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Abstract— Retrospective cost adaptive control (RCAC) is
a discrete-time adaptive control algorithm for stabilization,
command following, and disturbance rejection. RCAC requires
knowledge of the nonminimum-phase (NMP) zeros in the
transfer function from the control input to the performance
variable. This knowledge is embedded in the target model used
to define the retrospective performance variable. Without this
knowledge, RCAC has a tendency to cancel unmodeled NMP
zeros. The contribution of the present paper is an extension of
RCAC that alleviates the need to know the NMP zeros a priori.
In particular, concurrent optimization is used to update the
coefficients of the controller and target model, thus providing
estimates of the unmodeled NMP zeros. Since the retrospective
cost is a biquadratic function of these coefficients, an alternating
convex search algorithm takes advantage of the closed-form
minimizers of both quadratic cost functions. For comparison,
the Matlab fminsearch routine is used to jointly optimize the
controller and target model. These techniques are illustrated for
SISO plants that are asymptotically stable, unstable, minimum
phase, and nonminimum phase.

I. INTRODUCTION

Although the overarching motivation for using feedback
control versus open-loop control is the ability to overcome
uncertainty, feedback control depends on a model of the
plant in order to operate reliably and without risking insta-
bility. Assuming an exact and complete model, LQG can
stabilize all MIMO plants with optimal H2 performance
regardless of plant order, open-loop pole and zero locations,
and channel coupling. In practice, however, uncertainty may
be unavoidable due to complex, unknown, or unpredictably
changing dynamics. To overcome model uncertainty, robust
control techniques can be used to guarantee stability and
performance, albeit at the expense of performance. Adaptive
control can be viewed as a form of robust control, wherein
the control law adjusts itself to the plant during operation,
thereby overcoming the performance sacrifice inherent in
fixed-gain robust control.

A fundamental goal of feedback control is to optimize
closed-loop performance in the presence of prior model
uncertainty. In the case of adaptive control, closed-loop
performance must account for transient performance as the
controller adjusts itself to the actual plant. For example,
universal adaptive control laws [1] can adapt to uncertainty
in the sign of the leading coefficient of the plant transfer
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function, although the transient response may be impracti-
cally large.

Nonminimum-phase (NMP) zeros also present a challenge
to adaptive control; for example, the control laws in [2]–[4]
assume that the plant is minimum phase. Adaptive control of
NMP plants is considered in [5]–[10]. In [8]–[10] knowledge
of the NMP zeros is embedded in the target model Gf, which
is used to filter the past data in order to retrospectively
optimize the controller coefficients.

The goal of the present paper is to extend retrospective
cost adaptive control (RCAC) as presented in [8]–[10] to
alleviate the need for prior modeling of both the sign of the
leading coefficient of the plant transfer function as well as
its NMP zeros. The key element of this extension is con-
current optimization of the target-model and the controller
coefficients. The target-model optimization is a technique for
identifying the leading coefficient, NMP zeros, and relative
degree of the plant. Consequently, concurrent optimization
facilitates the application of RCAC with less prior modeling
information than is assumed in [8]–[10]. In particular, the
number and location of the NMP zeros need not be known
aside from the parity of the number of positive (and thus
real) NMP zeros.

Concurrent optimization of the target model and controller
is a quadratic optimization problem in the target-model and
controller coefficients separately. However, this optimization
problem is not convex as a joint function of both sets of
variables, and therefore nonconvex optimization methods are
needed. In the present paper, we address this problem in two
different ways. First we take advantage of the biquadratic
structure of the cost function by applying an alternating
convex search algorithm [11]. Related techniques for bicon-
vex and bilinear optimization are given in [12]–[15]. For
comparison, the Matlab fminsearch routine is used to jointly
optimize the controller and target-model coefficients.

II. PROBLEM FORMULATION

Consider the SISO discrete-time system

x(k+1) = Ax(k)+Bu(k)+D1w(k), (1)
y(k) = Cx(k)+D2w(k), (2)
z(k) = E1x(k)+E0w(k), (3)

where x(k) ∈ Rn is the state, y(k) ∈ R is the measurement,
u(k) ∈ R is the control input, w(k) ∈ R is the exogenous
input, and z(k) ∈ R is the measured performance variable.
The goal is to develop an adaptive output feedback controller
that minimizes z in the presence of the exogenous signal
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w with limited modeling information about (1)–(3). The
components of w can represent either command signals to
be followed, external disturbances to be rejected, or both,
depending on the choice of D1 and E0. Depending on the
application, components of w may or may not be measured.
These components are included in y by suitable choice of C
and D2. No assumptions are made concerning the state space
realization since RCAC requires only input-output model
information.

III. RCAC ALGORITHM
A. Controller Structure

The adaptive control algorithm is constructed as a strictly
proper time-series dynamic compensator of order nc, such
that the control u(k) is given as

u(k) =
nc

∑
i=1

Pi(k)u(k− i)+
nc

∑
i=1

Qi(k)z(k− i), (4)

where Pi(k),Qi(k) ∈ R are the controller coefficients. In
terms of the forward shift operator q, the transfer function
of the controller from z to u is given by

Gc(q) =
(
qnc −qnc−1P1(k)−·· ·−Pnc(k)

)−1

·
(
qnc−1Q1(k)+ · · ·+Qnc(k)

)
. (5)

In the present paper we focus on SISO controllers, and hence
Gc can be written as

Gc(q) =
Q1(k)qnc−1 + · · ·+Qnc(k)

qnc −P1(k)qnc−1−·· ·−Pnc(k)
. (6)

Note that (5) is an infinite impulse response (IIR) controller.
The controller (4) can be expressed as

u(k) = φ(k)θ(k), (7)

where the regressor matrix φ(k) and controller coefficient
matrix θ(k) is defined as

φ(k)T 4=



u(k−1)
...

u(k−nc)
z(k−1)

...
z(k−nc)


∈ Rlθ ,

θ(k)
4
=
[

P1(k) · · ·Pnc(k) Q1(k) · · ·Qnc(k)
]T ∈ Rlθ ,

where lθ
4
= 2nc.

B. Retrospective Performance

The retrospective control is defined as

û(k, θ̂)
4
= φ(k)θ̂ , (8)

where θ̂ ∈Rlθ is determined by optimizing the cost function
defined in Section III-C. The corresponding retrospective
performance variable is defined as

ẑ(k, θ̂)
4
= z(k)+Gf(q)

[
û(k, θ̂)−u(k)

]
, (9)

where the target model Gf(q) is a finite impulse response
(FIR) filter written as

Gf(q) = N̂nf q
nf−1 + · · ·+ N̂1, (10)

where the target-model order nf ≥ 1, and N̂i ∈ R for all 1≤
i≤ nf. Next, we define Z(k) ∈ Rpc , U(k) ∈ Rp, and Φ(k) ∈
Rp×lθ by

Z(k)
4
=

 z(k)
...

z(k− pc +1)

 , U(k)
4
=

u(k−1)
...

u(k− p)

 ,

Φ(k)
4
=

φ(k−1)
...

φ(k− p)

 ,
where p

4
= pc+nf−1, and pc≥ 1 is the least squares window

size.
Furthermore, we define the extended retrospective perfor-

mance vector

Ẑ(k, θ̂ , N̂) = Z(k)+ N̄(Φ(k)θ̂ −U(k)), (11)

where Ẑ(k, θ̂ , N̂) ∈ Rpc and the matrix N̄ ∈ Rpc×p is the
block-Toeplitz representation of the FIR target model given
by

N̄ =

N̂T 0 0
...

. . . 0
0 0 N̂T

 , (12)

where

N̂
4
=

N̂nf
...

N̂1

 . (13)

By defining v(k)
4
= φ(k)θ̂ −u(k), (11) can be written as

Ẑ(k, θ̂ , N̂) = Z(k)+V (k)TN̂(k), (14)

where

V (k) =

 v(k−1) · · · v(k− pc)
...

...
...

v(k−nf) · · · v(k− p)

 ∈ Rnf×pc .

The target model Gf sets target locations for the closed-loop
poles [10]. Since we define Gf as an FIR target model,
the closed-loop pole locations are attracted to the origin.
Also, in [10], the ideal Gf is chosen to match the NMP
zeros of the plant. This feature ensures that the NMP zeros
of the plant are not canceled by the poles of Gc. In the
present paper, we concurrently optimize the coefficients of
the controller and the target model. Optimization of the target
model identifies the plant NMP zeros, which reduces the
need for prior modeling information.
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C. Retrospective Cost

Consider the retrospective cost function

J(k, θ̂ , N̂)
4
= Ẑ(k, θ̂ , N̂)T RzẐ(k, θ̂ , N̂)

+(θ̂(k)−θ(k−1))T Rδ (θ̂(k)−θ(k−1)), (15)

where the positive-definite matrices Rz ∈ Rpc×pc and Rδ ∈
Rlθ×lθ are the performance and learning-rate weightings,
respectively.

IV. BIQUADRATIC OPTIMIZATION

We use the Matlab fminsearch function for nonlinear
function optimization, as well as the alternating convex
search (ACS) algorithm [11]. In ACS, only the variables that
are active are optimized while the remaining variables are
kept fixed. Although ACS converges to a stationary point of
the cost function, it is shown in [11] that global convergence
is not guaranteed.

A. Alternating Convex Search Minimizers

1) Minimizing θ̂ for fixed N̂: For fixed N̂, substituting
(11) into (15) yields

J(k, θ̂ , N̂) = θ̂
T (k)Aθ (k)θ̂(k)+2θ̂

T (k)bθ (k)+ cθ (k), (16)

where

Aθ (k)
4
= Φf(k)T RzΦf(k)+Rδ ,

bθ (k)
4
= Φf(k)T Rz(Z(k)−Uf(k))−Rδ θ(k−1),

cθ (k)
4
= (Z(k)−Uf(k))T Rz(Z(k)−Uf(k))

+θ(k−1)T Rδ θ(k−1),

Uf(k)
4
= N̄U(k), Φf(k)

4
= N̄Φ(k).

Since Aθ (k) is positive definite, (16) has the unique global
minimizer θ̂ = θ̂(k), where

θ̂(k)
4
=−Aθ (k)−1bθ (k). (17)

2) Minimizing N̂ for fixed θ̂ : For fixed θ̂ , substituting
(14) into (15) yields

J(k, θ̂ , N̂) = N̂T(k)AN(k)N̂(k)+2N̂(k)TbN(k)+ cN(k), (18)

where

AN(k)
4
=V (k)RzV (k)T,

bN(k)
4
=V (k)RzZ(k),

cN(k)
4
= Z(k)TRzZ(k)+∆θ(k)TRδ ∆θ(k),

∆θ(k)
4
= θ(k)−θ(k−1). (19)

If AN(k) is positive definite, then (18) has the unique global
minimizer N̂ = N̂(k), where

N̂(k)
4
=−AN(k)−1bN(k). (20)

B. ACS

ACS consists of the following steps:
Step 1 Choose a nonzero starting point N̂(k) ∈ Rnf for k ≥
p+1.
Step 2 For fixed N̂(k), solve for θ̂(k) using (17) and the
associated cost using (16).
Step 3 For fixed θ̂(k) found in Step 2, solve for N̂(k) using
(20) and the associated cost using (18).
Step 4 Determine whether Step 2 or Step 3 produces the
lower cost. If a stopping criteria is satisfied, set N̂(k+1) =
N̂(k) and θ̂(k+1) = θ̂(k) for the next ACS nonzero starting
point and increment k. Otherwise, set N̂(k) and θ̂(k) to the
corresponding step that produced the lower cost and go back
to Step 2.

For the examples in Section V, the stopping criterion
consists of 800 evaluations and a function tolerance of
1×10−4.

C. fminsearch

The method used with the Matlab fminsearch algorithm
consists of the following steps:
Step 1 Choose a starting point (N̂(k), θ̂(k))∈Rnf+lθ for k =
p+1.
Step 2 At the current time step, minimize the cost function
(15) until a stopping criteria is satisfied.
Step 3 Set N̂(k+1) = N̂(k) and θ̂(k+1) = θ̂(k) for the next
starting point, increment k, and go to Step 2.

For the examples in Section V, the stopping criterion
consists of 5000 function evaluations and iterations along
with a function and variable tolerance of 1×10−4.

V. NUMERICAL EXAMPLES

In this section, we illustrate the concurrent optimiza-
tion technique for the adaptive command-following problem
shown in Fig. 1. The exogenous signal w is the command r,
and z = y− r. This problem is a special case of (1)-(3) with
C = E1, D2 = 0, and E0 =−1. Hence G(q) =C(qI−A)−1B.

+ Gc(q) G(q)ur − z y

Fig. 1: The adaptive command-following problem.

In each of the examples in Section V all of the target-
model coefficients are initialized at 0 except for N̂1. In
particular, N̂1 is initialized based on the parity of the positive
(and thus real) NMP zeros, that is, for all 0≤ k ≤ p+1,

N̂1(k) = (−1)h, (21)

where h is the number of positive NMP zeros in G. For
all of the examples below, for all k < p+ 1, the controller
coefficients for both algorithms are 0lθ×1, and at k = p+1,
the controller coefficients are initialized as 1lθ×1 and 0lθ×1
for ACS and fminsearch, respectively.
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Example V.1: Asymptotically stable, minimum-phase
plant. Consider the asymptotically stable, minimum-phase
plant

G(q) =
2(q−0.2)

(q−0.3)(q−0.6)
, (22)

and let r be a unit-height step command. We choose nf = 2
and note that, since G has no positive NMP zeros, h = 0
and thus, by (21), the target-model coefficients in N̂(k)
are initialized as [0 1]T for all 0 ≤ k ≤ p + 1. Let the
controller order nc = 2, the least squares window size pc =
20, Rδ = 1× 10−3Ilθ , Rz = Ipc , and x(0) = [1 1]T. Fig.
2 shows the results of the concurrent optimization. Both

Fig. 2: Example V.1: Asymptotically stable, minimum-phase system. Con-
current optimization is applied to step-command following for the asymp-
totically stable minimum-phase plant (22). The three upper left figures show
the result of using ACS, while the three upper right plots show the result of
using fminsearch. Note that the target-model coefficient N̂2 converges to 2,
the leading numerator coefficient of the plant, and the controller converges
to an integrator internal model in order to follow the step command

algorithms give comparable results in the converged target-
model and controller gain coefficients. Note that the target-
model coefficient N̂2 obtained by both algorithms converges
to the value 2 of the leading numerator coefficient of the
plant, while the controller converges to an integrator internal
model in order to follow the step command. �

Example V.2: Unstable, minimum-phase plant. Consider
the unstable, minimum-phase plant

G(q) =
q−0.2

(q−0.6)(q−1.3)
, (23)

and let r be a unit-height step command. We choose nf =
4 and note that, since G has no positive NMP zeros, h =
0 and thus, by (21), the target-model coefficients in N̂(k)
are initialized as [0 0 0 1]T for all 0 ≤ k ≤ p+ 1. Let the
controller order nc = 4, and the least squares window size
pc = 20, Rδ = 1×10−1Ilθ , Rz = Ipc , and x(0) = [0 0]T. Fig.
3 shows the results of the concurrent optimization. Note that
both algorithms converge to a controller with an integrator
internal model in order to follow the step command and that
the target-model coefficient N̂4 converges to 1, the leading
numerator coefficient of the plant. �

Fig. 3: Example V.2: Unstable, minimum-phase plant. Concurrent optimiza-
tion is applied to step-command following for the unstable minimum-phase
plant (23). Note that the controller stabilizes the unstable plant and develops
an integrator internal model in order to follow the step command.

Example V.3: Asymptotically stable, NMP plant. Consider
the asymptotically stable, NMP plant

G(q) =
q−1.1

(q−0.3)(q−0.6)
, (24)

and let r be a unit-height step command. We choose nf = 4
and note that, since G has one positive NMP zero, h = 1
and thus, by (21), the target-model coefficients in N̂(k) are
initialized as [0 0 0 − 1]T for all 0 ≤ k ≤ p+ 1. Let the
controller order nc = 4, and the least squares window size
pc = 30, Rδ = 1×10−3Ilθ , Rz = Ipc , and x(0) = [0 0]T. Fig.
4 shows the results of the concurrent optimization. Note that

Fig. 4: Example V.3: Asymptotically stable, NMP plant. Concurrent opti-
mization is applied to step-command following for the asymptotically stable,
NMP plant (24), where the location of the NMP zero is unknown. Note that
the controller develops an integrator internal model in order to follow the
step command, and the target model captures the NMP zero location. Figure
5 shows a zoomed in view of the plant, controller, and target model pole/zero
locations after convergence.

the location of the NMP zero location is unknown. Fig. 5
shows the poles and zeros of (24), the controller, and the
target model. Both algorithms converge to a target model
Gf that has a zero at the location of the plant zero. Also,
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Fig. 5: Example V.3: Asymptotically stable, NMP plant. This figure shows
a zoomed in pole/zero map of the plant, converged controller, and converged
target model for ACS [left] and fminsearch [right]. Note that the target model
captures the NMP zero location of the plant and that the controller converges
to an integrator internal model in order to follow the step command.

both algorithms converge to a controller with an integrator
internal model in order to follow the step command. �

Example V.4: Asymptotically stable, NMP plant with a
negative NMP zero. Consider the asymptotically stable, NMP
plant with a negative NMP zero

G(q) =
q+1.1

(q−0.3)(q−0.6)
, (25)

and let r be a unit-height step command. We choose nf = 4
and note that, since G has no positive NMP zeros, h = 0
and thus, by (21), the target-model coefficients in N̂(k) are
initialized as [0 0 0 1]T for all 0 ≤ k ≤ p + 1. Let the
controller order nc = 4, and the least squares window size
pc = 50, Rδ = 1×10−1Ilθ , Rz = Ipc , and x(0) = [1 1]T. Fig.
6 shows the results of the concurrent optimization. Both

Fig. 6: Example V.4: Asymptotically stable plant with a negative NMP zero.
Concurrent optimization is applied to a step-command following problem for
the asymptotically stable plant with a negative NMP zero (25). The location
of the NMP zero is unknown. The controller converges to an integrator
internal model to follow the step command, and the target model captures
the location of the negative NMP zero.

algorithms give comparable results in the converged target-
model and controller gain coefficients. Note that the target-
model coefficient N̂4 for both algorithms converges to the
value 1 of the leading numerator coefficient of the plant,
while the controller converges to an integrator internal model
in order to follow the step command. Note that the location
of the NMP zero is unknown to both algorithms and the zero
of the converged target model converges to the NMP zero of
(25). �

Example V.5: Asymptotically stable, NMP plant with
relative degree 2. Consider the asymptotically stable, NMP
plant

G(q) =
q−1.2

(q−0.1)(q−0.3)(q−0.6)
, (26)

and let r be a unit-height step command. We choose nf = 5
and note that, since G has one positive NMP zero, h = 1
and thus, by (21), the target-model coefficients in N̂(k) are
initialized as [0 0 0 0 − 1]T for all 0 ≤ k ≤ p+ 1. Let the
controller order nc = 6, and the least squares window size
pc = 40, Rδ = 1×10−2Ilθ , Rz = Ipc , and x(0) = [1 1 1]T. Fig.
7 shows the results of the concurrent optimization. Note that

Fig. 7: Example V.5: Asymptotically stable NMP plant with relative degree
2. Concurrent optimization is applied to a step-command following problem
for the asymptotically stable, NMP plant with relative degree 2 (26). Note
that the location of the NMP zero is unknown. The controller converges to
an integrator internal model in order to follow the step command, and the
converged target model captures the location of the NMP zero.

the location of the NMP zero is unknown to both algorithms
and that the zero of the target model converges to the NMP
zero of (26). Also note that, since the relative degree of (26)
is 2, the target-model coefficient N̂5 for both algorithms con-
verges to 0, while the target model coefficient N̂4 converges
to the value 1 of the leading numerator coefficient of the
plant. Both algorithms produce a spurious target model zero
of high magnitude, which is not included in Figure 7. The
controller also converges to an integrator internal model in
order to follow the step command. �

Example V.6: Asymptotically stable, minimum-phase
plant. Consider the asymptotically stable, minimum-phase
plant

G(q) =
q−0.3

(q−0.2)(q−0.6)
, (27)

and let r be a unit-amplitude harmonic command with
frequency ω = 2π

25 rad/sample. We choose nf = 3 and note
that, since G has no positive NMP zeros, h = 0 and thus, by
(21), the target-model coefficients in N̂(k) are initialized as
[0 0 1]T for all 0≤ k≤ p+1. Let the controller order nc = 4,
and the least squares window size pc = 20, Rδ = 1×10−3Ilθ ,
Rz = Ipc , and x(0) = [0 0]T. Fig. 8 shows the results of the
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Fig. 8: Example V.6: Asymptotically stable, minimum-phase plant with
harmonic-command following. Concurrent optimization is applied to
a harmonic-command following problem for the asymptotically stable,
minimum-phase plant (27). Note that both algorithms converge to an internal
model controller with poles at the command frequency on the unit circle
and the target-model coefficient N̂3 converges to 1, the leading numerator
coefficient of the plant.

concurrent optimization. Note that the controller converges
to a harmonic internal model in order to follow the same
frequency of the command r and that the target-model
coefficient N̂3 converges to the leading numerator coefficient
1 of the plant. �

Example V.7: Asymptotically stable, NMP plant with rela-
tive degree 2. Consider the asymptotically stable, minimum-
phase plant given in (26), and let r be a unit-height step
command. We choose nf = 5 and note that, since G has
one NMP zero, h = 1 and thus, by (21), the target-model
coefficients in N̂(k) would be initialized as [0 0 0 0 −1]T.
In this example, we violate (21) by choosing the opposite
sign of N̂1(k) and let the target-model coefficients in N̂(k)
be initialized as [0 0 0 0 1]T for k≤ p+1. Fig. 9 shows the
results of the concurrent optimization. Note that the location
of the NMP zero is unknown to both algorithms and that,
for ACS, the asymptotic target model captures the location of
the NMP zero. In contrast, fminsearch does not capture the
NMP zero, which leads to cancellation between an unstable
controller pole and a NMP plant zero. �

VI. CONCLUSIONS

The cost function associated with retrospective cost adap-
tive control (RCAC) was used for concurrent optimization
of the controller coefficients and identification of the target
model. This function has a biquadratic structure. A modi-
fied version of the alternating convex search algorithm and
the Matlab fminsearch algorithm demonstrated the ability
to concurrently optimize these coefficients for an adaptive
command-following problem. The novel element of the
present paper is adaptive control without prior knowledge of
the plant transfer function, including NMP zero locations.
Future work will focus on improving the computational
efficiency and accuracy of the concurrent optimization along
with guarantees of global convergence.

Fig. 9: Example V.7: Asymptotically stable NMP plant with relative degree
2. Concurrent optimization is applied to a step-command following problem
for the asymptotically stable, NMP plant (26) with relative degree 2. The
location of the NMP zero is unknown. For both algorithms, the controller
converges to an integrator internal model in order to follow the step
command. For ACS, the asymptotic target model captures the location of
the NMP zero, whereas fminsearch does not capture the NMP zero, leading
to cancellation of an unstable controller pole and a NMP plant zero.
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