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Abstract—We consider the problem of data-based model  The present paper goes beyond [1-5] in two ways. First,
refinement where we assume the availability of an initial the model refinement algorithm described in Section Il is
model, which may incorporate both physical laws and empirial 15564 on the extension of the retrospective cost adaptive

observations. With this initial model as a starting point, aur . . . .
goal is to use additional measurements to refine the model. In control (RCAC) algorithm described in [6]. The algorithm

particular, components of the model that are poorly modeled in [6] requires knowledge of a limited number of Markov
can be updated, thereby resulting in a higher fidelity model. parameters of the plant, and thus simplifies earlier vession
We consider two special cases, namely, system emulation and of RCAC described in [7—9]. Therefore, the algorithm in [6]
subsystem identification. In the former case, the main syste o 56ves the model refinement technique described in [1,
is assumed to be uncertain and we seek an estimate of the4 101 Furth th t ltiol
unknown subsystem that allows the overall model to approxi- ™ _]' urthermore, the presen paper encc_)mpas.ses reultp
mate the true system. In this case, there is no expectationah  Vversions of the model refinement problem, including system
the constructed subsystem model approximates the unknown emulation and subsystem identification. In the former case,
subsystem. In the latter case, we assume that the main system we seek an estimate of the unknown subsystem that allows
is accurately modeled and we seek an estimate of the unknown the overall model to approximate the true system. In this
subsystem that approximates the unknown subsystem. - .
case, there is no expectation that the constructed subsyste
|. INTRODUCTION model approximates the unknown subsystem. In contrast,
in the latter case, we seek an estimate of the unknown

In the present paper we consider the problemdafa- g, psystem that approximates the unknown subsystem.
based model refinemenivhere we assume the availability

of an initial model, which may incorporate both physical Il. PROBLEM FORMULATION

laws and empirical observations. The components of the cgnsider the MIMO discrete-time main system

initial model may have varying degrees of fidelity, reflegtin 2(k + 1) = Az(k) + Bu(k) + Dw(k) )
knowledge or ignorance of the relevant physics as well as ’

the availability of data. With this initial model as a stagi y(k) = Ca(k), @)
point, our goal is to use additional measurements to refine yo(k) = Erx(k) + v(k), (3)

the model. In particular, we wish to update the componenighere»(k) € R, y(k) € Rlv, yo(k) € R, u(k) € Rlv,

of the model that are poorly modeled, thereby resulting in #(k) € R, andk > 0. The main system (1)—(3) is

higher fidelity model [1-5]. interconnected with the unknown subsystem modeled by
System identification is typically concerned with the con- u(k) = Gs(q)y(k), 4)

struction of a model of the entire system from measured . .

inputs to measured outputs. In contrast, our goal is to ifjent whereg is the forward shift operator. The system (1)~(4)

only a subsystem of the model, where the remainder of ﬂ{gpresents the true system. We assume that the excitation

model is not modified. One motivation for this objective is to&gnalw(k) is known.v(k) denotes measurement noise.

improve understanding of the physics of the poorly modeled Next, we assume a model of the main system of the form
subsystem despite its low accessibility. Here, accedgibil &k +1) = Aé(k) + Ba(k) + Dyw(k), (5)
refers to the availability of measurements or estimates of

the inputs and outputs of the unknown subsystem. This lack y(k) = C:"%(k)’ (6)
of accessibility leads to a nonstandard system identiipati Yo(k) = E12(k), (7)
problem. wherez (k) € R”, (k) € R, jo(k) € Rhw, 4(k) € Rla.

The model of the main system is interconnected with the
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information about the true system (1)—(3), namely, a lichite 1l1l. RETROSPECTIVESURROGATE-COST-BASED SIGNAL
number of Markov parameters. We then ugé) andy(k) CONSTRUCTION

to construciG(q). Figure 1 illustrates the model-refinement We begin by defining Markov parameters of the main
architecture, which includes system emulation and subsyst system model:(q). Fori > 1, let

identification as special cases. Table Il indicates thecwit A A araa

positions for various model-refinement architectures. H; = E, A" 'B. (10)
Therefore H; = E1B andH, = E, AB. Let r be a positive
integer. Then, for alk > r,

y i(k)=A"&(k — 1) ZAZ 'Ba(k ZAl 'Dyw(k—i),
Yo (11)
and thus r

Main System

G(q)
(A, [BD,], [GE,])
Internal state x

Unknown Subsystem

G(q)

w Main System Model y 4 ( ) ElAT k} T +Z E’lAZ 1D1w(k ) yo(/{)+7:[0(k—1),
—o”] é(a) ) =
! (A, [BD,], [GE]) z (12)
Internal state X A
i ‘H - y where# 2 | Hy -+ H, ]| eR:*a and
w
Sz m U(k_l)é[ﬁT(k_l) e At (k) ]T-
Fig. 1. Model-refinement architectures. The switckgs s; and so are NE)E'[, we rearrange the columns #f and the components
used to define different architectures. of U(k — 1) and partition the resulting matrix and vector so
thal  wok —1) = HU' (k- 1)+ HU(k —1),  (13)
[Case[[ so [ s1 | s2 | Remarks | where H' ¢ REx(la—lv) 4 ¢ REXw U/(k - 1) €
1 o | o | 1 | System emulation without R™a~lv andU(k — 1) € RV, Then, we can rewrite (12) as
subsystem excitation 2(k) = S(k) + HU(k — 1), (14)

System emulation without
subsystem excitation. Ifi, .
< susoysan aercato] SUHEBAHb-rH LA Dtk (A )
System emulation with = (15)
subsystem excitation
System emulation with
subsystem excitation. Ifi,
B, C are known, this case

where

For example{ = [ Hi H, Hs |,

a(k —2)

is subsystem identification)  anq9; — g, U(k—1) = a(k — 3). Next, we rewrite (14)
Table Il. Switch positions for various model-refinement hétectures. A th a delay Ofkj time steps, wher® < k; < kg <--- <
switch in position1 indicates the switch is closed, whereas a switch inks’ in the form

position 0 indicates it is open. (k k. ) S (k k]) + %]U](k} _ k]_ _ 1)’ (16)
The goal of system emulation is to determine a subsystefij,qre (15) becomes

model Gy (¢) such that the closed-loop frequency response

of the true system (fromw to y) matches the closed- S;(k — k;) 2 EyAma(k — k; —r)

loop frequency response of the system model (fromo r

7o) Since the matrices!, B, C' are unknown, the matrices + ZElAl Y Dyw(k—kj—i) — yo(k—Fk;) + HU (k—k;—1)

A,B,C in the main system model are approximations of i=1

A,B,C’ The accuracy of this approximation determinesind (13) becomes

how well the constructed subsystem model approximates p—

the unknown subsystem. In the idealized case of subsystemHU(k ki D)=H;U; (k—hj—1) + H;U; (k—k;=1), - (17)

identification, whereA, B,C' are known exactly, we set where#/; € R'=*"e~vi) 3y, ¢ R™=*v5 Ul(k—k;—1) €

A=A B =B, andC = C and use architectures 2 andR""= ;| andU( — k;j —1) € R, Now, by stacking

W= om], veen=| 2.

4 from Table Il to obtain a subsystem mmﬁl;( ) that  z(k—ky),..., 2(k—k,), we define thextended performance
approximates the unknown subsysté(q). However, the A T

less stringent objective of system emulation is to obtain aZ(k) = [ 2T(k — k1) -+ 2T(k—ks) | e R*-. (18)
model of the unknown subsystem such that the closed-logmerefore, A

model approximates the true closed-loop system. Z(k)=S8k)+HU(k—1), (29)



where S(k) = [ ST(k—k1)---ST(k—ks) ]T € R,
H e R*&=xlo andU(k — 1) € Rlo. The vectorU (k — 1) is
formed by stackind/; (k—k1—1),...,Us(k—ks;—1) and re-

moving repetitions of components. For example, vikith= 0

andk, = 1, stackinglU; (k—1) = { ZEZ : ;; } andUs (k —
2) = a(k — 2) results inU(k — 1) = [ ZEZ - ;g ] The

coefficient matrix* consists of the entries of1, ..., Hs
arranged according to the structurelofk—1). Furthermore,

we assume that the last entry &%k — 1) is a component (k

of a(k —r).
Next, we define thesurrogate performance
2k —k;) 2 8;(k—ky) + H;Ur(k—k; — 1), (20)
where the actual past subsystem outguitsk — k; — 1) in

(16) are replaced by the surrogate subsystem outpfts —
k; —1). Theextended surrogate performanime (20), which
is defined as

Z(k) £ [ £ (k — ky)
is given by

T(k—k) |" eR, (20)

Z(k) = S(k) + HU*(k — 1),
of U (k—ky —1),.

way as the components @f( 1). Subtracting (19) from

(22) yields
Z(k) = Z(k) — HU (k — 1) + HU* (k — 1). (23)
Finally, we define thaetrospective cost function
JO*(k=1),k) = Z(R)R()Z(K),  (24)

where R(k) € R8sl

putsU* (k —

(22) Y

where the components &f*(k — 1) € Rl are components
., Uz (k — ks — 1) ordered in the same Note if s = 0 thenw(k) and O; are removed fromi(k),

is a positive-definite performance
weighting. The goal is to determine refined subsystem ouivhere ¢(k — d) is given by (32) and\(k)

If either # has full column rank or(k) > 0, then A(k) is

positive definite. In this case,(U*(k—1), k) has the unique

global minimizer
U*(k — Y(k)B(k).

1) = —%A’ (30)

B. Subsystem Modeling

The subsystem output(k) is given by the exactly proper
time-series model of order. given by

):i Ml(k)a(k_l)‘i‘i: Ni(k)g(k_i)+ioi(k)w(k—z)
- - - (31)
where, for alli = 1,...,n., M;(k) € Rlaxla N;(k) €

Rlaxts and O;(k) € Rlaxlw, The subsystem output (31)

can be expressed agk) = 6(k)p(k — 1), whered(k) €

0(k) 2 [My(k) - My, (k)
Ni(k) -+ N (k) Or(k) -+ Oy (k)] and
oh-) 2 aT-1)" " QT (k- n,)
Tk =1) - §T(k—ne) @T(k—1) -~ @ (k—n) |7

€ Rrellatlotln) = (32)

0(k), andg(k —1).

C. Recursive Least Squares Update

Let d be a positive integer such th&t*(k — 1) contains
u*(k — d). We define the cumulative cost function

DOT k)],

€ (0,1] is the

k
SN N (ke — d) — 6" (k —d —

=1

Jr(0(F))

1) that would have provided better performanceorgetting factor. Minimizing the cumulative cost funatio

than the subsystem outputs(k) that were applied to the yields retrospective cost optimization (RCO)

system. The refined subsystem outputs valiiég: — 1) are

T _ T
subsequently used to update the subsystem estimate. 07 (k) =0"(k—1)+ P(k - 1ok —d 1)
AT _ _ R —1
A. Cost Function Optimization with Adaptive Regularizatio [(b*(k d)P(kT ek —d Tl) +AR)]
To ensure that (24) has a global minimizer, we consider Wik —d) —¢ (k—d=1)0"(k—1)). (33)
the regularized cost The error covariance is updated by
J(O*(k —1),k) 22" (k) R(k R(k)Z(k) P(k) =A"'(k)P(k = 1) = A" (k) P(k — 1)p(k —d — 1)
+ (k)0 T( D" (k 1), (25) (6T (k —d — )P(k — D)ok — d) + A(k)] !
wheren(k) = 72T (k)z(k) andn > 0. Substituting (23) into @' (k—d—=1)P(k—1). (34)
(25) yields We initialize the error covariance matrix @(0) = S1,
. o = whereg > 0.
T (k= 1), k) =0° (k — )" AR)T* (5 — 1) 7
+ B(k ) *(k—1)+C(k), (26) IV. NUMERICAL EXAMPLES
where A - . We now consider numerical examples with various model-
A(k) = HTR(k)H + n(k) L, (27)  refinement architectures to illustrate the effect of noisd a
A T model uncertainty on the emulation of the closed-loop syste
B(k) = 20T R(k)[Z (k) —HU (k — 1)), (28) and, where applicable, the identification of the unknown
A T T 3 subsystem. For all examples in this section, RCO is turned
Clk)=Z" (k)R(k)Z(k)—2Z" (k)R(k)HU(k — 1 . .
(k) ~T( IR )NT( ) . () R(EYHU ) on after 100 steps. The level of measurement noise varies
+U (k= DH R(FHU(E —1). (29)  for each example, where = N (p,,02) means that the



output noise signab is Gaussian white noise with mea ~ where

2
and variances2. We define SNRE Zw whereo? is the gs(k) 1 T,
variance of the output signal. The case number in each Zs(k)= q6(k) } ’AS_LTS(%M‘L) 1- TS(C3+C4)} ’
example refers to the positions of the switches in Figure 1 as e e
described in Table Il. For all examples, the subsystem model 0 Tk
parameter®(k) are initialized at zero. For convenience, let Bs—|: 1 } Co=| 712, ] .
G(q) represent the main system, lét(q) represent the m2
closed-loop system fromv to 7, and letG(q) represent Furthermore T, = 0.25, my = 4, my = 2, mg = 10,
the unknown subsystem. k1 =12, ky =2, k3 =4, ka =6, c1 =4, c2 =2, c3 =5,

We consider the spring-mass-damper system shown fpdcs = 3.

Figure 2. Fori = 1,2, 3, let ¢; be the position of** mass, Example 4.1:(Case 1,4, B,C unknown,SNR = 100).
and letm; be the mass of thé™ block. Fori = 1,2,3,4, Since A, B, andC are unknown, we choosd, B, and ('
let k; be the stiffness of theé'" spring, and letc; be the such that((q) is stable and minimum phase, but otherwise
damping coefficient of the'" damper. Finally, letv be the arbitrarily. More specifically, we choose
force applied to the second block.

A —0.039 —0.029 ] B [ 0.003 ]
_____________ 0.023  0.0023 |’ 0.098 |’
| — g3 >|| Unknown 2ubsystem C=[25 -018]. (40)
S =
| 1] 1] | Moreover, i, = 0 ando? = 5. For this example we take
| /\/€7\ s //\€4/\ | ne = 20,7 =0, = 0.01, and# = H;, which is the first
| | Markov parameter of7(g). The parameters of the model
- _ refinement algorithm are chosen such thit) is minimized.
c1 Co Figure 3 shows that the estimated frequency response of the
1 1] closed-loop systerﬁ?d(q) approximates the closed-loop fre-
L m L my Y quency response of the true systéim(q). Next, we run this
/\k}'\ /\kQ/\ example with three different SNR values for 5000 time steps.
Figure 4 shows that, as the SNR increases, the frequency
response of7, provides an improved approximation of the
a1 q2 frequency response @f,;.

Fig. 2. Spring-mass-damper system with main system and awrkn

subsystem. % 0.2
§ o
The discretized equations of motion of the main system g
are z(k + 1) = Az(k) + Bu(k) + Diw(k), (35) =
y(k) = Ca(k), CONNEEE
yo(k) = Era(k) + v(k), (37) 7
T o
wherex(k) = [ (k) q(k) qu(k) gs(k) ] ; %
1 0 T, 0 2 -
0 1 0 T §
A=| —T, (ki+k2) Toky 1 _ Tleaten) Tecy ) 5
mo ma m2 m2 £-5007 ’7—6'“‘
T 1009 L—Cial, : :
T 0 4 2 3m/4 a
0 0 1 0 ™/ Angle (?e{d/sample) ™/
Tsky
0 0 0 o
D= 0 |- B= 0 ,C= BE E= 03 . Fig. 3. The RCO algorithm is turned on/at= 100 steps. The closed-loop
T T frequency response @f . is indistinguishable from the frequency response
1 m_s2 0 1757,—24 of Gg.
The discretized equations of motion of the unknown subsys-
tem are
2ok +1) = Agzs(k) + Bay(k), (38) Example 4.2:(Case 3,4, B,C unknown,SNR = 100).

The architecture for this example is different from the
u(k) = Csz(k), (39)  architecture of Case 1 only in that the unknown subsystem



~ 0 ; ‘ : o ‘ ‘ ‘ .
m o -20
E 3]
B 3 -0 ]
2 -50r - o =4
5 At < 60 ‘ ‘ ‘
= 100 0 /4 /2 3m/4 ™
) ‘ / ‘ | G
° o " 5 < ‘ ‘ — 2000 Steps
0 ‘ ‘ 3 .-~ 12000 Steps
2 =200r Nl e 20000 Steps
g-ZOO* 0 - - -40000 Steps
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Angle (rad/sample) Fig. 6. As the amount of data increases, the frequency respohG,

more closely approximates the frequency respons€ of

Fig. 4. As the SNR increases, the accuracy of the frequersgorse of

G improves. &
)
E
Gs(g) has the additional inpub, and hence %
= 40 : ‘ w
zo(k+1) = Ay (k) + By [y(k) w(k)]", 0 /4 /2 3n/4 T
~200 ‘ : — Gy L
D - - - 2000 Steps
here S o 7750000 Siebe |
" ’ B,= 0 0 & k - 40000 Stegs
° 1 TS/m3 ' &-200¢ U2 aqur s 5 B D T e -
o
Furthermore, we Ie,uyj = OAand_crfU =5. Since A, B,C are -400; ,{/4 w)2 37;/4 )
unknown, we choosd, B, C as in (40). For this example we Angle (rad/sample)
taken = 20, =0 p =001, andH = H,. Figure 5 shows Fig. 7. As the amount of data increases, the frequency reepth‘S

that, as theASNR increases, the accuracy of the frequengyre clo

response ofy. improves.

sely approximates the frequency respons€' of

)
RS
(]
i.-i 0 T T T E
[ c
2 50 - , . ] g
= 2
(= v \
g !
100 L L . i J
0 /4 /2 3m/4 T S
0 ‘ ‘ : g
2 S0 oSNl R=00
o O
@ 5000 | —— Gy < ] 8-400 ]
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o - SNR=100 AR -600 : : :
-100 : : P 0 m/4 /2 3m/4 77
0 /4 3m/4 W Angle (rad/sample)
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Angle (rad/sample)

Fig. 8. Asthe SNR increases, the frequency respongg.pfnore closely

Fig. 5. As the SNR increases, the frequency responsg.pfnore closely
approximates the frequency responsechf.

Example 4.3:(Case 2,4, B and C knowr). First, we in-
vestigate the effect of the amount of data on the identificati
of G¢; and Gy using Case 2 architecture when B, andC

approximates the frequency responsechf.

20

Mh......ﬁ‘..‘_““

T T, e

T P ]

Magnitude (dB)
o

are known. For this exampley, = 0, 02, = 10 and there “% /1 /2 37/ /T
is no noise. Furthermore, we let = 12, 7 = 0, 8 = 0.01, — % | | | rgﬁmﬂ
and# = Hj. Figures 6 and 7 show that as the amount & -7 ENR=10
of data increases, the accuracy of the frequency responses % -

of G and G, improve. Note that the frequency response  £-200¢ e
of G, cannot approximate?, above 0.75 radians/sample -300; : ‘ ‘ -

because the transfer function that multipl@s in G, rolls

/2 3/
Angle (rad/sample)

off above this frequency. Next, we investigate the effect Olzig 9. As the SNR increases, the frequency responggsahore closely
. . . ) S

SNR on Case 2 architecture when B, andC' are known.  go00ximates the frequency responsecat

The parameters are the same as in the previous example.

Figures 8 and 9 show that as the SNR increases, the accuracy

of the frequency responses 6%, and G5 improve.



Example 4.4:(Case 2, A uncertain, B and C' known, not applicable. We applied retrospective cost optimizatio
SNR=100. In this example we investigate the effect ofwhich reconstructs the input to the main system from the
uncertainty inA. Uncertainty inA is introduced by scaling unknown subsystem. The main system may be well known
the damping coefficient; by an unknown scale factax. or uncertain. In the latter case, there is no expectation tha
Thus, A is obtained by replacing, in A by ac,. For the estimated subsystem model approximates the unknown
this example,u,, = 0 and o2 = 5. Furthermore, we let subsystem. However, if the main system is known exactly,
ne = 12,7 = 0, 8 = 0.01, andH = Hs. Figures 10 and then the estimated subsystem may provide a useful estimate
11 show that as the uncertainty ih decreases (that isy  of the unknown subsystem. Several numerical examples were
approaches 1), the frequency response§.gfandG, more used to illustrate the approach. The performance of the
closely approximate the frequency response&gfandGs,  algorithm was assessed in terms of the closeness of the
respectively. frequency response plots. The ultimate goal of this work
is to provide a tool that engineers and scientists can use
to improve the accuracy of large-scale models and estimate

om
% 20‘ unknown subsystems that are difficult to model due to the
5 40 inaccessibility of their inputs and outputs.
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V. CONCLUSIONS

This paper focused on the problem of model refinement,
where data are used to improve the accuracy of a subsystem
model connected by feedback to a given main system model.
In particular, the objective is system emulation, where the
goal is to estimate a subsystem model in order to pro-
vide a combined system model that has improved accuracy
relative to the main system alone. The inputs and outputs
of the unknown subsystem are not assumed to be accessi-
ble, and thus standard system identification techniques are



