics-based fictitious measurement
provides an accurate estimate of the actual yaw angle.

However, note that the computed value of
1

Nw

∑k
i=k−Nw+1 tan−1

(

By,i

Bx,i

)

is always in the interval

(−π/2, π/2) radians due to the ambiguity in computing the

arctangent function. On the other hand, due to the linear

nature of the state equations, the angle φk ∈ R, and is

not constrained to the interval (−π/2, π/2). Due to this

ambiguity, the physics-based fictitious measurement is not

suitable to be used with the model equations in the current

form.

To illustrate this issue, let Nw = 2 and let φk−1 = 0 and

φk = 2π. Now tan−1
(

By,k−1

Bx,k−1

)

= 0 and tan−1
(

By,k

Bx,k

)

=

0. Although the physics-based fictitious measurements are

consistent with the actual angles, the averages computed on

the left hand side of (4.2) yields 0, while the average on the

right hand side yields π. Figure 4 illustrates this issue as the

estimates of the yaw angle do not match the actual angles

when the actual angles are beyond the interval (−π/2, π/2)

radians. Note that the estimates do not differ from the actual

yaw angle by a multiple of 2π radians, and thus are not

accurate estimates.

To eliminate this ambiguity, we consider the following

alternative representation of the model equations.
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Fig. 4. Actual yaw angle of the buoy and it’s estimate. For large angles,
a linear Kalman filter based on the linear model equations and the rate
gyro measurements along with the physics-based fictitious measurement
does not provides an accurate estimate of the actual yaw angle.

V. ALTERNATIVE REPRESENTATION OF MODEL

EQUATIONS

Instead of states φ and φ̇, we consider the 3 states

sin(φ), cos(φ), and φ̇.

x1 = sin(φ), (5.1)

x2 = cos(φ), (5.2)

x3 = φ̇. (5.3)

The differential equations in terms of these new states are

then

ẋ1 = cos(φ)φ̇ = x2x3, (5.4)

ẋ2 = − sin(φ)φ̇ = −x1x3, (5.5)

ẋ3 = −cφ̇ + w = −cx3 + w. (5.6)

The third equation is identical to the second equation in (2.1).

To use the fictitious physics-based measurement, we again

use a window of Nw time-steps.

However, in this alternative representation, the state equa-

tions are nonlinear and hence we use the unscented Kalman

filter.
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A. Unscented Kalman Filter

For nonlinear systems, we consider the unscented Kalman

filter (UKF) [4] to provide a suboptimal solution to the state-

estimation problem. Instead of analytically linearizing (5.4)-

(5.6) and using (2.12)-(2.19), UKF employs the unscented

transform (UT) [5], which approximates the posterior mean

ŷ ∈ R
m and covariance P yy ∈ R

m×m of a random vector

y obtained from the nonlinear transformation y = h(x),
where x is a prior random vector whose mean x̂ ∈ R

n and

covariance P xx ∈ R
n×n are assumed known. UT yields the

actual mean ŷ and the actual covariance P yy if h = h1 +h2,

where h1 is linear and h2 is quadratic [5]. Otherwise, ŷk is

a pseudo mean and P yy is a pseudo covariance.

UT is based on a set of deterministically chosen vectors

known as sigma points. To capture the mean x̂a
k−1 of the

augmented prior state vector

xa
k−1 ,

[

xk−1

wk−1

]

, (5.7)

where xa
k−1 ∈ R

na and na , n+q, as well as the augmented

prior error covariance

P xxa
k−1 ,

[

P xx
k−1|k−2 0n×q

0q×n Qk−1

]

, (5.8)

the sigma-point matrix Xk−1 ∈ R
na×(2na+1) is chosen as















































col0(Xk−1) , x̂a
k−1,

coli(Xk−1) , x̂a
k−1

+
√

(na + λ) coli

[

(

P xxa
k−1

)1/2
]

,

i = 1, . . . , na,

coli+na
(Xk−1) , x̂a

k−1

−
√

(na + λ) coli

[

(

P xxa
k−1

)1/2
]

,

i = 1, . . . , na,

with weights


































γ
(m)
0 ,

λ

na + λ
,

γ
(c)
0 ,

λ

na + λ
+ 1 − α2 + β,

γ
(m)
i , γ

(c)
i , γ

(m)
i+na

, γ
(c)
i+na

,
1

2(na + λ)
,

i = 1, . . . , na,

where coli
[

(·)1/2
]

is the ith column of the Cholesky square

root, 0 < α ≤ 1, β ≥ 0, κ ≥ 0, and λ , α2(κ + na) − na.

We set α = 1 and κ = 0 [3] such that λ = 0 [4] and set

β = 2 [3]. Alternative schemes for choosing sigma points

are given in [4].

The UKF forecast equations are given by in Appendix

A, while the UKF data-assimilation equations are given by

(2.17)-(2.19).
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Fig. 5. Actual yaw angle of the buoy and it’s estimate. The unscented
Kalman filter based on the nonlinear model equations and the rate
gyro measurements along with the physics-based fictitious measurement
provides an accurate estimate of the actual yaw angle.

Finally, the unscented Kalman filter is applied to estimate

the yaw angle of the buoy using a window of time steps,

where each time-step is governed by the state equations (5.4)

- (5.6). The gyro measurements of angular velocity are used

along with the physics-based fictitious measurements. Figure

5 shows the actual values and estimates of the first state

(sin(φ)) and the second state (cos(φ)). The estimates are

seen to match the actual values of the states.

VI. CONCLUSIONS

Magnetic-field fluctuations caused by solar storms can

overload and destroy transformers, power grids and sen-

sitive instrumentation on satellites, planes, and ships. To

monitor these magnetic-field fluctuations, it was proposed

to install magnetometers on floating buoys in the oceans. To

obtain meaningful measurements from the magnetometers,

it is important to know the orientation of the axes of the

magnetometers with respect to the Earth. The goal of this

paper was to estimate the orientation of a floating buoy

with respect to Earth using gyro measurements of angular

velocity of the buoy. Since the angular position states are

unobservable from the angular velocity measurements, we

constructed an additional physics-based fictitious measure-

ment. In addition, to accommodate the additional fictitious

measurement, we used an alternative nonlinear model for

the buoy dynamics and a window of time steps in the state-

space equations. Furthermore, we used nonlinear filtering

techniques to estimate the orientation of the buoy.
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VII. APPENDIX A: UKF FORECAST EQUATIONS

The UKF forecast equations are given by

Xk−1 =
[

x̂a
k−1 x̂a

k−111×na
+

√

(na + λ)
(

P xxa
k−1

)1/2
x̂a

k−111×na
−

√

(na + λ)
(

P xxa
k−1

)1/2
]

,

(7.1)

coli(X
x
k|k−1) = fk−1(coli(X

x
k−1), uk−1, coli(X

w
k−1)), i = 0, . . . , 2na, (7.2)

x̂k|k−1 =

2na
∑

i=0

γ
(m)
i coli(X

x
k|k−1), (7.3)

P xx
k|k−1 =

2na
∑

i=0

γ
(c)
i [coli(X

x
k|k−1) − x̂k|k−1][coli(X

x
k|k−1) − x̂k|k−1]

T, (7.4)

coli(Yk|k−1) = hk(coli(X
x
k|k−1)), i = 0, . . . , 2na, (7.5)

ŷk|k−1 =

2na
∑

i=0

γ
(m)
i coli(Yk|k−1), (7.6)

P yy
k|k−1 =

2na
∑

i=0

γ
(c)
i [coli(Yk|k−1) − ŷk|k−1][coli(Yk|k−1) − ŷk|k−1]

T + Rk, (7.7)

P xy
k|k−1 =

2na
∑

i=0

γ
(c)
i [coli(X

x
k|k−1) − x̂k|k−1][coli(Yk|k−1) − ŷk|k−1]

T, (7.8)

where

[

Xx
k−1

Xw
k−1

]

, Xk−1, Xx
k−1 ∈ R

n×(2na+1), and

Xw
k−1 ∈ R

q×(2na+1).
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