
Growing Window Recursive Quadratic Optimization with Variable Regularization

Asad A. Ali1, Jesse B. Hoagg2, Magnus Mossberg3 and Dennis S. Bernstein4

Abstract— We present a growing-window variable-
regularization recursive least squares (GW-VR-RLS)
algorithm. Standard recursive least squares (RLS) uses
a time-invariant regularization. More specifically, the inverse
of the initial covariance matrix in classical RLS can be viewed
as a regularization term, which weights the difference between
the next state estimate and the initial state estimate. The
present paper allows for time-varying in the weighting as
well as what is being weighted. This extension can be used to
modulate the speed of convergence of the estimates versus the
magnitude of transient estimation errors. Furthermore, the
regularization term can weight the difference between the next
state estimate and a time-varying vector of parameters rather
than the initial state estimate as is required in standard RLS.

I. INTRODUCTION

Recursive least squares (RLS) is widely used in signal

processing, identification, estimation, and control [1], [2],

[3], [4], [5], [6], [7], [8]. Under ideal conditions, that is,

nonnoisy measurements and persistency of the data, RLS

is guaranteed to converge to the minimizer of a quadratic

function [5], [6]. In practice, the accuracy of the estimates

and the rate of convergence depend on the level of noise and

persistency of the data. The goal of the present paper is to

extend standard RLS in two ways. First, in standard RLS, the

positive-definite initialization of the covariance matrix serves

as the weighting of a regularization term within the context

of a quadratic optimization. Until at least n measurements are

available, this regularization term compensates for the lack of

persistency in order to obtain a unique minimizer. Tradition-

ally, the regularization weighting is fixed for all steps of the

recursion. In the present work, we derive a growing-window

variable-regularization RLS (GW-VR-RLS) algorithm, where

the weighting of the regularization term changes at each

step. As a special case, the regularization can be decreased

in magnitude or rank as the rank of the covariance matrix

increases, and can be removed entirely when no longer

needed. This ability is not available in standard RLS where

the regularization term is weighted by the inverse of the

initial covariance at every step.

A second extension presented in this paper also involves

the regularization term. Specifically, the regularization term

in standard RLS weights the difference between the next

state estimate and the initial state. In the present paper, the

1Graduate student, Department of Aerospace Engineering, The University of Michi-
gan, Ann Arbor, MI 48109-2140, asadali@umich.edu.

2Assistant Professor, Department of Mechanical Engineering, The University of
Kentucky, Lexington, KY 40506-0503, jhoagg@engr.uky.edu.

3Associate Professor, Department of Physics and Electrical Engineering, Karlstad
University, Sweden, Magnus.Mossberg@kau.se

4Professor, Department of Aerospace Engineering, The University of Michigan, Ann
Arbor, MI 48109-2140, dsbaero@umich.edu.

regularization term weights the difference between the next

state estimate and an arbitrarily chosen time-varying vector

of parameters. As a special case, the time-varying vector

can be the current state estimate, and thus the regularization

term weights the difference between the next state estimate

and the current state estimate. This formulation allows us to

modulate the rate at which the current estimate changes from

step to step.

For these extensions, we derive GW-VR-RLS update equa-

tions. While standard RLS entails the update of the state

estimate and the covariance matrix, GW-VR-RLS entails

the update of an additional symmetric matrix of dimension

n×n to allow for the variable regularization. Thus, GW-VR-

RLS entails some additional computational burden relative to

classical RLS.

II. PROBLEM FORMULATION AND GW-VR-RLS

ALGORITHM

For all i ≥ 0, let Ai ∈ R
n×n, bi, αi ∈ R

n, and Ri ∈
R
n×n, where Ai and Ri are positive semidefinite, define

A0
△
= 0, b0

△
= 0, and assume that, for all k ≥ 0,

∑k
i=0Ai +

Rk and
∑k
i=0 Ai+Rk+1 are positive definite. Hence R0 and

R1 are positive definite. For k ≥ 0, define the regularized

quadratic cost

Jk(x)
△
=

k
∑

i=0

(

xTAix+ bTi x
)

+(x−αk)
TRk(x−αk), (1)

where x ∈ R
n. The minimizer xk of (1) is given by

xk = − 1
2

(

k
∑

i=0

Ai +Rk

)−1(k
∑

i=0

bi − 2Rkαk

)

. (2)

Note that x0 = α0 is the minimizer of J0(x).

To rewrite (2) recursively, define

Pk
△
=

(

k
∑

i=0

Ai +Rk

)−1

, (3)

where the inverse exists by assumption, so that

xk = − 1
2Pk

(

k
∑

i=0

bi − 2Rkαk

)

. (4)

49th IEEE Conference on Decision and Control
December 15-17, 2010
Hilton Atlanta Hotel, Atlanta, GA, USA

978-1-4244-7744-9/10/$26.00 ©2010 IEEE 496

Using (4), it follows that

xk+1 = − 1
2Pk+1

(

k+1
∑

i=0

bi − 2Rk+1αk+1

)

= − 1
2Pk+1

(

k
∑

i=0

bi + bk+1 − 2Rk+1αk+1

)

= − 1
2Pk+1

(

−2P−1
k xk + 2Rkαk + bk+1 − 2Rk+1αk+1

)

= −Pk+1

(

−P−1
k+1xk +Rk+1xk −Rkxk +Ak+1xk

+Rkαk +
1
2bk+1 −Rk+1αk+1

)

= xk − Pk+1

(

Ak+1xk + (Rk+1 −Rk)xk

+Rkαk −Rk+1αk+1 +
1
2bk+1

)

. (5)

Next, it follows from (3) that

P−1
k+1 =

k
∑

i=0

Ai +Ak+1 +Rk+1

= P−1
k +Rk+1 −Rk +Ak+1.

Consider the decomposition

Ak+1 = ψk+1ψ
T
k+1, (6)

where ψk+1 ∈ R
n×nk+1 and nk+1

△
= rank(Ak+1). Conse-

quently,

Pk+1 =
(

P−1
k +Rk+1 −Rk + ψk+1ψ

T
k+1

)−1

=
(

Q−1
k+1 + ψk+1ψ

T
k+1

)−1
, (7)

where
Qk+1

△
=

(

k
∑

i=0

Ai +Rk+1

)−1

=
(

P−1
k +Rk+1 −Rk

)−1
, (8)

where the inverse exists by assumption. Note that

Pk+1 ≤ Qk+1. (9)

Next, using the matrix inversion lemma

(X + UCV)−1=X−1−X−1U
(

C−1+V X−1U
)−1

V X−1

(10)

with X = Q−1
k+1, U = ψk+1, C = I , and V = ψT

k+1, it

follows from (7) that

Pk+1 = Qk+1

(

In − ψk+1(Ink+1
+ ψT

k+1Qk+1ψk+1)
−1

× ψT
k+1Qk+1

)

. (11)

Next, consider the decomposition

Rk+1 −Rk = φk+1Sk+1φ
T
k+1, (12)

where φk+1 ∈ R
n×mk+1 , mk+1

△
= rank(Rk+1 − Rk), and

Sk+1 ∈ R
mk+1×mk+1 is a matrix of the form

Sk+1
△
=













±1 0 · · ·

0 ±1
...

...
. . .

· · · ±1













. (13)

Therefore, (8) can be expressed as

Qk+1 =
(

P−1
k + φk+1Sk+1φ

T
k+1

)−1
. (14)

Letting X = P−1
k , U = φk+1, C = Sk+1, and V = φTk+1 it

follows from (10) and (14) that

Qk+1= Pk − Pkφk+1(Sk+1 + φTk+1Pkφk+1)
−1φTk+1Pk

=Pk

(

In−φk+1(Sk+1+φ
T
k+1Pkφk+1)

−1φTk+1Pk

)

. (15)

Therefore, for k ≥ 0, the recursive regularized quadratic

cost minimizer of (1) is given by (5), (11), and (15), that is,

Qk+1=Pk

(

In−φk+1(Sk+1+φ
T
k+1Pkφk+1)

−1φTk+1Pk

)

, (16)

Pk+1 = Qk+1

(

In − ψk+1(Ink+1
+ ψT

k+1Qk+1ψk+1)
−1

× ψT
k+1Qk+1

)

, (17)

xk+1 = xk − Pk+1

(

Ak+1xk + (Rk+1 −Rk)xk +Rkαk

−Rk+1αk+1 +
1
2bk+1

)

, (18)

where x0 = α0, P0 = R−1
0 , ψk+1 is given by (6), and φk+1

is given by (12).

III. SPECIALIZATIONS

A. Standard RLS

Consider the special case Rk ≡ R0 and αk ≡ x0. Then

the quadratic cost

Jk(x)
△
=

k
∑

i=0

(

xTAix+ bTi x
)

+(x− x0)
TR0(x− x0) (19)

is minimized by

xk+1=xk − Pk+1

(

Ak+1xk +
1
2bk+1

)

, (20)

Pk+1=Pk

(

In−ψk+1(Ink+1
+ ψT

k+1Pkψk+1)
−1ψT

k+1Pk

)

, (21)

where P0 = R−1
0 . Since the recursive update for Qk+1 given

by (16) simplifies to Qk+1 = Pk+1, standard RLS does not

require the update of Qk+1.

B. Standard RLS with αk = xk−1 and Rk ≡ R0

Consider the special case Rk ≡ R0 and αk = xk−1. Then

the quadratic cost

Jk(x)
△
=

k
∑

i=0

(

xTAix+ bTi x
)

+ (x− xk−1)
TR0(x− xk−1)

is minimized by

Pk+1 = Pk

(

Ink+1
−ψk+1(Ink+1

+ ψT
k+1Pkψk+1)

−1ψT
k+1Pk

)

,

xk+1 = xk − Pk+1

(

Ak+1xk + P−1
0 (xk−1− xk) +

1
2bk+1

)

,

where P0 = R−1
0 . Note that the update for Pk does not

require Qk.

497

C. Standard RLS with forgetting factor

Let 0 < λ ≤ 1, and consider the modified cost

J̄k(x)
△
=

k
∑

i=0

λk−i
(

xTĀix+ b̄Ti x
)

+ (x−x0)
T
λkR̄0 (x−x0) ,

where for i ≥ 0, Āi = ψ̄iψ̄
T
i . Next, it follows that

J̄k(x) = λk
k
∑

i=0

λ−i
(

xTĀix+ b̄Ti x
)

+(x− x0)
T
R̄0 (x− x0)

= λk
k
∑

i=0

(

xTAix+ bTi x
)

+ (x− x0)
T
R0 (x− x0) ,

where Ai
△
= λ−iĀi, bi

△
= λ−ib̄i, and R0

△
= R̄0. Therefore,

J̄k(x) = λkJk(x), where Jk(x) is given by the traditional

RLS quadratic cost (19). Minimizing J̄k(x) is equivalent to

minimizing Jk(x). In this case, the minimizer of Jk is given

by (20) and (21); however, the minimizer xk is expressed

in terms of Ak+1 and bk+1 rather than Āk+1 and b̄k+1.

Substituting Ak+1 = λ−k−1Āk+1, bk+1 = λ−k−1b̄k+1, and

ψk+1 = λ−(k+1)/2ψ̄k+1 into (20) and (21) yields

Pk+1 = Pk

(

In − λ−k−1ψ̄k+1(Ink+1
+ λ−k−1ψ̄T

k+1

× Pkψ̄k+1)
−1ψ̄T

k+1Pk

)

,

xk+1 = xk − Pk+1

(

λ−k−1Āk+1xk +
1
2λ

−k−1b̄k+1

)

.

Next, for i ≥ 0, define P̄i
△
= λ−iPi, and it follows that the

minimizer of J̄k is given by

P̄k+1 =λ−1P̄k

(

In−ψ̄k+1(λInk+1
+ ψ̄T

k+1P̄kψ̄k+1)
−1ψ̄T

k+1P̄k

)

,

xk+1 = xk − P̄k+1

(

Āk+1xk +
1
2 b̄k+1

)

,

where P̄0 = R−1
0 .

D. Standard RLS with αk = xk−1 and forgetting factor

Let 0 < λ ≤ 1, and consider the modified cost

J̄k(x)
△
=

k
∑

i=0

λk−i
(

xTĀix+ b̄Ti x
)

+ (x− xk−1)
T

× λkR̄0(x− xk−1),

where for i ≥ 0, Āi = ψ̄iψ̄
T
i . Next, it follows that

J̄k(x) = λk
k
∑

i=0

λ−i
(

xTĀix+ b̄Ti x
)

+ (x− xk−1)
T

× R̄0 (x− xk−1)

= λk
k
∑

i=0

(

xTAix+ bTi x
)

+ (x− xk−1)
T

×R0 (x− xk−1) , (22)

where Ai
△
= λ−iĀi, bi

△
= λ−ib̄i, and R0

△
= R̄0. Combining

the steps in Section III-C and Section III-D, it follows that

the minimizer of J̄k is given by

P̄k+1=λ
−1P̄k

(

In−ψ̄k+1(λInk+1
+ψ̄T

k+1P̄kψ̄k+1)
−1ψ̄T

k+1P̄k

)

,

xk+1= xk−P̄k+1

(

Āk+1xk+λ
k+1P−1

0 (xk−1−xk)+
1
2 b̄k+1

)

,

where P0 = R−1
0 .

IV. SETUP FOR NUMERICAL SIMULATIONS

For all k ≥ 0, let xk,opt ∈ R
n, ψk∈R

n, where its ith entry

ψk,i is generated from a zero mean, unit variance Gaussian

distribution. The entries of ψk are independent. Define

βk
△
= ψT

k xk,opt.

Let l be the number of data points. Define

σψ,i
△
=

√

√

√

√

1

l

l
∑

k=1

ψ2
k,i

l→∞
−−−→ 1,

σβ
△
=

√

√

√

√

1

l

l
∑

k=1

β2
k
l→∞
−−−→

√

xTk,optxk,opt.

Next, for i = 1, . . . , n, let Nk,i ∈ R, and Mk ∈ R

be generated from zero-mean Gaussian distributions with

variances σ2
N,i and σ2

M , respectively, where σN,i and σM
are determined from the signal-to-noise ratio (SNR). More

specifically, for i = 1, . . . , n,

SNRψ,i
△
=
σψ,i

σN,i
, and SNRβ

△
=
σβ

σM
,

where, for i = 1, . . . , n, σN,i =
√

1
K

∑K
k=1N

2
k,i and σM =

√

1
K

∑K
k=1M

2
k .

Finally, for k ≥ 0, define Ak
△
= (ψk + Nk)(ψk + Nk)

T

and bk
△
= −2(βk +Mk)(ψk + Nk), where Nk is the noise

in ψk and Mk is the noise in βk.

Define

z1
△
=
[

0.08 −1.12 1.6 1.5 −2.2 −2.1 0.32
]T
,

z2
△
=
[

−1.11 −0.2 1.1 −0.2 0.4 0.23 −2.5
]T
.

Unless otherwise specified, for all k ≥ 0, xk,opt = z1, αk =
x0, and x0 = 07×1.

Define the performance

εk
△
=

‖xk,opt − xk‖

‖xk,opt‖
.

V. NUMERICAL SIMULATIONS WITH NOISELESS DATA

We now investigate the effect of Rk, αk and λ on GW-

VR-RLS. Furthermore, in this section, Ak and bk contain no

noise, specifically, for all k ≥ 0, Nk = 07×1 and Mk = 0.

A. Effect of Rk

We begin by testing the effect of Rk on convergence of

εk when Rk is constant. In the following example, we test

GW-VR-RLS for three values of Rk. Specifically, for all

k ≥ 0, Rk = I7×7, Rk = 0.1I7×7 or Rk = 0.01I7×7. In

all three cases, for all k ≥ 0, Ak and bk are the same. For

this example, Figure 1 shows that smaller values of Rk yield

faster convergence of εk to zero. This effect occurs because

decreasing Rk reduces the magnitude of the regularization

498

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

Time step k

ε
k

(%
)

Rk = I7×7

Rk = 0.1I7×7

Rk = 0.01I7×7

Fig. 1. Effect of Rk on convergence of xk to xk,opt. For this example,
smaller values of Rk yield faster convergence of εk to zero.

term in the cost function (1). Next, we let Rk be constant

and positive definite until
∑k−1
i=0 Ai has full rank, then we

let Rk = 0. More specifically,

Rk =

{

0.1I7×7, if rank
∑k−1

i=0 Ai < n,

0, if rank
∑k−1

i=0 Ai = n.
(23)

For Rk given by (23), if there is no noise in the data, then xk
may converge to xk,opt in finite time. In particular, if there

exists a positive integer N such that
∑N−1

i=0 Ai has full rank,

then, for all k ≥ N , xk = xk,opt. Figure 2 shows that εk
converges to zero in finite time when Rk is given by (23).

In this case for all k ≥ 7,
∑k−1

i=0 Ai has full rank. Thus, for

all k ≥ 8, xk = xk,opt.

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

Time step k

ε
k

(%
)

Fig. 2. Effect of Rk on convergence of xk to xk,opt. In this example,∑7
i=0 Ai has full rank. Therefore, for k ≥ 8, Rk = 0 and xk = xk,opt.

Next, we choose the smallest Rk such that
∑k

i=0Ai is

positive definite. More specifically, we conduct the singular

value decomposition USUT =
∑k−1
i=0 Ai, where U ∈ R

n×n,

S ∈ R
n×n and has the form

S
△
=

[

Γm×m 0m×(n−m)

0(n−m)×m 0(n−m)×(n−m)

]

,

where Γ ∈ R
m×m contains the m non-zero singular values of

∑k−1
i=0 Ai. Note that the singular value decomposition has the

form USUT because
∑k−1

i=0 Ai is symmetric [9, Corollary

5.4.5]. Next, define

Ŝ
△
=

[

0m×m 0m×(n−m)

0(n−m)×m ǫI(n−m)×(n−m)

]

,

where ǫ ≥ 0. Finally,

Rk
△
=







R0, k = 0

UŜUT, if rank
∑k−1
i=0 Ai < n,

0, if rank
∑k−1
i=0 Ai = n,

(24)

In the following example we compare GW-VR-RLS with

Rk = I3×3 and Rk given by (24) with ǫ = 1. In both cases,

for all k ≥ 0, Ak and bk are the same. For this example,

Figure 3 shows that setting Rk given by (24) with ǫ = 1
yields faster convergence of εk to zero than setting Rk =
I7×7.

0 5 10 15 20 25
0

20

40

60

80

100

Time step k

ε
k

(%
)

Fig. 3. Effect of Rk on convergence of xk to xk,opt. The solid line
denotes εk with Rk given by (24) and the dashed line denotes εk with
Rk = I7×7. For this example, setting Rk given by (24) with ǫ = 1 yields
faster convergence of εk to zero than setting Rk = I7×7.

B. Effect of αk

Figure 4 compares GW-VR-RLS with αk = xk−1 and

αk = x0, where, for all k ≥ 0, Rk = I7×7. For this example,

setting αk = xk−1 yields faster convergence of εk to zero

than setting αk = x0.

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

Time step k

ε
k

(%
)

αk = xk−1

αk = x0

Fig. 4. Effect of one step regularization on convergence of xk to xk,opt.
For this example, setting αk = xk−1 yields faster convergence of εk to
zero than setting αk = x0

C. Effect of Forgetting Factor

In this section, we examine standard RLS with forgetting

factor (as described in Section III-C). In the following

example, we consider three values of λ, specifically λ=1,

λ=0.995 or λ=0.9. For all k ≥ 0, Rk = 0.1I7×7 and

xk,opt =

{

z1, 0 ≤ k ≤ 200
z2, k > 200

For this example, Figure 5 shows that, for k ≤ 200, the

forgetting factor has negligible impact on the behavior of εk.

For k > 200, smaller values of λ yield faster convergence

of εk to zero.

499

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

140

160

Time step k

ε
k

(%
)

λ = 1
λ = 0.995
λ = 0.9

Fig. 5. Effect of forgetting factor on convergence of xk to xk,opt. For
k ≤ 200, the forgetting factor has negligible impact on the behavior of εk.
For k > 200, xk,opt 6= x200,opt , and a smaller value of λ yields faster
convergence of xk to xk,opt.

VI. NUMERICAL SIMULATIONS WITH NOISY DATA

We now investigate the effect of Rk, αk, and λ on GW-

VR-RLS when the data have noise. More specifically, for

all k ≥ 0, Mk and Nk,i are generated from zero mean

Gaussian distributions with variances depending on SNRψ,i
and SNRβ , respectively. Figure 6 shows the effect of noise

on standard RLS for different SNR values. In this example,

a smaller value of SNR yields a larger asymptotic value of

εk.

In the next example, we examine the convergence of εk
for standard RLS when ψk and βk have constant bias. We

consider three cases of constant bias, specifically, for all k ≥
0, Nk = (0.2)17×1 and Mk = 0.2, Nk = (0.2)17×1 and

Mk = 0 or Nk = 07×1 and Mk = 0.2. For this example,

Figure 7 shows that bias increases the asymptotic value of

εk. Furthermore, bias in βk yields a higher asymptotic value

of εk than an equal percent of bias in ψk.

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

Time step k

ε
k

(%
)

SNRψ,i = SNRβ = 20
SNRψ,i = SNRβ = 10
SNRψ,i = SNRβ = 5

Fig. 6. Effect of noise on standard RLS. In this example, smaller values
of SNR yield larger asymptotic values of εk.

A. Effect of Rk

In this section, we examine the effect of Rk where Rk
is constant. In the following example, we test GW-VR-RLS

for three different values of Rk. Specifically, for all k ≥ 0,

Rk = I7×7, Rk = 0.1I7×7 or Rk = 0.01I7×7. Furthermore,

SNRψ,i = SNRβ = 5 and, for all k ≥ 0, Ak and bk are the

same. For this example, Figure 8 shows that smaller values

of Rk can result in larger peak values of εk.

Recall that, Figure 1 showed that smaller values of Rk can

yield faster convergence of εk to zero. However, if the data

have noise, then Figure 8 shows that the transient response

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

Time step k

ε
k

(%
)

Nk = 0.2I7×1, Mk = 0.2
Nk = 0.2I7×1, Mk = 0
Nk = 07×1, Mk = 0.2

Fig. 7. Effect of bias on standard RLS. For this example, bias increases the
asymptotic value of εk. Furthermore, bias in βk yields a higher asymptotic
value of εk than an equal percent of bias in ψk .

of εk can be worse for smaller values of Rk. As the SNR
increases, Figure 8 converges to Figure 1.

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

Time step k

ε
k

(%
)

Rk = I7×7

Rk = 0.1I7×7

Rk = 0.01I7×7

Fig. 8. Effect of Rk on convergence of xk to xk,opt. For this example,
smaller values of Rk can result in larger peak values of εk.

B. Effect of αk

Figure 9 compares GW-VR-RLS with αk = xk−1 and

αk = x0, where, SNRψ,i = SNRβ = 5 and for all k ≥ 0
Rk = 0.1I7×7. For this example, Figure 9 shows that the

transient response of εk can be worse for αk = xk−1 than

it is for αk = x0.

Figure 4 showed that setting αk = xk−1 can yield faster

convergence of εk to zero than setting αk = x0. However,

if the data have noise, then Figure 9 shows that the transient

response of εk can be worse with αk = xk−1 than it is

with αk = x0. As the SNR increases, Figure 9 converges to

Figure 4.

Next, we compare GW-VR-RLS for different choices of

αk. More specifically, we let αk = Lν(k) where

Lν(k)
△
=

{

xk−1, 0 < k ≤ ν,

xk−ν , k > ν,

where ν is a positive integer. In the following example, we

test GW-VR-RLS for three different ν. Specifically, ν = 1,

ν = 5, ν = 10. In all cases, for all k ≥ 0, Ak and bk are

the same, Rk = I7×7 and SNRβ = SNRψ,i = 5. For this

example, Figure 10 shows that larger values of ν can yield

better transient performance of εk.

Next, we let αk =Wρ(k) where

Wρ(k)
△
=







x0, k = 1,
1

k−1

∑k−1
i=1 xk−i, 1 < k ≤ ρ,

1
ρ

∑ρ
i=1 xk−i, k > ρ,

500

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

Time step k

ε
k

(%
)

αk = xk−1

αk = x0

Fig. 9. Effect of αk on convergence xk to xk,opt. For this example, this
figure shows that the transient response of εk can be worse for αk = xk−1

than it is for αk = x0.

0 5 10 15 20 25
10

20

30

40

50

60

70

80

90

Time step k

ε
k

(%
)

αk = Lν(k), ν = 1
αk = Lν(k), ν = 5
αk = Lν(k), ν = 10

Fig. 10. Convergence of xk to xk,opt. For this example, larger values of
ν yield better transient performance of εk .

where ρ is a positive integer. In the following example, we

test GW-VR-RLS for three different values of ρ. Specifically,

ρ = 1, ρ = 5, ρ = 10. In all cases, for all k ≥ 0, Ak and

bk are the same, Rk = I7×7 and SNRβ = SNRψ,i = 5. For

this example, Figure 11 shows that larger values of ρ can

yield better transient performance of εk than smaller values

of ρ.

0 5 10 15 20 25
10

20

30

40

50

60

70

80

90

Time step k

ε
k

(%
)

αk = Wρ(k), ρ = 1
αk = Wρ(k), ρ = 5
αk = Wρ(k), ρ = 10

Fig. 11. Convergence of xk to xk,opt. In this example, larger values of
ρ yield better transient performance of εk than smaller values of ρ.

C. Effect of Forgetting Factor

In this section, we examine standard RLS with forgetting

factor. In the following example, we test RLS for three values

of λ, specifically λ=1, λ=0.95 or λ=0.9. Let SNRψ,i =
SNRβ = 5, and, for all k ≥ 0, Rk = 0.1I7×7. For this

example, Figure 12 shows that smaller values of λ yield

larger asymptotic value of εk.

Next, we let

xk,opt =

{

z1, 0 ≤ k ≤ 500,
z2, k > 500,

For this example, Figure 13 shows that, for k ≤ 500, smaller

values of λ yield larger asymptotic values of εk. For k > 500,

xk,opt 6= x500,opt, and a smaller value of λ yields faster

convergence of εk to its asymptotic value.

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

120

140

Time step k

ε
k

(%
)

λ = 1

λ = 0.95

λ = 0.9

Fig. 12. Effect of forgetting factor on convergence of xk to xk,opt. For
this example smaller values of λ yield larger asymptotic values of εk .

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

140

160

Time step k

ε
k

(%
)

λ = 1

λ = 0.95

λ = 0.9

Fig. 13. Effect of forgetting factor on convergence of xk to xk,opt. For
k ≤ 500, smaller values of λ yield larger asymptotic values of εk. For k >
500, xk,opt 6= x500,opt , and a smaller value of λ yields faster convergence
of εk to its asymptotic value.

VII. CONCLUSIONS

In this paper, we presented a growing-window variable-

regularization recursive least squares (GW-VR-RLS) algo-

rithm. This algorithm allows for a time-varying regularization

term in the RLS cost function. More specifically, GW-VR-

RLS allows us to vary both the weighting in the regu-

larization as well as what is being weighted, that is, the

regularization term can weight the difference between the

next state estimate and a time-varying vector of parameters

rather than the initial state estimate. Future work will include

an investigation of the convergence properties.

REFERENCES

[1] A. H. Sayed, Adaptive Filters. Hoboken, New Jersey: John Wiley and
Sons, Inc., 2008.

[2] J. N. Juang, Applied System Identification. Prentice-Hall, 1993.
[3] L. Ljung and T. Söderström, Theory and practice of Recursive Identi-

fication. Cambridge, MA: The MIT Press, 1983.
[4] L. Ljung, System Identification: Theory for the User, 2nd ed. Upper

Saddle River, NJ: Prentice-Hall, 1999.
[5] K. J. Åström and B. Wittenmark, Adaptive Control, 2nd ed. Addison-

Wesley, 1995.
[6] G. C. Goodwin and K. S. Sin, Adaptive Filtering, Prediction, and

Control. Prentice Hall, 1984.
[7] G. Tao, Adaptive Control Design and Analysis. Wiley, 2003.
[8] P. Ioannou and J. Sun, Robust Adaptive Control. Prentice Hall, 1996.
[9] D. S. Bernstein, Matrix Mathematics, 2nd ed. Princeton University

Press, 2009.

501

