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Abstract: An algebraic approach to the synthesis of a dynamic system that reconstructs the
generic inaccessible input of a discrete-time linear multivariable system with unknown initial
state is discussed. The method devised exploits geometric properties of key subspaces for the
original system and algebraic properties of the Moore-Penrose inverse of Toeplitz matrices
related to the algorithms for computing those subspaces. Nonminimum-phase invariant zeros
are taken into account implicitly with the proposed techniques, while minimum-phase invariant
zeros require that a filter be inserted between the original system and the reconstructor. The
procedure applies to either strictly-proper or non-strictly-proper systems.
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1. INTRODUCTION

The problem of reconstructing the inaccessible inputs to
linear multivariable systems with unknown initial states
has recently received renewed attention, mainly due to
its connections with fault detection, despite its intrinsic
limitation related to the presence of invariant zeros. As is
shown, e.g., in (Basile and Marro, 1992, Sect. 4.4), for any
invariant zero structure, there exists at least one initial
state such that, when the modes of the invariant zero
are suitably injected into the system, the output is zero.
Necessary and sufficient conditions for a strictly-proper
continuous-time system to be completely unknown-state,
unknown-input reconstructible by measurement differenti-
ation were also given in Basile and Marro (1992). Further
contributions can be found in Hou and Patton (1998); Cor-
less and Tu (1998); Xiong and Saif (2003), where specific
applications to fault detection were considered.

The discrete-time case was first examined in Floquet and
Barbot (2006), where an algorithm for verifying whether
a left-invertible system without invariant zeros is state
and input reconstructible, possibly with some delay, was
proposed. Algorithms for possibly-delayed state and input
reconstruction in discrete-time systems were formulated
in terms of Markov parameters in Kirtikar et al. (2011).
Those algorithms are based on least-square techniques and
operate so that the error in the reconstruction of a generic
input converges to zero in minimum-phase systems, is
constant in systems with simple invariant zeros on the
unit circle, and diverges in systems either with multiple
invariant zeros on the unit circle or with invariant zeros
in the open set outside the unit disc. In Marro and Zat-
toni (2010), unknown-state, unknown-input reconstruc-

tion in strictly-proper, discrete-time systems was tackled
by means of the geometric approach. The algorithms in
Marro and Zattoni (2010), which presuppose cancellation
of the zeros in the open unit disc, guarantee that the error
in the reconstruction of a generic input to a strictly-proper,
discrete-time system which also satisfies the conditions of
being controllable, observable and left-invertible converges
to zero not only if the invariant zeros are in the open
unit disc, but also if they lie outside the closed unit
disc. The results of Marro and Zattoni (2010) are derived
with duality arguments from the reasoning that yields
the control policies steering the state of the system along
trajectories in the maximal controlled invariant subspace
contained in the kernel of the output and the minimal
conditioned invariant subspace containing the image of
the input. Extending those techniques to systems with
feedthrough terms requires control strategies be devised
so as to drive the state along trajectories in the maximal
output-nulling controlled invariant subspace and the min-
imal input-containing conditioned invariant subspace.

The approach adopted in this work for synthesizing those
control strategies is based on some new algorithms for com-
puting the abovementioned subspaces, inspired by those of
Silverman (1976). In such algorithms, possible feedthrough
matrices are directly included in Toeplitz matrices of
Markov parameters, so that the intermediate step which
consists in reducing non-strictly-proper systems to equiv-
alent strictly-proper systems and which plays a key role
in Marro et al. (2010), is avoided. Hence, the procedure
for the synthesis of the unknown-state, unknown-input
reconstructor directly applies to systems either with or
without feedthrough terms.
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2. GEOMETRIC APPROACH BACKGROUND

Consider the discrete-time linear time-invariant system
xt+1 = Axt + B ut, (1)

yt = C xt + D ut, (2)
where x ∈ X = R

n, u ∈ R
p, y ∈ R

q, with p ≤ n and
q ≤ n, are the state, the input, the output, respectively.
Du is the feedthrough term. A, B, C, D are constant
real matrices of appropriate dimensions. [ B

D ] and [C D]
are full-rank matrices. The set Uf of the admissible input
sequences is the set of all sequences with bounded values in
R

p. Geometric objects extensively used in this work are B,
the image of B, C, the kernel of C, R = minJ (A,B), the
minimal A-invariant subspace containing B or the reach-
able subspace of (A,B), Q = maxJ (A, C), the maximal
A-invariant subspace contained in C or the unobservable
subspace of (A,C), V∗ or maxV(A,B,C,D), the maximal
output-nulling controlled invariant subspace of (1), (2),
S∗ or minS(A,B,C,D), the minimal input-containing
conditioned invariant subspace of (1), (2), RV∗ = V∗ ∩S∗,
the reachability subspace on V∗. A subspace V ⊆R

n is an
output-nulling controlled invariant subspace of (1), (2) if
and only if at least one linear map F exists, such that
(A+BF )V ⊆ V and V ⊆ ker (C+DF ). A subspace S ⊆R

n

is an input-containing conditioned invariant subspace of
(1), (2) if and only if at least one linear map G exists,
such that (A+GC)S ⊆ S and S ⊇ im (B+GD). Let F be
such that (A+BF )V∗ ⊆ V∗ and V∗ ⊆ ker (C +DF ), then
(A + BF )RV∗ ⊆ RV∗ and RV∗ ⊆ ker (C + DF ) hold. The
spectrum of (A + BF )|RV∗ is assignable. The spectrum of
(A + BF )|V∗/RV∗ is fixed. The set σ((A + BF )|V∗/RV∗ ) is
also known as the set of the internal unassignable eigenval-
ues of V∗ or as the set Z(A,B,C,D) of the invariant zeros
of (1), (2). The invariant zeros of (1), (2) in C

� are called
the minimum-phase invariant zeros of (1), (2) and their
set is denoted by ZMP (A,B,C,D). Similarly, the invariant
zeros of (1), (2) in C

⊗ are called the nonminimum-phase
invariant zeros of (1), (2) and their set is denoted by
ZNMP (A,B,C,D). A geometric condition equivalent to
the property of system (1), (2) of being right-invertible
is V∗ + S∗ = R

n. A geometric condition equivalent to
the property of system (1), (2) of being left-invertible is
V∗ ∩ S∗ = {0}.

3. PROBLEM STATEMENT

Consider system (1), (2), where u is the unknown in-
put and y the measured output. The initial state x0 is
unknown. Our goal is to provide an algebraic procedure
for the synthesis of a discrete-time linear time-invariant
system, henceforth called the unknown-state, unknown-
input reconstructor, which, having the measured output
of the original system as input, produces as output both
the state and the input of the original system, with an
admissible delay of a certain number of steps. The solution
is presented under the following assumptions:
A 1. R = X = R

n and Q = {0};
A 2. V∗ ∩ S∗ = {0};
A 3. Z(A,B,C,D) ⊂ C

� ∪C
⊗, where C

� and C
⊗ are the

open unit disc and the open set outside the unit disc
of C.

A discrete-time linear time-invariant system which, as
will be shown, solves the unknown-state, unknown-input
reconstruction problem for a system like (1), (2), satisfying

Assumptions A 1–A 3, has the following structure. If the
original system has any minimum-phase invariant zeros,
these are cancelled by a filter which is permanently con-
nected in cascade to the original system, so as to guarantee
the synchronization of the respective unknown states. A
finite impulse response (FIR) system processes the filter
output to provide the initial state and the subsequent
state trajectory of the original system. The reconstructed
state trajectory will be delayed with respect to the original
one by a number of steps equal to the length of the FIR
system window. The latter will be chosen in connection
with some properties of the original system. If the original
system does not have any minimum-phase invariant zeros,
the FIR system is directly fed with the measured output.
A dynamic system processes the reconstructed state tra-
jectory and the measured output, consistently delayed, in
order to reproduce the unknown input. The reconstructed
input will be delayed by one further step.

4. SYSTEMS WITH NO INVARIANT ZEROS OR
NONMINIMUM-PHASE INVARIANT ZEROS ONLY

This section is focused on the synthesis of the FIR system
and the input reconstructor, on the assumption that the
system either does not have any invariant zeros or has
nonminimum-phase invariant zeros only. The FIR system
convolution profiles will be determined in the dual context
of control, since this approach lends itself to an intuitive
intepretation in terms of subspaces and trajectories.
4.1 The FIR System for the Dual Control Problem
Consider a system like (1), (2) and assume A 1,
A 2′. V∗ + S∗ = X = R

n,
A 3′. Z(A,B,C,D) ⊂ C

⊗.
Consider the problem of steering the state from the origin
to an assigned final state, while maintaining zero output
until the last step but one. As will be shown in the fol-
lowing, a feedforward FIR system having the desired final
state as pulse input and the system input as output can
solve this problem either exactly, if the given system does
not have any invariant zeros, or up to an arbitrary degree
of accuracy, if the given system has nonminimum-phase
invariant zeros only. Let the FIR system be described by

ut =
N−1∑
�=0

Φ� ht−�, t ∈ Z, (3)

where N ∈ Z
+ is the FIR system time window and Φ�,

� = 0, 1, . . . , N−1, is the matrix of the convolution profiles.
Let ht = xfδt, t ∈ Z, where xf ∈ R

n is the desired final
state for the original system and δ is the discrete unit
pulse. The equivalent ISO-equations are

xfir,t+1 = Afir xfir,t + Bfir ht, (4)

ut = Cfir xfir,t + Dfir ht, (5)
where

Afir =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

O In O . . . O
...

. . . . . . . . .
...

...
. . . . . . O

...
. . . In

O . . . . . . . . . O

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, Bfir =

⎡
⎢⎢⎢⎢⎢⎣

O
...
...
O
In

⎤
⎥⎥⎥⎥⎥⎦ , (6)

Cfir = [ ΦN−1 ΦN−2 . . . Φ1 ] , Dfir = Φ0. (7)
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The FIR system convolution profiles will be obtained
through the solution of a simple algebraic problem, dis-
cussed in the light of the geometric properties of the basic
subspaces of the original system revisited in Appendix A.
With the notation introduced in (A.1), the problem of
finding a control sequence ut, with t = 0, 1, . . . , N − 1,
driving the state of (1), (2) from x0 = 0 to xN = xf , with
yt = 0 for t = 0, 1, . . . , N − 1, reduces to the problem of
finding UN that solves the algebraic equation[

0
xf

]
= MNUN , (8)

where MN =
[

BN

LN

]
, with LN and BN respectively defined

by (A.2) and (A.4). In fact, (8) is a compact writing for
(A.5) and (A.6) with YN = 0 and xN = xf . Systems
without invariant zeros and systems with nonminimum-
phase zeros only will henceforth be considered separately.
Theorem 1. Consider system (1), (2). Let A 1, A 2′, A 3′
hold with Z(A,B,C,D) = ∅. Let N = ρ, with ρ defined
by Algorithm 20 in Appendix A. Then, (8) is solvable and
UN = M†

N

[
0

xf

]
is the solution with the least Euclidean

norm.

Proof. The relations Z(A,B,C,D) = σ((A+BF )|V∗/R∗
V
),

where F is such that (A+BF )V∗ ⊆ V∗ and V∗ ⊆ ker (C +
DF ), and RV∗ = V∗∩S∗, reviewed in Section 2, along with
assumption Z(A,B,C,D) = ∅ imply V∗ = RV∗ ⊆ S∗.
Moreover, in light of A 2′, one gets V∗ + S∗ = S∗ = X =
R

n. Hence, xf ∈S∗. As reviewed in Appendix A, S∗ is
the maximum set of states reachable from the origin along
trajectories that give rise to zero output until the last step
but one. Since N is set equal to ρ, the number of steps for
computing S∗,

[
0

xf

] ∈ im MN . Therefore, (8) is solvable
and the thesis is proved by virtue of the properties of the
Moore-Penrose inverse. �

Remark 2. Under the assumptions of Theorem 1, (8) is
solvable for any N ∈ Z

+ such that N ≥ ρ. However, as
will be shown in Section 4.2, in systems without invari-
ant zeros, N is also the reconstruction delay in the dual
problem. Therefore, the least value is the most interesting.
Remark 3. Under the assumptions of Theorem 1, if
ker MN �= {0}, the solution of (8) is nonunique. The set of
all solutions is UN = M†

N

[
0

xf

]
+ Ω γ, where Ω is a basis

matrix of kerMN and γ is a parameter vector.
Theorem 4. Consider system (1), (2). Let A 1, A 2′, A 3′
hold with Z(A,B,C,D) �= ∅. Let N ∈ Z

+ be such that ρ ≤
N < ∞, with ρ defined by Algorithm 20 in Appendix A.
Then, (8) is not solvable and UN = M†

N

[
0

xf

]
is the vector

with the least Euclidean norm such that∥∥∥∥
[

0
xf

]
− MNUN

∥∥∥∥
2

�= 0 (9)

is minimal.

Proof. The relations Z(A,B,C,D) = σ((A+BF )|V∗/R∗
V
),

where F is such that (A+BF )V∗ ⊆ V∗ and V∗ ⊆ ker (C +
DF ), and RV∗ = V∗ ∩ S∗, along with assumptions A 3′
and Z(A,B,C,D) �= ∅ imply V∗ = RV∗ ⊕ VU , where ⊕
denotes the direct sum of subspaces and VU an output-
nulling controlled invariant subspace of (1), (2) such that
σ((A+BF )|VU

) = Z(A,B,C,D) ⊂ C
⊗. Moreover, in light

of A 2′, one gets VU +S∗ = X = R
n. Hence, xf = xS+xVU

,
where xS ∈ S∗ and xVU

∈ VU . Owing to the properties of

S∗ reviewed in Appendix A, the component xS is reachable
from the origin in N ≥ ρ steps along trajectories that give
rise to zero output until the last step but one. Since VU is
an internally antistable output-nulling controlled invariant
subspace, in view of the properties of V∗ ⊇ VU reviewed
in Appendix A, the component xVU

could only be reached
from the origin along trajectories giving rise to zero output
by applying a control action computed backward in time,
starting at the time −∞, and such that the state evolves
according to the dynamics of (A + BF )|VU

. Therefore, for
any finite N ∈ Z

+
[

0
xf

] �∈ im MN , which implies that (8)
is not solvable. Nonetheless, the Euclidean norm in (9)
is minimal owing to the properties of the Moore-Penrose
inverse and, in light of the considerations above, its value
goes to zero as N approaches infinity. �

Theorems 1 and 4 have shown how to compute a control
sequence ut, t = 0, 1, . . . , N − 1, that solves the problem
of driving the state of (1), (2) from x0 = 0 to xN = xf ,
with yt = 0 for t = 0, 1, . . . , N − 1, either exactly or up
to an arbitrary degree of accuracy, depending on whether
the system has any nonminimum-phase invariant zeros or
not. In the following these arguments are generalized so
that the gain matrix Φ�, �= 0, 1, . . . , N − 1, of the FIR
system be computed. Since any xf ∈ R

n is a linear com-
bination of the column vectors of In, let (8) be replaced
by the algebraic matrix equation

[
O
In

]
= MNUN , where

UN =
[
Φ�

0 Φ�
1 . . . Φ�

N−1

]�
. With this notation, the j-th

column of the i-th matrix of UN is the control input to be
applied at t = i − 1 in order for the state to reach ej , the
j-th vector of the main basis of R

n, at t = N with zero out-
put until t = N−1. Then, by linearity and time invariance
of system (1), (2), the matrices Φ�, � = 0, 1, . . . , N − 1, of
the FIR system can be obtained by means of the Moore-
Penrose inverse of MN , according to the abovementioned
generalization of the results of Theorems 1 and 4. Note
that in the presence of nonminimum-phase zeros, the FIR
system generate an approximation of the control input
which would steer the state along the trajectories asso-
ciated with the zeros, because of the truncation implicit
in the computation of the convolution profiles. In order for
the effects of the truncation to vanish as time increases the
system must be asymptotically stable.

4.2 Duality Arguments

This section shows the relation between the control scheme
devised in Section 4.1 and the scheme for state recon-
struction in the presence of unknown inputs outlined in
Section 3. Recall that (A,B,C,D) is controllable and
observable if and only if (A�, C�, B�,D�) is controllable
and observable; (A,B,C,D) is right invertible if and only
if (A�, C�, B�,D�) is left invertible; Z(A,B,C,D) =
Z(A�, C�, B�,D�). As mentioned in Section 4.1, the
input to the feedforward FIR system is a discrete pulse
with amplitude xf applied at t = 0, where xf is the desired
final state for the controlled system. The state trajectory
xt, t ∈ Z

+
0 , of the controlled system is regarded as a

fictitious output sequence ηt = xt, t ∈ Z
+
0 , in addition

to the output sequence yt, t ∈ Z
+
0 , which is required to

be zero until t = N − 1. Modelization in the dual context
requires that the unknown initial state x0 be injected into
the system as a discrete pulse applied at t = 0 to a
fictitious input μ and the inaccessible input ut, t ∈ Z

+
0 , be
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represented by a sequence different from zero starting from
t = 1. This scenario entails a one-step shift with respect
to that assumed in the problem statement (Section 3).
These are mere technicalities aimed at ensuring a smooth
formulation of Theorem 5. The output yt of the control
system from t = 0 to t = N − 1 will henceforth be
considered exactly equal to zero also for nonminimum-
phase systems. From a practical point of view, this can
be obtained by choosing N big enough to make the value
of the Euclidean norm in (9) negligible. The cascade of the
FIR system (4), (5) and system (1), (2) with the further
output η is described by

x̂t+1 = Âx̂t + B̂ht, (10)

yt = Ĉx̂t + D̂ht, (11)

ηt = Êx̂t, (12)

where Â =
[

A BCfir

O Afir

]
, B̂ =

[
BDfir

Bfir

]
, Ĉ = [ C DCfir ],

D̂ = DDfir, Ê = [ I O ]. The cascade of the dual system
with the further input μ and the dual FIR system is

x̂t+1 = Â�x̂t + Ĉ�ut + Ê�μt, (13)

x̃t = B̂�x̂t + D̂�ut. (14)

Hence, Theorem 5 can be stated as follows. Its proof con-
sists of mere technicalities and therefore will be omitted.
Theorem 5. Consider system (10)–(12). Let the initial
state x̂0 of (10)–(12) be zero. Let N ∈ Z

+ be the number of
steps of the FIR system time window. Let the desired state
xf ∈ R

n of the controlled system at t = N be injected into
(10)–(12) as the discrete pulse signal ht = xfδt, t ∈ Z

+
0 .

Consider system (13), (14). Let the initial state x̂0 of (13),
(14) be zero. Let the unknown input be a sequence ut,
t ∈ Z

+
0 , with u0 = 0. Let the unknown initial state x0 ∈ R

n

of the observed system be injected into (13), (14) as the
discrete pulse signal μt = x0δt, t ∈ Z

+
0 . Then, the output

sequences yt and ηt, t ∈ Z
+, of (10)–(12) are such that

yt =
{

0, t = 0, 1, . . . , N − 1,
CAt−Nxf , t = N,N + 1, . . . ,

ηt = At−Nxf , t = N,N + 1, . . . ,

if and only if the output sequence x̃t, t ∈ Z
+
0 , of (13), (14)

is such that

x̃t = (A�)t−Nx0 +
t−N∑
�=0

(A�)t−N−�C�u�, t = N,N + 1, . . .

4.3 The Unknown-Input Reconstructor
Sections 4.1 and 4.2 have shown how to design a FIR
system that provides a sequence x̃t, t ∈ Z

+
0 , which is a

replica of the state trajectory xt, t ∈ Z
+
0 , with a delay of

N steps. Consequently, the unknown input ut, t ∈ Z
+
0 , can

be derived from the reconstructed state trajectory and the
delayed measured output with a further delay of one step
by using the system equations. Namely, the sequence ũt,
t ∈ Z

+
0 , of the reconstructed input is relevant starting from

t = N and is given by

ũt =
[

B
D

]† ([
x̃t+1

yt−N

]
−

[
A
C

]
x̃t

)
, t = N,N + 1, . . . .

5. SYSTEMS WITH MINIMUM-PHASE ZEROS ALSO

This section shows how to extend reconstruction of un-
known state and input to systems whose invariant zeros
lie anywhere in the complex plane with the sole exception
of the unit circle. As will be shown in the following,
the system is permanently connected in cascade to filter
that cancels its minimum-phase invariant zeros. A spe-
cial state-space representation of the minimal form of the
cascade preserves the dynamic matrix and the unknown-
input distribution matrix of the original system. Hence,
state reconstruction can be obtained with the FIR system
designed on the basis of that minimal form. The design
of the filter will be developed in the dual context of
control, like that of the convolution profiles of the FIR
system. Since dual systems have the same set of invariant
zeros, the cascaded filter cancelling the minimum-phase
zeros of the original system is the dual counterpart of a
feedforward compensator cancelling the minimum-phase
invariant zeros of the system considered in the control
problem. Therefore, this section will directly refer to a
system like (1), (2), that satisfies Assumptions A 1, A 2′,
and A 3. The following statements are aimed at pointing
out the key subspace, that will be denoted by V∗

M , for the
synthesis of the feedforward compensator. Proofs will be
omitted for the sake of brevity.
Lemma 6. Consider (1), (2). Let A 2′ hold. Let F be such
that (A+ BF )V∗ ⊆V∗ and V∗ ⊆ ker(C+DF ). Perform the
similarity transformation T = [T1 T2 T3], where im T1 =
RV∗ , im [T1 T2] = V∗, im [T1 T3] = S∗. Then,

A′
F = T−1(A + BF )T =

⎡
⎣ A′

11 A′
12 A′

13

O A′
22 A′

23

O O A′
33

⎤
⎦ , (15)

C ′
F = (C + DF )T =

[
O O C ′

3

]
. (16)

Remark 7. The set of the internal eigenvalues of RV∗ is
the set of the eigenvalues of A′

11: i.e., σ((A + BF )|RV∗ ) =
σ(A′

11). The set of the internal unassignable eigenvalues
of V∗ (or, equivalently the set of the system invariant
zeros) is the set of the eigenvalues of A′

22: i.e., σ((A +
BF )|V∗/RV∗ ) = Z(A,B,C,D) = σ(A′

22).

Let nR = dimRV∗ , nV = dimV∗−nR, nS = dimS∗−nR,

T ′
1 =

[
InR

O
O

]
T ′

3 =

[
O
O

InS

]
(17)

Lemma 8. Consider (1), (2). Let A 2′ hold. Let F be such
that (A + BF )V∗ ⊆ V∗, V∗ ⊆ ker(C + DF ), and σ((A +
BF )|RV∗ )∩ σ((A + BF )|V∗/RV∗ ) = ∅. Consider (15), (16)
and perform the similarity transformation T ′ = [T ′

1 T ′
2 T ′

3],
where T ′

1, T ′
3 are defined by (17) and T ′

2 = [X� InV
O]�,

where X is the solution of the Sylvester equation
A′

11X − XA′
22 = −A′

12. (18)
Then,

A′′
F = T ′−1A′

F T ′ =

⎡
⎣ A′

11 O A′′
13

O A′
22 A′

23

O O A′
33

⎤
⎦ , (19)

C ′′
F = C ′

F T ′ = C ′
F . (20)

Lemma 9. Consider (1), (2). Let A 2′, A 3 hold. Let F
be such that (A + BF )V∗ ⊆ V∗, V∗ ⊆ ker(C + DF ),
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and σ((A + BF )|RV∗ ) ∩ σ((A + BF )|V∗/RV∗ ) = ∅. Con-
sider (19), (20) and perform the similarity transforma-
tion T ′′ = [T ′

1 T ′′
2 T ′

3], where T ′
1, T ′

3 are defined by (17)
and T ′′

2 = [O V � O]�, where V = [VS VU ], with VS

and VU basis matrices of the subspaces VS and VU of
the stable and the unstable modes of A′

22. Then, A′′′
F =

T ′′−1A′′
F T ′′ =

[
A′

11 O A′′
13

O A′′
22 A′′

23
O O A′

33

]
, C ′′′

F = C ′′
F T ′′ = C ′

F , with

A′′
22 = V −1A′

22V =
[

A′′
22s O

O A′′
22u

]
.

In light of Lemma 9, a representation of A′′′
F and C ′′′

F is

A′′′
F =

⎡
⎢⎣

A′
11 O O A′′

13

O A′′
22s O A′′

23s

O O A′′
22u A′′

23u

O O O A′
33

⎤
⎥⎦ , (21)

C ′′′
F =

[
O O O C ′

3

]
. (22)

Theorem 10. Consider (1), (2). Let A 2′, A 3 hold. Let F
be such that (A + BF )V∗ ⊆ V∗, V∗ ⊆ ker(C + DF ),
σ((A + BF )|RV∗ )∩ σ((A + BF )|V∗/RV∗ ) = ∅, and σ((A +
BF )|RV∗ ) ⊂ C

�. Let the subspace V∗
M be defined by

V∗
M = im V ∗′′′

M = im

⎡
⎢⎣

InR
O

O InSS

O O
O O

⎤
⎥⎦ , (23)

where basis matrix V ∗′′′
M refers to the coordinates in-

troduced in Lemma 9 and is partitioned according to
(21). Then: (i) V∗

M in the maximal internally-stable
output-nulling controlled invariant subspace; (ii) σ((A +
BF )|V∗

M
) = σ((A + BF )|RV∗ ) ∪ ZMP (A,B,C,D).

Proof. Proposition (i): Equation A′′′
F V ∗′′′

M = V ∗′′′
M Y holds

with Y =
[

A′
11 O

O A′′
22s

]
, due to (21) and (23). Therefore,

V∗
M is an (A + BF )-invariant subspace with σ((A +

BF )|V∗
M

)= σ(A′
11)∪σ(A′′

22s), which implies that V∗
M is an

(A,B)-controlled invariant subspace. Moreover, C ′′′
F V ∗′′′

M =
0, which implies that V∗

M is the maximal internally-stable
output-nulling controlled invariant subspace. Proposi-
tion (ii) follows from Lemma 9, in light of Remark 7. �

Corollary 11. Consider (1), (2). Let A 2′, A 3 hold. Let
F be such that (A + BF )V∗ ⊆ V∗, V∗ ⊆ ker(C + DF ),
σ((A + BF )|RV∗ )∩ σ((A + BF )|V∗/RV∗ ) = ∅, and σ((A +
BF )|RV∗ ) ⊂ C

�. Let V∗
M be the maximal internally-stable

output-nulling controlled invariant subspace defined by
(23). Let T̄ =TT ′T ′′, where T , T ′, T ′′ are the similarity
transformations respectively considered in Lemmas 6, 8,
9, and let V ∗

M = T̄ V ∗′′′
M be the consistent basis matrix

of V∗
M with respect to the original coordinates. Then,

AV ∗
M − V ∗

MW = −BL and CV ∗
M = −DL hold with

W =
[

A′
11 O

O A′′
22s

]
and L = FV ∗

M .

The subspace V∗
M introduced in Theorem 10 is the key

subspace for the synthesis of the feedforward compensator
cancelling the minimum-phase invariant zeros of (1), (2).
Matrices W , L defined in Corollary 11 will henceforth be
used to that aim. The synthesis of the feedforward com-
pensator and the properties of a specific ISO description
of the cascade of the feedforward compensator and the

system are the object of the remainder of this section. Let
the feedforward compensator be

xf, t+1 = Af xf, t + Bf wt, (24)

ut = Cf xf, t + Df wt, (25)
where

Af = W, Bf =
[
Inf

Onf×p

]
, (26)

Cf = L, Df =
[
Op×nf

Ip

]
, (27)

with nf = nR + nSS = dimV∗
M . The cascade of (24), (25)

and (1), (2) is

x̄t+1 = Ā x̄t + B̄ wt, (28)

yt = C̄ x̄t + D̄ wt, (29)

where Ā =
[

A BCf

O Af

]
, B̄ =

[
BDf

Bf

]
, C̄ = [ C DCf ], D̄ =

DDf .
Lemma 12. Consider system (28), (29). Let

J = im J = im
[

In

Onf×n

]
, Jc = im Jc = im

[
V ∗

M
Inf

]
.

Then: (i) J is an Ā-invariant subspace; (ii) Jc is an Ā-
invariant subspace; (iii) J ⊕Jc = X̄ , where X̄ is the state
space of (28), (29).
Theorem 13. Consider (28), (29), where (A,B,C,D) satis-
fies A 1′ and (Af , Bf , Cf ,Df ) is defined according to (26),
(27). System

xc, t+1 = Ac xc, t + Bc wt, (30)

yt = Cc xc, t + Dc wt, (31)
with Ac = A, Bc = [−V ∗

M B ], Cc = C, Dc = [ O D ], is an
IO-equivalent realization of (28), (29): i.e., its controllable
and observable subsystem matches that of (28), (29).

Proof. Owing to Lemma 12, Tc = [J Jc] is square and
nonsingular. Hence, by applying the similarity transforma-

tion Tc to (Ā, B̄, C̄, D̄) one gets Ā′ = T−1
c ĀTc =

[
A O
O Af

]
,

B̄′ = T−1
c B̄ =

[−V ∗
M B

I O

]
, C̄ ′ = C̄Tc = [ C O ], D̄′ = D̄.

Then, the thesis follows by direct inspection of Ā′, B̄′,
C̄ ′, D̄′: the dynamics of Af , decoupled from that of A,
is unobservable; controllability of (A,B) implies that of
(Ac, Bc). �

The following statements are aimed at showing the main
properties of system (30), (31). The proofs, that can be
obtained by applying the algorithms reviewed in Appen-
dix A, will be omitted.
Lemma 14. Consider systems (1), (2) and (30), (31). Let
V∗ = maxV(A,B,C,D) and V∗

c = maxV(Ac, Bc, Cc,Dc).
Then, V∗

c = V∗.
Lemma 15. Consider systems (1), (2) and (30), (31). Let
S∗ = minS(A,B,C,D) and S∗

c = minS(Ac, Bc, Cc,Dc).
Then, S∗

c = S∗ + V∗
M .

Theorem 16. Consider systems (1), (2) and (30), (31). Let
(1), (2) satisfy A 2′. Then, (30), (31) satisfies A 2′.
Lemma 17. Consider systems (1), (2) and (30), (31). Let
RV∗ = V∗ ∩ S∗ and RV∗

c
= V∗

c ∩ S∗
c . Then, RV∗

c
= RV∗ +

V∗
M .
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Theorem 18. Consider systems (1), (2) and (30), (31).
Let ZNMP (A,B,C,D) be the set of the nonminimum-
phase invariant zeros of (1), (2). Let Z(Ac, Bc, Cc,Dc)
be the set of the invariant zeros of (30), (31). Then,
Z(Ac, Bc, Cc,Dc) = ZNMP (A,B,C,D).

6. CONCLUSION

A complete scheme for the reconstruction of generic in-
accessible inputs in linear multivariable discrete-time sys-
tems with unknown initial state was developed by exploit-
ing the properties of output-nulling controlled invariant
subspaces and input-containing conditioned invariant sub-
spaces. Although the insight into the problem relies on
geometric considerations, the synthesis procedure is based
on structure algorithms that make an extensive use of
algebraic tools like Toeplitz matrices and Moore-Penrose
inverses.
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Appendix A. AN ALGEBRAIC APPROACH FOR
COMPUTING THE KEY SUBSPACES OF SYSTEMS

WITH DIRECT FEEDTHROUGH TERMS

This appendix presents a direct algebraic approach for
computing the maximal output-nulling controlled invari-
ant subspace and the minimal input-containing condi-
tioned invariant subspace, i.e., the basic subspaces of a
non-strictly proper linear multivariable system. The com-
putational procedures discussed herein are inspired by the

structure algorithm introduced by Silverman (1976) and
represent an alternative to those suggested in Basile and
Marro (1992), where the basic subspaces of a non-strictly
proper system are computed by respectively applying the
controlled invariant algorithm and the conditioned invari-
ant algorithm to suitably-defined strictly proper systems.

Consider system (1), (2), with a generic initial state x0.
For any N ∈ Z

+, let the the input sequence vector UN

and the output sequence vector YN be defined by

UN =

⎡
⎢⎢⎣

u0

u1

...
uN−1

⎤
⎥⎥⎦ , YN =

⎡
⎢⎢⎣

y0

y1

...
yN−1

⎤
⎥⎥⎦ . (A.1)

Let the matrices LN , AN , and BN be defined by

LN =
[
AN−1B AN−2B . . . AB B

]
, (A.2)

AN =
[

C� A�C� (A�)2C� ... (A�)N−1C�
]�

,(A.3)

BN =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D, with N = 1,⎡
⎢⎢⎢⎢⎢⎢⎢⎣

D O . . . . . . O

CB D
. . .

...

CAB CB D
. . .

...
...

...
. . . . . . O

CAN−2B CAN−3B . . . CB D

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, with N ≥ 2.

(A.4)
Then, x0, xN , UN , and YN are related by

xN = ANx0 + LNUN , (A.5)

YN = ANx0 + BNUN . (A.6)
Since V∗ = maxV(A,B,C,D) is the maximum set of the
initial state of controlled trajectories giving rise to zero
output, in light of (A.6), a basis matrix V ∗ of V∗ can be
obtained with the following algorithm.
Algorithm 19. Consider system (1), (2). A basis matrix V ∗
of V∗ = maxV(A,B,C,D) and the number of steps ν for
the algorithm to converge are computed as follows.

1. Set V0 = In and N = 1.
2. Compute KN =

[
XN

WN

]
as a basis matrix of

ker [AN BN ], partitioned accordingly.
3. Compute VN as a basis matrix of im XN .
4. If im VN = im VN−1, then set V ∗ = VN and ν = N−1,

else set N = N + 1 and return to step 2.

Since S∗ = minS(A,B,C,D) is the maximum set of states
reachable from the origin along trajectories that give rise
to zero output until the last but one step, in light of (A.5)
and (A.6), a basis matrix S∗ of S∗ can be obtained with
the following algorithm.
Algorithm 20. Consider system (1), (2). A basis matrix S∗
of S∗ = minS(A,B,C,D) and the number of steps ρ for
the algorithm to converge are computed as follows.

1. Set S0 = On×1 and N = 1.
2. Compute KN as a basis matrix of ker BN .
3. Compute SN as a basis matrix of im (LNKN ).
4. If im SN = im SN−1, then set S∗ = SN and ρ = N−1,

else set N = N + 1 and return to step 2.
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