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Abstract— We consider the problem of data-based model
refinement, where we assume the availability of an initial
model, which may incorporate both physical laws and empirical
observations. With this initial model as a starting point, our
goal is to use additional measurements to refine the model. In
particular, components of the model that are poorly modeled
can be updated, thereby resulting in a higher fidelity model.
We consider two special cases, namely, system emulation and
subsystem identification. In the former case, the main system
is assumed to be uncertain and we seek an estimate of the
unknown subsystem that allows the overall model to approxi-
mate the true system. In this case, there is no expectation that
the constructed subsystem model approximates the unknown
subsystem. In the latter case, we assume that the main system
is accurately modeled and we seek an estimate of the unknown
subsystem that approximates the unknown subsystem.

I. I NTRODUCTION

In the present paper we consider the problem ofdata-
based model refinement, where we assume the availability
of an initial model, which may incorporate both physical
laws and empirical observations. The components of the
initial model may have varying degrees of fidelity, reflecting
knowledge or ignorance of the relevant physics as well as
the availability of data. With this initial model as a starting
point, our goal is to use additional measurements to refine
the model. In particular, we wish to update the components
of the model that are poorly modeled, thereby resulting in a
higher fidelity model [1–5].

System identification is typically concerned with the con-
struction of a model of the entire system from measured
inputs to measured outputs. In contrast, our goal is to identify
only a subsystem of the model, where the remainder of the
model is not modified. One motivation for this objective is to
improve understanding of the physics of the poorly modeled
subsystem despite its low accessibility. Here, accessibility
refers to the availability of measurements or estimates of
the inputs and outputs of the unknown subsystem. This lack
of accessibility leads to a nonstandard system identification
problem.
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The present paper goes beyond [1–5] in two ways. First,
the model refinement algorithm described in Section II is
based on the extension of the retrospective cost adaptive
control (RCAC) algorithm described in [6]. The algorithm
in [6] requires knowledge of a limited number of Markov
parameters of the plant, and thus simplifies earlier versions
of RCAC described in [7–9]. Therefore, the algorithm in [6]
improves the model refinement technique described in [1,
4, 10]. Furthermore, the present paper encompasses multiple
versions of the model refinement problem, including system
emulation and subsystem identification. In the former case,
we seek an estimate of the unknown subsystem that allows
the overall model to approximate the true system. In this
case, there is no expectation that the constructed subsystem
model approximates the unknown subsystem. In contrast,
in the latter case, we seek an estimate of the unknown
subsystem that approximates the unknown subsystem.

II. PROBLEM FORMULATION

Consider the MIMO discrete-time main system
x(k + 1) = Ax(k) +Bu(k) +D1w(k), (1)

y(k) = Cx(k), (2)

y0(k) = E1x(k) + v(k), (3)

wherex(k) ∈ R
n, y(k) ∈ R

ly , y0(k) ∈ R
ly0 , u(k) ∈ R

lu ,
w(k) ∈ R

lw , and k ≥ 0. The main system (1)–(3) is
interconnected with the unknown subsystem modeled by

u(k) = Gs(q)y(k), (4)

where q is the forward shift operator. The system (1)–(4)
represents the true system. We assume that the excitation
signalw(k) is known.v(k) denotes measurement noise.

Next, we assume a model of the main system of the form

x̂(k + 1) = Âx̂(k) + B̂û(k) + D̂1w(k), (5)

ŷ(k) = Ĉx̂(k), (6)

ŷ0(k) = Ê1x̂(k), (7)

where x̂(k) ∈ R
n̂, ŷ(k) ∈ R

lŷ , ŷ0(k) ∈ R
ly0 , û(k) ∈ R

lû .
The model of the main system is interconnected with the
subsystem model û(k) = Ĝs(q)ŷ(k). (8)

The goal is to estimate a subsystem modelĜs(q) that
minimizes a cost function based on the performance variable

z(k)
4
= ŷ0(k)− y0(k) ∈ R

lz (9)

We estimateĜs(q) by retrospectively reconstructing the
signal û(k) that minimizes the performance at the current
time step. The reconstruction ofû(k) uses minimal modeling



information about the true system (1)–(3), namely, a limited
number of Markov parameters. We then useû(k) and ŷ(k)
to constructĜs(q). Figure 1 illustrates the model-refinement
architecture, which includes system emulation and subsystem
identification as special cases. Table II indicates the switch
positions for various model-refinement architectures.
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Fig. 1. Model-refinement architectures. The switchess0, s1 and s2 are
used to define different architectures.

Case s0 s1 s2 Remarks

1 0 0 1
System emulation without
subsystem excitation

2 0 1 0

System emulation without
subsystem excitation. IfA,
B,C are known, this case
is subsystem identification

3 1 0 1
System emulation with
subsystem excitation

4 1 1 1

System emulation with
subsystem excitation. IfA,
B,C are known, this case
is subsystem identification

Table II. Switch positions for various model-refinement architectures. A

switch in position1 indicates the switch is closed, whereas a switch in

position0 indicates it is open.

The goal of system emulation is to determine a subsystem
model Ĝs(q) such that the closed-loop frequency response
of the true system (fromw to y0) matches the closed-
loop frequency response of the system model (fromw to
ŷ0). Since the matricesA,B,C are unknown, the matrices
Â, B̂, Ĉ in the main system model are approximations of
A,B,C. The accuracy of this approximation determines
how well the constructed subsystem model approximates
the unknown subsystem. In the idealized case of subsystem
identification, whereA,B,C are known exactly, we set
Â = A, B̂ = B, and Ĉ = C and use architectures 2 and
4 from Table II to obtain a subsystem modelĜs(q) that
approximates the unknown subsystemGs(q). However, the
less stringent objective of system emulation is to obtain a
model of the unknown subsystem such that the closed-loop
model approximates the true closed-loop system.

III. R ETROSPECTIVESURROGATE-COST-BASED SIGNAL

CONSTRUCTION

We begin by defining Markov parameters of the main
system model̂G(q). For i ≥ 1, let

Hi
4
= Ê1Â

i−1B̂. (10)

Therefore,H1 = Ê1B̂ andH2 = Ê1ÂB̂. Let r be a positive
integer. Then, for allk ≥ r,

x̂(k)=Ârx̂(k − r)+
r

∑

i=1

Âi−1B̂û(k−i)+
r

∑

i=1

Âi−1D̂1w(k−i),

(11)

and thus
z(k)=Ê1Â

rx̂(k−r)+
r

∑

i=1

Ê1Â
i−1D̂1w(k−i)−y0(k)+H̄Ū(k−1),

(12)

whereH̄
4
=

[

H1 · · · Hr

]

∈ R
lz×rlû , and

Ū(k − 1)
4
=

[

ûT(k − 1) · · · ûT(k − r)
]T

.

Next, we rearrange the columns of̄H and the components
of Ū(k− 1) and partition the resulting matrix and vector so
that H̄Ū(k − 1) = H′U ′(k − 1) +HU(k − 1), (13)

where H′ ∈ R
lz×(rlû−lU ), H ∈ R

lz×lU , U ′(k − 1) ∈
R

rlû−lU , andU(k− 1) ∈ R
lU . Then, we can rewrite (12) as

z(k) = S(k) +HU(k − 1), (14)

where

S(k)
4
=Ê1Â

rx̂(k−r)+
r

∑

i=1

Ê1Â
i−1D̂1w(k − i)−y0(k)+H

′U ′(k−1).

(15)

For example,H̄ =
[

H1 H2 H3

]

,

H′ =
[

H1 H2

]

, U ′(k − 1) =

[

û(k − 1)
û(k − 2)

]

,

andH = H3, U(k− 1) = û(k− 3). Next, we rewrite (14)
with a delay ofkj time steps, where0 ≤ k1 ≤ k2 ≤ · · · ≤
ks, in the form

z(k − kj) = Sj(k − kj) +HjUj(k − kj − 1), (16)

where (15) becomes

Sj(k − kj)
4
= Ê1Â

rx̂(k − kj − r)

+

r
∑

i=1

Ê1Â
i−1D̂1w(k−kj−i)− y0(k−kj) +H′

jU
′

j(k−kj−1)

and (13) becomes

H̄Ū(k−kj−1)=H′

jU
′

j(k−kj−1) +HjUj(k−kj−1), (17)

whereH′
j ∈ R

lz×(rlû−lUj
), Hj ∈ R

lz×lUj , U ′
j(k−kj −1) ∈

R
rlû−lUj , and Uj(k − kj − 1) ∈ R

lUj . Now, by stacking
z(k−k1), . . . , z(k−ks), we define theextended performance

Z(k)
4
=

[

zT(k − k1) · · · zT(k − ks)
]T

∈ R
slz . (18)

Therefore,
Z(k)

4
= S̃(k) + H̃Ũ(k − 1), (19)



where S̃(k)
4
=

[

ST(k − k1) · · · ST(k − ks)
]T

∈ R
slz ,

H̃ ∈ R
slz×lŨ , and Ũ(k − 1) ∈ R

lŨ . The vectorŨ(k − 1) is
formed by stackingU1(k−k1−1), . . . , Us(k−ks−1) and re-
moving repetitions of components. For example, withk1 = 0

andk2 = 1, stackingU1(k−1) =

[

û(k − 1)
û(k − 2)

]

andU2(k−

2) = û(k − 2) results in Ũ(k − 1) =

[

û(k − 1)
û(k − 2)

]

. The

coefficient matrixH̃ consists of the entries ofH1, . . . ,Hs

arranged according to the structure ofŨ(k−1). Furthermore,
we assume that the last entry ofŨ(k − 1) is a component
of û(k − r).

Next, we define thesurrogate performance

ẑ(k − kj)
4
= Sj(k − kj) +HjU

∗

j (k − kj − 1), (20)

where the actual past subsystem outputsUj(k − kj − 1) in
(16) are replaced by the surrogate subsystem outputsU∗

j (k−
kj−1). Theextended surrogate performancefor (20), which
is defined as

Ẑ(k)
4
=

[

ẑT(k − k1) · · · ẑT(k − ks)
]T

∈ R
slz , (21)

is given by
Ẑ(k) = S̃(k) + H̃Ũ∗(k − 1), (22)

where the components of̃U∗(k − 1) ∈ R
lŨ are components

of U∗
1 (k− k1 − 1), . . . , U∗

s (k− ks − 1) ordered in the same
way as the components of̃U(k − 1). Subtracting (19) from
(22) yields

Ẑ(k) = Z(k)− H̃Ũ(k − 1) + H̃Ũ∗(k − 1). (23)

Finally, we define theretrospective cost function

J(Ũ∗(k − 1), k)
4
= ẐT(k)R(k)Ẑ(k), (24)

whereR(k) ∈ R
slz×slz is a positive-definite performance

weighting. The goal is to determine refined subsystem out-
putsŨ∗(k−1) that would have provided better performance
than the subsystem outputsU(k) that were applied to the
system. The refined subsystem outputs valuesŨ∗(k− 1) are
subsequently used to update the subsystem estimate.

A. Cost Function Optimization with Adaptive Regularization
To ensure that (24) has a global minimizer, we consider

the regularized cost

J̄(Ũ∗(k − 1), k)
4
=ẐT(k)R(k)Ẑ(k)

+ η(k)Ũ∗T(k − 1)Ũ∗(k − 1), (25)

whereη(k) = η̄zT(k)z(k) and η̄ ≥ 0. Substituting (23) into
(25) yields

J̄(Ũ∗(k − 1), k) =Ũ∗(k − 1)TA(k)Ũ∗(k − 1)

+ B(k)Ũ∗(k − 1) + C(k), (26)

where
A(k)

4
= H̃TR(k)H̃ + η(k)IlŨ , (27)

B(k)
4
= 2H̃TR(k)[Z(k)− H̃Ũ(k − 1)], (28)

C(k)
4
= ZT(k)R(k)Z(k)− 2ZT(k)R(k)H̃Ũ(k − 1)

+ ŨT(k − 1)H̃TR(k)H̃Ũ(k − 1). (29)

If either H̃ has full column rank orη(k) > 0, thenA(k) is
positive definite. In this case,̄J(Ũ∗(k−1), k) has the unique
global minimizer

Ũ∗(k − 1) = −
1

2
A−1(k)B(k). (30)

B. Subsystem Modeling

The subsystem output̂u(k) is given by the exactly proper
time-series model of ordernc given by

û(k)=

nc
∑

i=1

Mi(k)û(k−i)+
nc
∑

i=0

Ni(k)ŷ(k−i)+
nc
∑

i=0

Oi(k)w(k−i),

(31)

where, for all i = 1, . . . , nc, Mi(k) ∈ R
lû×lû , Ni(k) ∈

R
lû×lŷ and Oi(k) ∈ R

lû×lw . The subsystem output (31)
can be expressed aŝu(k) = θ(k)φ(k − 1), whereθ(k) ∈
R

lû×nc(lû+lŷ+lw) is

θ(k)
4
= [M1(k) · · · Mnc

(k)

N1(k) · · · Nnc
(k) O1(k) · · · Onc

(k)] , and
φ(k − 1)

4
=
[

ûT(k − 1) · · · ûT(k − nc)

ŷT(k − 1) · · · ŷT(k − nc) ŵT(k − 1) · · · ŵT(k − nc) ]T

∈ R
nc(lû+lŷ+lw). (32)

Note if s2 = 0 thenw(k) andOi are removed from̂u(k),
θ(k), andφ(k − 1).

C. Recursive Least Squares Update

Let d be a positive integer such that̃U∗(k − 1) contains
u∗(k − d). We define the cumulative cost function

JR(θ(k))
4
=

k
∑

i=1

λk−i||u∗(k − d)− φT(k − d− 1)θT(k)||2,

whereφ(k − d) is given by (32) andλ(k) ∈ (0, 1] is the
forgetting factor. Minimizing the cumulative cost function
yields retrospective cost optimization (RCO)

θT(k) = θT(k − 1) + P (k − 1)φ(k − d− 1)

· [φT(k − d)P (k − 1)φ(k − d− 1) + λ(k)]−1

· (u∗(k − d)− φT(k − d− 1)θT(k − 1)). (33)

The error covariance is updated by

P (k) =λ−1(k)P (k − 1)− λ−1(k)P (k − 1)φ(k − d− 1)

· [φT(k − d− 1)P (k − 1)φ(k − d) + λ(k)]−1

· φT(k − d− 1)P (k − 1). (34)

We initialize the error covariance matrix asP (0) = βI,
whereβ > 0.

IV. N UMERICAL EXAMPLES

We now consider numerical examples with various model-
refinement architectures to illustrate the effect of noise and
model uncertainty on the emulation of the closed-loop system
and, where applicable, the identification of the unknown
subsystem. For all examples in this section, RCO is turned
on after 100 steps. The level of measurement noise varies
for each example, wherev = N (µv , σ

2
v) means that the



output noise signalv is Gaussian white noise with meanµv

and varianceσ2
v . We define SNR

4
=

σ2

ȳ0

σ2
v

, whereσ2
ȳ0

is the
variance of the output signal̄y0. The case number in each
example refers to the positions of the switches in Figure 1 as
described in Table II. For all examples, the subsystem model
parametersθ(k) are initialized at zero. For convenience, let
G(q) represent the main system, letGcl(q) represent the
closed-loop system fromw to ȳ0, and letGs(q) represent
the unknown subsystem.

We consider the spring-mass-damper system shown in
Figure 2. Fori = 1, 2, 3, let qi be the position ofith mass,
and letmi be the mass of theith block. For i = 1, 2, 3, 4,
let ki be the stiffness of theith spring, and letci be the
damping coefficient of theith damper. Finally, letw be the
force applied to the second block.

m1 m2

m3

c3 c4

c1 c2

k2k1

k3 k4

q1 q2

q3

w

Unknown Subsystem

Fig. 2. Spring-mass-damper system with main system and unknown
subsystem.

The discretized equations of motion of the main system
are x(k + 1) = Ax(k) +Bu(k) +D1w(k), (35)

y(k) = Cx(k), (36)

y0(k) = E1x(k) + ν(k), (37)

wherex(k) =
[

q1(k) q2(k) q4(k) q5(k)
]T

,

A=











1 0 Ts 0
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





, C=


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


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







T

.

The discretized equations of motion of the unknown subsys-
tem are

xs(k + 1) = Asxs(k) +Bsy(k), (38)

u(k) = Csx(k), (39)

where

xs(k)=

[

q3(k)
q6(k)

]

, As=

[

1 Ts

−Ts(k3+k4)
m3

1− Ts(c3+c4)
m3

]

,

Bs=

[

0
1

]

, Cs=

[

Tsk4

m2

Tsc4
m2

]

.

Furthermore,Ts = 0.25, m1 = 4, m2 = 2, m3 = 10,
k1 = 12, k2 = 2, k3 = 4, k4 = 6, c1 = 4, c2 = 2, c3 = 5,
andc4 = 3.

Example 4.1:(Case 1,A,B,C unknown,SNR = 100).
SinceA, B, andC are unknown, we choosêA, B̂, and Ĉ
such thatĜ(q) is stable and minimum phase, but otherwise
arbitrarily. More specifically, we choose

Â =

[

−0.039 −0.029
0.023 0.0023

]

, B̂ =

[

0.003
0.098

]

,

Ĉ =
[

2.5 −0.78
]

. (40)

Moreover,µw = 0 andσ2
w = 5. For this example we take

nc = 20, η̄ = 0, β = 0.01, andH̃ = H1, which is the first
Markov parameter ofĜ(q). The parameters of the model
refinement algorithm are chosen such thatz(k) is minimized.
Figure 3 shows that the estimated frequency response of the
closed-loop system̂Gcl(q) approximates the closed-loop fre-
quency response of the true systemGcl(q). Next, we run this
example with three different SNR values for 5000 time steps.
Figure 4 shows that, as the SNR increases, the frequency
response of̂Gcl provides an improved approximation of the
frequency response ofGcl.
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Fig. 3. The RCO algorithm is turned on atk = 100 steps. The closed-loop
frequency response of̂Gcl is indistinguishable from the frequency response
of Gcl.

Example 4.2:(Case 3,A,B,C unknown,SNR = 100).
The architecture for this example is different from the
architecture of Case 1 only in that the unknown subsystem
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Gs(q) has the additional inputw, and hence

xs(k + 1) = Asxs(k) +Bs [y(k) w(k)]
T
,

where,
Bs=

[

0 0
1 Ts/m3

]

.

Furthermore, we letµw = 0 andσ2
w = 5. SinceA,B,C are

unknown, we choosêA, B̂, Ĉ as in (40). For this example we
takenc = 20, η̄ = 0, β = 0.01, andH̃ = H1. Figure 5 shows
that, as the SNR increases, the accuracy of the frequency
response of̂Gcl improves.
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Example 4.3:(Case 2,A, B andC known). First, we in-
vestigate the effect of the amount of data on the identification
of Gcl andGs using Case 2 architecture whenA, B, andC
are known. For this example,µw = 0, σ2

w = 10 and there
is no noise. Furthermore, we letnc = 12, η̄ = 0, β = 0.01,
and H̃ = H3. Figures 6 and 7 show that as the amount
of data increases, the accuracy of the frequency responses
of Ĝcl and Ĝs improve. Note that the frequency response
of Ĝs cannot approximateGs above 0.75 radians/sample
because the transfer function that multipliesGs in Gcl rolls
off above this frequency. Next, we investigate the effect of
SNR on Case 2 architecture whenA, B, andC are known.
The parameters are the same as in the previous example.
Figures 8 and 9 show that as the SNR increases, the accuracy
of the frequency responses of̂Gcl and Ĝs improve.
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Fig. 8. As the SNR increases, the frequency response ofĜcl more closely
approximates the frequency response ofGcl.
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Fig. 9. As the SNR increases, the frequency response ofĜs more closely
approximates the frequency response ofGs.



Example 4.4:(Case 2,A uncertain, B and C known,
SNR=100). In this example we investigate the effect of
uncertainty inA. Uncertainty inA is introduced by scaling
the damping coefficientc2 by an unknown scale factorα.
Thus, Â is obtained by replacingc2 in A by αc2. For
this example,µw = 0 and σ2

w = 5. Furthermore, we let
nc = 12, η̄ = 0, β = 0.01, and H̃ = H3. Figures 10 and
11 show that as the uncertainty inA decreases (that is,α
approaches 1), the frequency responses ofĜcl andĜs more
closely approximate the frequency responses ofGcl andGs,
respectively.
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Fig. 10. Estimate ofGcl with uncertain ĉ2 = αc2. As α approaches
1, the frequency response of̂Gcl more closely approximates the frequency
response ofGcl.
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Fig. 11. Estimate ofGs with uncertain ĉ2 = αc2. As α approaches
1, the frequency response of̂Gs more closely approximates the frequency
response ofGs.

V. CONCLUSIONS

This paper focused on the problem of model refinement,
where data are used to improve the accuracy of a subsystem
model connected by feedback to a given main system model.
In particular, the objective is system emulation, where the
goal is to estimate a subsystem model in order to pro-
vide a combined system model that has improved accuracy
relative to the main system alone. The inputs and outputs
of the unknown subsystem are not assumed to be accessi-
ble, and thus standard system identification techniques are

not applicable. We applied retrospective cost optimization,
which reconstructs the input to the main system from the
unknown subsystem. The main system may be well known
or uncertain. In the latter case, there is no expectation that
the estimated subsystem model approximates the unknown
subsystem. However, if the main system is known exactly,
then the estimated subsystem may provide a useful estimate
of the unknown subsystem. Several numerical examples were
used to illustrate the approach. The performance of the
algorithm was assessed in terms of the closeness of the
frequency response plots. The ultimate goal of this work
is to provide a tool that engineers and scientists can use
to improve the accuracy of large-scale models and estimate
unknown subsystems that are difficult to model due to the
inaccessibility of their inputs and outputs.
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