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Abstract— In this paper we use a retrospective correction
filter (RCF) to identify MIMO LTI systems. This method uses
an adaptive controller in feedback with an initial model. The
goal is to adapt the closed-loop response of the system to
match the response of an unknown plant to a known input. We
demonstrate this method on numerical examples of increasing
complexity where the initial model is taken to be a one-
step delay. Minimum-phase and nonminimum-phase SISO and
MIMO examples are considered. The identification signals used
include zero-mean Gaussian white noise as well as sums of
sinusoids. Finally, we examine the robustness of this method by
identifying these systems in the presence of actuator noise.

I. INTRODUCTION

Identification of linear time-invariant systems is a funda-

mental problem in systems theory, and available methods

range from frequency-domain techniques [1], to time-series

methods [2], to state-space algorithms [3, 4]. These tech-

niques assume different model structures, and the choice of

model structure in practice may be guided by the ultimate

intended use of the model.

Regardless of the desired model structure, the amount of

available data and the quality of that data (that is, the level

of noise that corrupts the data) directly impact the fidelity

of the identified model. For data corrupted by stationary

noise, we expect a fundamental tradeoff between the amount

of available data and the noise level, where a weakness in

quantity or quality can, at least to some extent, be offset by

a strength in the other. In addition to the amount of the data,

identification methods may be sensitive to additional issues,

such as the type of noise, a priori estimates of the system

order and relative degree, and, in the MIMO case, coupling

strength between the inputs and outputs. All of these issues

must be assessed within the context of the computational

burden of competing algorithms.

A variation of the model identification problem is the

case in which an initial model is available and data is

used to refine the initial model to obtain an improved fit

to the data. This problem has been extensively studied

within the context of finite element modeling [5–7], and

has received some attention within the systems and control

literature [8–10]. In particular, various approaches to model
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refinement are considered in [10], including series, parallel,

and feedback model-augmentation structures. The goal of

the present paper is to further develop the feedback-model

augmentation structure of [10]. Interestingly, this problem

mimics the structure of model reference adaptive control,

which shows that adaptive control can be used for system

identification.

The adaptive control method used in [10] is based on [11],

which was originally developed for adaptive disturbance

rejection. More recent variations of this work are presented in

[12–14], which consider adaptive disturbance rejection, adap-

tive stabilization, adaptive command following, and model

reference adaptive control. In the present paper, we focus

on the retrospective correction filter-based (RCF) adaptive

control algorithm presented in [14] because of its ability to

control nonminimum-phase systems. In particular, using an

augmentation model structure that is a slight variation of

the augmentation model structure used in [10], we present a

series of numerical examples to investigate the effectiveness

of the RCF algorithm for adaptive feedback model updating.

We consider a series of examples to explore several

issues, namely, model properties, identification signals, and

effect of noise. These examples are useful in assessing the

effectiveness of RCF-based identification under a range of

conditions.

II. PROBLEM FORMULATION

We seek to identify the SISO or MIMO plant G by using a

given initial model G0 and an estimated feedback component

Gc. The objective is to determine Gc such that the resulting

closed-loop model Gcl matches the true system G.

As shown in Figure 1, we use model reference adaptive

control (MRAC) [15–17] as the feedback interconnection

structure. To achieve model matching, we minimize the

performance variable z in the presence of the identification

signal w. In particular, we use the retrospective correction

filter (RCF) adaptive control algorithm given in [14]. The

identification signal w is assumed to be available to the

controller as an additional measurement variable yw. This

problem setup is a minor variation of the approach of [10].

Consider a realization of the MIMO discrete-time system

G given by

x(k + 1) = Ax(k) + Bw(k), (1)

yref(k) = Cx(k), (2)

where x(k) ∈ R
n, yref(k) ∈ R

ly0 , w(k) ∈ R
lw , and an initial
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Fig. 1. Model reference adaptive control for system identification. The
identified model resides in the dashed box. The diagonal arrow represents
data-driven adaptation.

model G0 with realization

x0(k + 1) = A0x0(k) + B0u(k), (3)

y0(k) = C0x0(k), (4)

where x0(k) ∈ R
n0 , y0(k) ∈ R

ly0 , and u(k) ∈ R
lu .

Furthermore, define

y(k)
△
=

[

y0(k)
yw(k)

]

=

[

C0x0(k)
w(k)

]

, (5)

z(k)
△
= y0(k) − yref(k), (6)

where yw(k) ∈ R
lw , y(k) ∈ R

ly , and z(k) ∈ R
lz . Note that

ly
△
= ly0

+ lw and lz = ly0
.

We thus seek an adaptive output feedback controller

Gc
△
=

[

Gcy0
Gcyw

]

such that the performance variable z
is minimized in the presence of the identification signal w,

and, hence, the closed-loop model

Gcl
△
=

[

I − G0Gcy0

]−1
G0Gcyw

(7)

matches the true system G. Note that y0 = Gclw.

III. CONTROLLER CONSTRUCTION

In this section we give a brief overview of the RCF adap-

tive control algorithm for the control problem represented by

(1)–(6). The algorithm is derived from [11] and [12]. The full

details of the algorithm are presented in [14].

We use an exactly proper time-series controller of order

nc, such that the control u(k) is given by

u(k) =

nc
∑

i=1

Mi(k)u(k − i) +

nc
∑

i=0

Ni(k)y(k − i), (8)

where Mi ∈ R
lu×lu , i = 1, . . . , nc, and Ni ∈ R

lu×ly , i =
0, . . . , nc, are given by an adaptive update law. The control

can be expressed as

u(k) = θ(k)φ(k), (9)

where

θ(k)
△
=

[

N0(k) · · · Nnc
(k) M1(k) · · · Mnc

(k)
]

is the controller parameter block matrix, and the regressor

vector φ(k) is given by

φ(k)
△
=





















y(k)
...

y(k − nc)
u(k − 1)

...

u(k − nc)





















∈ R
nclu+(nc+1)ly . (10)

For positive integers p and µ, we define the extended

performance vector Z(k), and the extended control vector

U(k) by

Z(k)
△
=







z(k)
...

z(k − p + 1)






, U(k)

△
=







u(k)
...

u(k − pc + 1)






,

(11)

where pc
△
= µ + p.

From (9), it follows that the extended control vector U(k)
can be written as

U(k)
△
=

pc
∑

i=1

Liθ(k − i + 1)φ(k − i + 1), (12)

where

Li
△
=





0(i−1)lu×lu

Ilu

0(pc−i)lu×lu



 ∈ R
pclu×lu . (13)

We define the surrogate performance vector Ẑ(θ̂(k), k) by

Ẑ(θ̂(k), k)
△
= Z(k) − B̄zu

(

U(k) − Û(k)
)

, (14)

where Û(k)
△
=

∑pc

i=1 Liθ̂(k)φ(k − i + 1), θ̂(k) ∈
R

lu×[nclu+(nc+1)ly ] is the surrogate controller parameter

block matrix, and the block-Toeplitz surrogate control matrix

B̄zu is given by

B̄zu
△
=













0lz×lu · · · 0lz×lu Hd · · ·

0lz×lu

. . .
. . .

. . .

...
. . .

. . .
. . .

0lz×lu · · · 0lz×lu 0lz×lu · · ·

· · · Hµ 0lz×lu · · · 0lz×lu

. . .
. . .

. . .
...

. . .
. . . 0lz×lu

· · · 0lz×lu Hd · · · Hµ













, (15)

where the relative degree d is the smallest positive integer

i such that the ith Markov parameter Hi
△
= C0A

i−1
0 B0 is

nonzero. The leading zeros in the first row of B̄zu account

for the nonzero relative degree d. The algorithm places no

constraints on either the value of d or the rank of Hd or B̄zu.

The adaptive update law presented in [14] depends on a

time-varying weighting parameter α(k) ∈ (0,∞), referred
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to as the learning rate since it affects convergence speed of

the adaptive control algorithm. As α(k) is increased, con-

vergence speed is lowered. Likewise, as α(k) is decreased,

convergence speed is raised.

The novel feature of the adaptive control algorithm (9)

is the use of the retrospective correction filter (14). The

RCF provides an inner loop to the adaptive control law

by modifying the performance variable Z(k) based on the

difference between the actual past control inputs U(k) and

the recomputed past control inputs based on the current

control law Û(k).

IV. NUMERICAL EXAMPLES: MINIMUM PHASE

We now present a series of examples that demonstrate the

RCF algorithm for identifying plants of increasing complex-

ity. We consider minimum-phase systems with zero-mean

Gaussian white noise identification signals.

Example 4.1 (SISO, G0 = 1/z, w = white noise):

Consider the SISO plant with poles {0.34 ±
0.87,−0.3141 ± 0.9, 0.05 ± 0.3122,−0.6875} and

zeros {0.14 ± 0.97,−0.12 ± 0.62,−0.89}. We take

nc = 9, p = 1, µ = 1, and α = 1. We initialize G0 = 1/z.

The identification signal is zero-mean Gaussian white noise.

The controller performance is shown in Figure 2. The

RCF adaptive algorithm is initiated at t = 0 sec, and the

convergence of the performance variable indicates that the

output of the true plant is approximately matched by the

closed-loop controller and initial model. The frequency

response of the closed-loop initial model and adapted

controller are compared with the true model in Figure 3. �
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Fig. 2. Identification performance for a minimum-phase SISO plant with
G0 = 1/z. The RCF adaptive algorithm is initiated at t = 0 sec. The
controller order is nc = 9 with parameters p = 1, µ = 1, α = 1.

Example 4.2 (2x2, G0 = (1/z)I2×2, w = white noise):

Consider the two-input, two-output plant with poles

{0.9,−0.5 ± 0.5,−0.6 ± 0.09, 0.8} and transmission

zeros {0.2, 0}. We take nc = 18, p = 1, µ = 1, and

α = 1. We initialize G0 = (1/z)I2×2. The identification

signals are zero-mean Gaussian white noise. The controller

performance is shown in Figure 4. The RCF adaptive

algorithm is initiated at t = 0 sec, and the convergence of
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Fig. 3. Frequency response comparison of the true, initial, and identified
models.

the performance variable indicates that the output of the

true plant is approximately matched by the closed-loop

controller and initial model. The frequency response of

the closed-loop initial model and adapted controller are

compared with the true model in Figure 5. �
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Fig. 4. Identification performance for a minimum-phase 2x2 MIMO plant
with G0 = (1/z)I2×2 . The RCF adaptive algorithm is initiated at t =
0 sec. The controller order is nc = 18 with parameters p = 1, µ = 1, α =
1.
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Fig. 5. Frequency response comparison of the true, initial, and identified
models.
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V. NUMERICAL EXAMPLES: NONMINIMUM PHASE

We now present a series of examples that demonstrate

the RCF algorithm for identifying nonminimum-phase plants

of increasing complexity. We consider nonminimum-phase

systems with random and harmonic identification signals.

Example 5.1 (SISO, G0 = 1/z, w = white noise):

Consider the SISO plant with poles {0.34 ±
0.87,−0.3141 ± 0.9, 0.05 ± 0.3122,−0.6875, 0.1}
and zeros {0.14 ± 0.97,−0.12 ± 0.62,−0.89, 3}. We

take nc = 9, p = 1, µ = 1, and α = 1. We initialize

G0 = 1/z. The identification signal is zero-mean Gaussian

white noise. The controller performance is shown in Figure

6. The RCF adaptive algorithm is initiated at t = 0 sec, and

the convergence of the performance variable indicates that

the output of the true plant is approximately matched by

the closed-loop controller and initial model. The frequency

response of the closed-loop initial model and adapted

controller are compared with the true model in Figure 7. �
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Fig. 6. Identification performance for a minimum-phase SISO plant with
G0 = 1/z. The RCF adaptive algorithm is initiated at t = 0 sec. The
controller order is nc = 9 with parameters p = 1, µ = 1, α = 1.
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Fig. 7. Frequency response comparison of the true, initial, and identified
models.

Example 5.2 (SISO, G0 = 1/z, w = sum of sinusoids ):

Consider the SISO plant with poles {0.34 ±

0.87,−0.3141 ± 0.9, 0.05 ± 0.3122,−0.6875, 0.1}
and zeros {0.14 ± 0.97,−0.12 ± 0.62,−0.89, 3}. We

take nc = 10, p = 1, µ = 1, and α = 1. We initialize

G0 = 1/z. The identification signal is a sum of 12

sinusoids. The controller performance is shown in Figure 8.

The RCF adaptive algorithm is initiated at t = 0 sec, and

the convergence of the performance variable indicates that

the output of the true plant is approximately matched by

the closed-loop controller and initial model. The frequency

response of the closed-loop initial model and adapted

controller are compared with the true model in Figure 9. �
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Fig. 8. Identification performance for a minimum-phase SISO plant with
G0 = 1/z. The identification signal is a sum of 12 sinusoids. The RCF
adaptive algorithm is initiated at t = 0 sec. The controller order is nc = 10
with parameters p = 1, µ = 1, α = 1.
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Fig. 9. Frequency response comparison of the true, initial, and identified
models.

Example 5.3 (2x2, G0 = (1/z)I2×2, w = white noise):

Consider the two-input, two-output plant with poles

{0.9,−0.5 ± 0.5,−0.6 ± 0.09, 0.8} and transmission

zeros {2, 0}. We take nc = 18, p = 1, µ = 1, and

α = 1. We initialize G0 = (1/z)I2×2. The identification

signals are zero-mean Gaussian white noise. The controller

performance is shown in Figure 10. The RCF adaptive

algorithm is initiated at t = 0 sec, and the convergence of

the performance variable indicates that the output of the
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true plant is approximately matched by the closed-loop

controller and initial model. The frequency response of

the closed-loop initial model and adapted controller are

compared with the true model in Figure 11. �
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Fig. 10. Identification performance for a nonminimum-phase 2x2 MIMO
plant, with G0 = (1/z)I2×2. The RCF adaptive algorithm is initiated at
t = 0 sec. The controller order is nc = 18 with parameters p = 1, µ =
1, α = 1.
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Fig. 11. Frequency response comparison of the true, initial, and identified
models.

VI. NUMERICAL EXAMPLES: OFF-NOMINAL

NONMINIMUM-PHASE CASES

In the following examples, plants presented in the previous

section are identified with an unknown Gaussian white noise

input to the true model G, therefore the input to G becomes

w + δ where δ is input sensor noise. We set the signal to

noise ratio (SNR) of the identification signal to the input

sensor noise equal to 5 for each case. In all cases, both the

identification signal w and the input sensor noise δ are taken

to be uncorrelated zero-mean Gaussian white noise.

Example 6.1 (SISO, G0 = 1/z, SNR = 5): Consider the

SISO plant with poles {0.34±0.87,−0.3141±0.9, 0.05±
0.3122,−0.6875, 0.1} and zeros {0.14 ± 0.97,−0.12 ±
0.62,−0.89, 3}. We take nc = 9, p = 1, µ = 1, and

α = 1. We initialize G0 = 1/z. The identification signal is

a sum of 12 sinusoids. The controller performance is shown

in Figure 12. The RCF adaptive algorithm is initiated at

t = 0 sec, and the convergence of the performance variable

indicates that the output of the true plant is approximately

matched by the closed-loop controller and initial model.

The frequency response of the closed-loop initial model

and adapted controller are compared with the true model

in Figure 13. �
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Fig. 12. Identification performance for a nonminimum-phase SISO plant
with G0 = 1/z and SNR=5. The RCF adaptive algorithm is initiated at
t = 0 sec. The controller order is nc = 9 with parameters p = 1, µ =
1, α = 1.
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Fig. 13. Frequency response comparison of the true, initial, and identified
models.

Example 6.2 (2x2, G0 = (1/z)I2×2, SNR=5):

Consider the two-input, two-output plant with poles

{0.9,−0.5± 0.5,−0.6± 0.09, 0.8} and transmission zeros

{2, 0}. We take nc = 18, p = 1, µ = 1, and α = 1. We

initialize G0 = (1/z)I2×2. The identification signals are

zero-mean Gaussian white noise. The disturbance signals

are also zero-mean Gaussian white noise. The controller

performance is shown in Figure 14. The RCF adaptive

algorithm is initiated at t = 0 sec, and the convergence of

the performance variable indicates that the output of the

true plant is approximately matched by the closed-loop

controller and initial model. The frequency response of

the closed-loop initial model and adapted controller are

compared with the true model in Figure 15. �
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Fig. 14. Identification performance for a nonminimum-phase 2x2 MIMO
plant with G0 = (1/z)I2×2 and SNR=5. The RCF adaptive algorithm is
initiated at t = 0 sec. The controller order is nc = 18 with parameters
p = 1, µ = 1, α = 1.
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Fig. 15. Frequency response comparison of the true, initial, and identified
models.

VII. CONCLUSIONS

In this paper we applied the retrospective correction filter

approach to discrete-time adaptive control to a model refer-

ence adaptive control problem that effectively identifies LTI

systems. The model structure is a closed-loop system consist-

ing of an initial model and feedback correction. The initial

models were one-step delays that have no relation to the true

dynamics. The approach was demonstrated with both white

noise and harmonic inputs, as well as with input actuator

noise. SISO and MIMO examples were considered, including

both minimum-phase and nonminimum-phase cases. Future

work will focus on comparing the accuracy of this technique

with alternative methods such as subspace techniques.
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