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In this paper we apply retrospective cost model refinement (RCMR) to parameter
estimation. To gain insight into the accuracy and speed of convergence of the RCMR
estimates, we consider aircraft dynamics with uncertain entries in the dynamics and input
matrices. We consider scenarios that include multiple uncertain parameters, alternative
measurements, and sensor noise. All of the examples are discrete time, as required by
RCMR. To account for the structure of the uncertain parameters, we develop a Jacobian-
based technique for constructing the appropriate feedback structure. We use this approach
to account for the appearance of stability derivatives in the dynamics matrix, and we use
this technique to estimate airspeed variations in the vicinity of trimmed flight.

I. Introduction

System identification is concerned with using input-output data to construct empirical models. In
many cases, some components of the system are well-modeled, and the goal is to use input-output data to
improve estimates of poorly modeled components. These components may be connected in cascade, parallel,
or feedback with the well-modeled components, and they may be static or dynamic. This problem is known
as model updating, model correction, model calibration, and model refinement [1-6].

The most common model-refinement problem is parameter estimation, where data are used to improve
estimates of parameters in a model whose structure is known. Parameter estimation is related to, but distinct
from, state estimation, where the states evolve due to external inputs and their interaction with other states.
In contrast, an unknown parameter may either be constant or time-varying in a pre-specified manner.

The close relationship between parameter estimation and state estimation is evident from the widespread
use of state-estimation techniques for parameter estimation. In particular, the extended Kalman filter can
be used with a linearized model to propagate state and parameter estimates [7]. Alternatively, techniques
developed for nonlinear state estimation can be applied to parameter estimation [8—11].

In the present paper we revisit the retrospective cost approach to model refinement (RCMR) [12-15].
RCMR can be used to estimate the dynamics of a possibly dynamic subsystem in feedback interconnection
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with a main subsystem; the unknown subsystem is assumed to be inaccessible in the sense that its inputs and
outputs are not measured. A special case of an inaccessible subsystem occurs when the unknown subsystem
is static; in this case, inaccessible subsystem identification is equivalent to parameter estimation.

The goal of the present paper is to apply RCMR to parameter estimation. To gain insight into the
accuracy and speed of convergence of the RCMR estimates, we consider aircraft dynamics with uncertain en-
tries in the dynamics and input matrices. These scenarios include multiple uncertain parameters, alternative
measurements, and sensor noise. All of the examples are discrete time, as required by RCMR. To account
for the structure of the uncertain parameters, we develop a Jacobian-based technique for constructing the
appropriate feedback structure. We use this approach to account for the appearance of stability derivatives
in the dynamics matrix, and we use this technique to estimate variations of the airspeed in the vicinity of
trimmed flight.

II. Problem Statement

Consider the MIMO discrete-time main system
x(k+1) = Az(k) + Bu(k) + Dyw(k), (1)
y(k) = Cu(k), (2)
yo(k) = Erx(k) + v(k), 3)
where x(k) € R™, y(k) € Rlv, yo(k) € Rlwo, u(k) € Rl», w(k) € Rl», and k > 0. The main system (1)—(3) is
interconnected with the unknown subsystem modeled by

where ¢ is the forward shift operator. The system (1)—(4) represents the true system. We assume that the
excitation signal w(k) is known. v(k) denotes measurement noise.

Next, we assume a model of the main system of the form

#(k+1) = Az(k) + Ba(k) + Dyw(k), (5)

g(k) = Ci(k), (6)

go(k) = Era (k), (M)

where 3 (k) € R?, §(k) € Rl9, §o(k) € Rlw, a(k) € Rla. The model of the main system is interconnected

with the subsystem model
a(k) = Gs(q)y(k). (8)

The goal is to estimate a subsystem model és(q) by minimizing a cost function based on the performance
variable
A
2(k) = go(k) — yo(k) € R* (9)

We estimate Gs(q) by retrospectively reconstructing the signal (k) that minimizes the performance at the
current time step. The reconstruction of @ (k) uses minimal modeling information about the true system
(1)-(3), namely, a limited number of Markov parameters. We then use (k) and §(k) to construct Gy(q).
Figure 1 illustrates the model-refinement architecture.

III. Retrospective Control Model Refinement

We begin by defining Markov parameters of the main system model é(q) For i > 1, let

H 2 B A (10)
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Figure 1. Model-refinement architecture.

Therefore, H; = F1B and Hy = E1AB. Let 7 be a positive integer. Then, for all & > r,

matrix and vector so that

HU(k—1) =HU(k—1) +HU(k - 1),
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2(k) = 8(k) + HU (k — 1),

where

S(k) £ By ATi(k — 1) + Z Ey A Dyw(k — i) — yo(k) + U’ (k — 1),

i=1

For example, H = H, H, Hg}v
a(k —1
9{':[[{1 HQ}, U’(k—l):[u( )],
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i(k) = ZAl 'Ba(k — i) ZA’ 'Dyw(k — i),
and thus
2(k) = By ATk — 1)+ 3" B A= Drw(k — i) — yolk) + FO(k - 1),
=1
where 52 [ 1, - H, | €Re and O(k—1) 2 [ @T(h—1) - aT(k-r) }T.

(11)

Next, we rearrange the columns of 3 and the components of U(k — 1) and partition the resulting

(13)

where H' € Rl=x(rla—lv) 3¢ ¢ RE=xlv '(k —1) € R™~W and U(k — 1) € R, Then, we can rewrite (12)

(14)

(15)
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and H = Hs, U(k—1) = u(k — 3). Next, we rewrite (14) with a delay of k; time steps, where 0 < k; <
ko < --- < kg, in the form
Z(k‘—kj)ZSj(k—k’j)‘i‘g{jUj(k’—kj—l), (16)

where (15) becomes

Sk —kj) & By ATa(k — kj —r) + > By AT Drw(k — ky — i) — yo(k — kj) + Uk —k; — 1) (17)

i=1
and (13) becomes
f]jCU(k—kj—l):J‘C;U]{(k—k‘j—1)—|—9‘CjUj(k‘—kj—1), (18)

where 3, € R'=*Uetvy) g0, € R, Ul(k — k; — 1) € R™*7" and U;(k — k; — 1) € R'%. Now, by
stacking z(k — k1), ..., z(k — ks), we define the extended performance

Z(k) £ [ Tk—k) - 2T(k—ky) ]T e R, (19)

Therefore,

S(k) +HU(k — 1), (20)

~ T ~ ~ ~
where 8(k) = [ 8T(k —ky)---8T(k — ks) } e R¥: ) H € R:=*lo and U(k — 1) € Rlo. The vector U(k — 1)
is formed by stacking Ui(k — k1 — 1),...,Us(k — ks — 1) and removing repetitions of components. For
a(k—1)

example, with k1 = 0 and ko = 1, stacking U;(k — 1) = alk —2)

o= | 1)

to the structure of U(k — 1). Furthermore, we assume that the last entry of U(k — 1) is a component of
a(k —r).

1 and Uz(k — 2) = 4(k — 2) results in

. The coefficient matrix H consists of the entries of Hy,...,H, arranged according

Next, we define the retrospective performance
2k — k;) 2 8;(k — ky) + IGUS (k — by — 1), (21)

where the actual past subsystem outputs U;(k — k; — 1) in (16) are replaced by the surrogate subsystem
outputs U (k — kj —1). The extended retrospective performance for (21), which is defined as

Z(k) 2 Tk —ky) - 2T(k—ky) ]T € R¥=, (22)

is given by

Z(k) = 8(k) + HU*(k — 1), (23)

where the components of U*(k — 1) € R' are components of U (k — k1 —1),...,Uz(k — ks — 1) ordered in
the same way as the components of U(k — 1). Subtracting (20) from (23) yields

Z(k) = Z(k) — HU(k — 1) + HU*(k — 1). (24)

Finally, we define the retrospective cost function

J(O*(k —1),k) £ Z(k)R(K) Z(k), (25)

where R(k) € R®!=*5l= is a positive-definite performance weighting. The goal is to determine refined sub-
system outputs U*(kz — 1) that would have provided better performance than the subsystem outputs U (k)
that were applied to the system. The refined subsystem outputs values 0*(]6‘ — 1) are subsequently used to
update the subsystem estimate.
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A. Cost Function Optimization with Adaptive Regularization

To ensure that (25) has a global minimizer, we consider the regularized cost

J(O*(k — 1), k) 2 ZT(k)R(E)Z(k) + n(k)T*T (k — 1)T* (k — 1), (26)
where n(k) = 72T (k)z(k) and 7 > 0. Substituting (24) into (26) yields
JU*(k—1),k) = U (k—1)TAMK)T*(k — 1) + B(k)U*(k — 1) + C(k), (27)
where
A(k) £ T R(k)FC+ n(k)T,,, (28)
B(k) 2 2K R(k)[Z (k) — HU (k — 1), (29)
C(k) £ ZT(k)R(k)Z(k) — 2Z (k) R(k)FU (k — 1) + UL (k — )FTR(E)FU (k — 1). (30)

If either H has full column rank or 7(k) > 0, then A(k) is positive definite. In this case, J(U*(k — 1), k) has
the unique global minimizer

Tk —1) = —%A‘l(k)B(k:). (31)

B. Subsystem Modeling

The subsystem output 4(k) is given by the exactly proper time-series model of order n. given by
a(k) =D My(kyalk — i) + Y Ni(k)i(k — i), (32)
i=1 i=0

where, for all i = 0,1,...,n., M;(k) € Rlaxla N;(k) € Rla*ls. The subsystem output (32) can be expressed
as u(k) = 0(k)p(k), where O(k) € Rlax[nelatls)tls] and ¢(k) € Rrelatlo)+s,

If n. =0, then

C. Recursive Least Squares Update

Let d > 0 such that U*(k — 1) contains u*(k — d), and define the retrospective cost function
k
A i w _
Tr(0(k)) =Y N (k = d) = ¢ (k — d = )T (R)||> + N (0(k) — 6(0)) P~ (0)(8(k) — 6(0))T,  (36)
i=1

where ¢(k — d) is given by (34), || - || is the Euclidean norm, and A(k) € (0,1] is the forgetting factor.
Minimizing the cumulative cost function yields retrospective cost optimization (RCO)
0F (k) =0Tk —1)+P(k—1)p(k—d—1)-[¢p (k- d)P(k — 1)p(k —d — 1) + \(k)]*
c(ur(k—d) — ¢"(k—d—1)8"(k—1)). (37)
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The error covariance is updated by
Pk) =AY E)P(k—=1) = XY k)P(k - 1)p(k —d—1)-[¢T(k —d —1)P(k — 1)¢p(k — d) + (k)] "
¢ (k—d—1)P(k—1). (38)

We initialize the error covariance matrix as P(0) = 81, where 8 > 0.

IV. Mass-Spring Example: Stiffness Estimation

Example IV.1. We consider the mass-spring-damper structure modeled by
mg + ¢ + kg = w, (39)

where m, ¢, and k are the mass, damping, and stiffness, respectively, and w is the force input. We obtain
the state-space representation

q “m Tm q m
_ 7|,
y = [ 0 1 ] R (41)

where ¢ and ¢ are the position and velocity, respectively, of the mass. The parameters are chosen as m = 1,
¢ =5, and k = 10. The goal is to estimate x with the initial estimate of £(0) = 0.

Using Euler discretizion with sample time T yields

ZCl(k"f' 1) . 1 T, -Tl(k) 0
[ zo(k+1) | [ —%TS 1— % 2o (k) + % ] w(k), (42)
y(k) = [ 0 1 } [ Z;E:; +v(k), (43)

where, x1(k) 2 q(kTs) and zo(k) 2 G(kTs). We define Aclosed,loop 2 A+ BiC, where B 2

0
_Is

and ¢ 2 [ 10 } The estimate of k is given by #(k) = 6(k). The initial conditions are assumed to be
21(0) = 0.1 and x2(0) = 0.01, which are unknown. Let the sensor noise v be Gaussian white noise with
mean p,, and variance o2. Furthermore, P(0) = 0.6, A = 0.999, n = 0, u,, = 0, and H= [ H, H, }, which

are the first and second Markov parameters of G. The input is w(k) = 0.8sin(wk/20). RCMR is turned on
at k = 20 steps. Figure 2 shows the performance z and the estimated .
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We next consider the effect of sensor noise. We consider the same estimation problem with white

. A
sensor noise. We define SNR = —3-, where 05

H
effect of sensor noise on RCMR. As sensor noise is increased, the accuracy of the parameter identification is
reduced.

9 , is the variance of the output signal fjo. Figure 3 shows the

V. Estimation of a Repeated Parameter

We next consider the case where one unknown parameter appears in multiple locations within the
model. Consider the continuous-time system

&= Az + D.w, (44)
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Figure 2. Example IV.1, performance z(k) and estimated k.
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Figure 3. Example VI.1, the estimate m of m for various values of SNR. As SNR decreases, the accuracy of
the estimate is degraded.

where a parameter « in A, and D, is uncertain. Let a = & + Aq, where & is the initial estimate of a. The
system model can be written approximately as
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= (A.+ 5a a:&Aa)x + (D. + 90 a:dAoz)w. (45)
Discretizing (45) with sampling time T yields
xk+1)=U+ AT+ 86145 AaTg)x(k) + (D.Ts + % AaTy)w(k)
a la=a& a la=&
A D
=(A+ 04, AaTy)x(k) + (D1 + 9D AaT)w(k). (46)

We use (46) as the true system model with uncertain parameter A«. Since our goal is to estimate Ac, we
rewrite (46)

w(k)
wk+1)=Az+ | Dy Zle| _oT, 22|47, Aax(k) | - (47)
Aow(k)
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Next, let

B { Ode| T, ODe|,_.T, }, (48)
i =| o ] (49)
Aa(k) = Gula) = O(F), (50)
(k) = Aalk)(k). (51)

Note that (51) shows that @ (k) is a function of §(k). We define

gtk = k) - gT(k—ks)}TeRslv. (52)

With these signals, (27)-(31) become

J(Aa*(k —1),k) = A(k)Aa*?(k — 1) + B(k)Aa* (k — 1) 4 C(k), (53)
A(k) 2 (k = )T [T R(k)TC+ (k)1 ¥ (k = 1), (54)

Bk) £ 25T R(K)[Z (k) — FU(k — D]V (k — 1), (55)

C(k) £ ZT(k)R(k)Z(k) — 2Z 7 (k)R(E)FU (k — 1) + U (k — VK R(K)HT (k — 1),  (56)
U(k—1) = Aa*(k—1)Y(k—1) = —lﬂ—l(k)za(k)?(k —1). (57)

2

We use one parameter in U *(k — 1) and the corresponding parameter in f’(k — 1) to execute the recursive
least squares update. In the next section we use the same mass-spring system to illustrate the algorithm.

VI. Mass-Spring Example: Inertia Estimation

Example VI.1. Consider the mass-spring-damper structure shown in Example IV.1 where A, =

l OK 10 , D. = (1) ,and F, = { 0 1 } In this example we assume that the parameter m is
unknown. We demonstrate the algorithm by choosing « = 30 and ¢ = 5, and we assume that m = 0.9. We
use an initial estimate is 7 (0) = 1, so that Am(0) = —0.1.

From (48), we obtain
A [ 0 0 0 ] | (58)

We choose P(0) = 1, A =1, 7 =0, p = 0, 02 = 0 and H = [ H, H, }, which are the first and

second Markov parameters of G. We choose the ramp input w(k) = 0.1k and the initial state l 1(0) ] =

#2(0)
X1 (O) . 0
22000 | |0

performance z and the estimate .

. The system refinement algorithm is turned on at k& = 100 steps. Figure 4 shows the

We next consider the effect of sensor noise. We assume pu, = 0. Figure 5 shows the estimation
performance for several values of 2.
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Figure 4. Example VI.1, the performance z and the estimate .
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Figure 5. Example V1.1, the estimate 1n of m for various values of 02. As 02 increases, the accuracy of the

estimate is degraded.

VII. Aircraft Examples

We now estimate stability parameters under various scenarios of measurements and measurement

noise. Consider the linearized longitudinal B-767 model

u —0.0168 0.1121  0.0003 —0.5608 u —0.0243  0.0519
& | _ | —00164 —0.7771 0.9945  0.0015 o | | —0.0634 —0.0005 de 59)
q —0.0417 —3.6595 —0.9544 0 q —3.6942  0.0243 6T

6 0 0 1.0000 0 0 0 0

where de is the elevator deflection and 6T is the thrust perturbation. We discretize (59) using a zero-order

hold with T = 0.1s, which yields

0.9983 0.0110 —0.0022 —0.0560
—0.0018  0.9085 0.0907  0.0002
—0.0037 —0.3336 0.8924 0.0001
—0.0002 —0.0172  0.0948 1.0000

T
and w = { de 0T } is the system input. For all examples in this section, RCMR is

—0.0022 0.0052
—0.0234 0.0001
—0.3492 0.0023
—0.0178 0.0001

; (60)

turned on at £ = 100

T
steps, and Z(0) = z(0) = { 0 0 0 0| . We choose de and 0T to be zero-mean white Gaussian noises

with variance 0.001.
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Example VII.1. Assume an initial guess of A(3,3) = 0.8000. The true value of A(3,3) is 0.8924
and AA(3,3) = 0.0924. Our goal is to identify A(3,3). We choose E; = [ 0010 } so that 79 = ¢

N . . . T ~
and;ﬁo:d.Inthisexample,A:A,Dlle,Elel,B:[0 0 1 0} andC’:{O 01 0]
In this model, n, = 0 and AA(3,3) = (k). We choose P(0) = 200, A = 0.97, n = 0, p, = 0, 02 = 0 and

H = [ H, H, }, which are the first and second Markov parameters of G. The parameters of the model

refinement algorithm are chosen such that z(k) is minimized. Figure 6 shows the performance z and the
estimated A(3,3).

0.02 1
RCMR estimate
0015 - - fio = Initial estimate
0.95 = = = True parameter (4
__ 0.01 2
~3 ©
N E
% 0.005 @
£ 2
S 0 2
s s
o ©
-0.005 o
-0.01
-0.015 0.75
0 100 200 300 400 0 100 200 300 400
Time Step (k) Time Step (k)

Figure 6. Example VII.1, performance z(k) and estimated A(3,3).

Example VII.2. We next consider the case where multiple parameters in A are possibly uncertain
T
and K = AA has the form shown. We assume full state feedback and y = | v o ¢ 6 ] . Thus
flclosed_loop = A+ BKC, where B=C = I, and K(kj) = 6(k), where

—-0.05 —0.002 0 0
K- 0 —0.04 0 0 . 61)
0 —-0.04 —-0.04 0
0 0 0 —0.04

We choose P(0) = 1001, A = 0.98, n = 1, pi, = 0, 02 = 0 and H = { H, H, } Figure 7 shows the

performance z(k) and the parameter estimates 6(k). The parameter error ||6(k) — K||2 converges to zero.
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Figure 7. Example VII.2, parameter error ||0(k) — K||2 and estimated 0(k).

Example VIIL.3. We next consider the case where parameters of the A matrix that are not being
estimated have modeling errors. We assume A(3,2) = —0.3000, whereas the true value is —0.3336. We
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assume that this modeling error is unknown and that our goal is to identify A(3,3). We choose P(0) = 100,
A=1,7=0,p,=0,02=0and H= [ H, H, ] , which are the first and second Markov parameters of G.

Figure 8 shows that the modelling errors degrade the accuracy of the estimates of the targeted parameters.

0.015 1
RCMR estimate
T O U S A A Initial estimate
00 0.95 = = = True parameter
— L
©
;:, 0.005 £
£ 5
£ €
S ©
& -0.005 5
o
-0.01
-0.015 0.75
0 200 400 600 800 1000 0 200 400 600 800 1000
Time Step (k) Time Step (k)

Figure 8. Example VIIL.3, performance z and estimated 4(3,3).

Example VII.4. We next consider the case where the unknown parameter is time-varying. In this

. . . . T
example, we assume A(3,3) is time-varying, A = A, D; = Dy, By = Ey, B = [ 001 0 } , and

C = [ 0 010 ] Figure 9 shows the performance when A(3,3) is varying at a constant rate, and
Figure 10 shows the performance when A(3,3) is varying as a sinusoidal signal. In both cases, P(0) = 10,
A=0987=0, 1, =0,02=0and H = { H, H, }

4

x 10
2 0.9
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15 e e Initial estimate
0.895 = = = True parameter
©
;‘CN, 05 £ 0.89
g &
5] 0 o 0.885
£ g
(=}
§ 05 5
o < 0.88
o
-1
0.875
-15
-2 0.87
0 500 1000 1500 2000 0 500 1000 1500 2000

Time Step (k) Time Step (k)

Figure 9. Example VII.4, performance 2z and estimated A(3, 3). A(3,3) is the ramp signal A(3,3) = 0.8924— 107k,
P(0) =10, A\ =0.98, n =0, puy =0, 02 =0 and K = [Hy, Ha].

Example VII.5. We next consider Example VII.1 with sensor noise present. We assume u, = 0.
Figure 11 shows the estimation performance for several values of SNR. As the SNR decreases, the accuracy
of the parameter estimatition degrades and convergence time increases.

Example VII.6. We next consider Example VII.1 with non-zero-mean measurement noise. We
assume SNR=100 and compare the estimate for several values of u,. Figure 12 shows the affect on estimation
performance as p, increases. As the bias pu, increases, the accuracy of the parameter estimation degrades
and convergence time increases.
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Figure 10. Example VII.4, performance z and estimated 121(3, 3). A4(3,3) is the sinusoidal signal A(3,3) =
0.8924 + 0.08 sin(7k/400), P(0) = 10, A = 0.98, n =0, py = 0, 02 = 0 and H = [Hy, Ha].
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Figure 11. Example.VIL5. (a) P(0) = 200, A = 0.97. (b) P(0) = 200, A = 1. (c) P(0) =100, A = 1. (d) P(0) = 15,
A=1. In all cases, n =0, and H = [Hi, Ha].
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Figure 12. Example.VIL6. (a) P(0) = 200, A = 0.97. (b) P(0) =200, A = 1. (c) P(0) =200, A = 1. (d) P(0) = 20,
A=1. In all cases, n =0, and H = [Hi, H2].

VIII. Airspeed Estimation

In this section we use RCMR to estimate airspeed.

Example VIIL.1. Consider the linearized longitudinal transfer functions [16] for a typical business
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jet in cruise given by

m Xuo + XTuO Xao qu -9 u X5€0

. Zug+21y, Zag Uo+Zy, 0 Zseq

I R e e ol I Bl P
q Muo + MTuO Mao + MTaO Mqo 0 q M5€0

0 0 0 1 0 0 0

where Uj is the aircraft speed at which the equations of motion of the aircraft are linearized. X, Z, M are
the related coefficients of the aircraft dynamic mode and many of these coefficients are depend on Uy. Using
the relations of these coefficients to Uy, (62) can be written as

i — 49950 9782 0 —32.1522 u 0

. _93.8250 _445.7224 _ 1255.3650 42.1968

@ | _ vz o LT 0 @ T |se  (63)
q 0.?}075 —7.4416 _% q —17.6737

A 0 0

6 0 0 1 0 0 0

The goal is to estimate Uy. The true value of Uy(0) is 625 ft/s, and we use the initial estimate Uy = 675
ft/s. We choose various o, and compare the performance of the algorithm.

Figure 13 shows the performance of RCMR with o = «. In this case, the input w(k) = 0.0008,
P(0) = 0.0003, A = 0.9999, n = 0, y = 0, 02 = 0 and F = { Hy - Hip } Figure 14 shows the
performance of RCMR with o = ¢. In this case, the input w(k) = 10~7k, P(0) =1, A =0.99, n =0, u = 0,
02 =0and H = { H, H, } Figure 15 shows the performance of RCMR with gy = 6. In this case, the

input w(k) =107k, P(0) = 0.01, A = 0.999, n =0, u = 0, 02 = 0, and H= [ H, H, }

-5

x 10

2 680
__________ RCMR estimate =
670H = Initial estimate
0 = = = True parameter
— 2 660
x ©
N - E
% @ 650
£ 2
5 2 640
L -4 £
[ [
o ©
o 630
-6 M= - -
620
-8 610
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
Time Step (k) Time Step (k)

Figure 13. Airspeed estimation with §p = a. The performance z and the airspeed estimate Uy are shown.

IX. Conclusions

This paper showed that RCMR can be used to estimate unknown parameters in a state space model.
Both constant and time-varying parameters were considered, under various sensor noise levels and choices of
measurements. Future work will compare the accuracy of this technique to nonlinear estimation methods.
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Figure 14. Airspeed estimation with 7y = q. The performance z and the airspeed estimate Uy are shown.
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Figure 15. Airspeed estimation with gy = §. The performance z and the airspeed estimate Uo are shown.
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