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Parameter Estimation in the Burgers Equation Using
Retrospective-Cost Model Refinement

Ankit Goel!, Karthik Duraisamyz, and Dennis S. Bernstein?

Abstract— We apply retrospective cost model refinement to
parameter estimation in a nonlinear partial differential equa-
tion. Specifically, for the scalar Burgers equation, we estimate
the viscosity from measurements of flow velocity at a single grid
point. We also consider the analogous problem for a modified
Burgers equation as a proxy for a large eddy simulation to
estimate a parameter that relates subgrid-scale stresses to the
resolved strain rate.

I. INTRODUCTION

In many science and engineering applications, a physically
realistic model of a system is available, but key parameter
values are often unknown. The lack of knowledge of these
values may be due to measurement limitations, where the
parameters are embedded in the model in such a way that
standard regression techniques cannot be used. For example,
estimating a friction coefficient is not straightforward without
the benefit of measurements of either the friction force or the
relative velocity of the contacting surfaces. In such cases, we
say that the parameter is inaccessible.

Aside from inaccessibility as an impediment to parameter
estimation, it may be difficult to estimate a parameter that
does not have a true value, but rather represents the aggregate
effect of phenomena that are too complex for detailed
modeling. For example, artificial viscosity represents the net
effect of spatial and temporal discretization. In such cases,
we say that the parameter is representational.

Estimation of inaccessible parameters requires techniques
for subsystem identification, where the unknown subsystem
is inaccessible through the available measurements. The
unknown subsystem may be either dynamic or static. This
problem is addressed in [1], [2] using a specialized regres-
sion technique called retrospective cost model refinement
(RCMR).

RCMR is a subsystem identification technique that recur-
sively updates an estimate of the unknown subsystem by
retrospectively optimizing the coefficients of the subsystem
model. This technique is based on retrospective cost adaptive
control (RCAC), which is developed in [3], [4]. RCMR uses
the machinery of RCAC for adaptive feedback controller
to instead adapt a model of an inaccessible subsystem.
RCMR differs from standard regression due to the use of
signal estimates in the regressor in place of unavailable
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signal data. This technique allows RCMR to re-optimize the
subsystem model based on performance error data only. The
RCMR technique is developed in [2] in relation to input
reconstruction, and is applied to problems in space physics
in [5], [6].

The goal of the present paper is to apply RCMR to the
problem of parameter estimation in the Burgers equation.
The Burgers equation is one of the fundamental partial
differential equations in applied mathematics, and has been
widely used to qualitatively describe physical phenomena in
various disciplines of engineering. The Burgers equation has
been used for feedback control in [7]-[10], and numerical
methods are given in [11], [12].

In gas dynamics, the form of the Burgers equation is
similar to the Navier—Stokes equations and can qualitatively
represent phenomena such as shock waves and viscous
diffusion. In nonlinear acoustics, the Westervelt equation can
be transformed into the Burgers equation with a coordinate
transformation and the assumption of strictly forward propa-
gating waves [13]. The Burgers equation has also been used
to model traffic flow [14] and nonhysteretic infiltration in
non-swelling soil [15].

In this work, RCMR is used to estimate kinematic and
subgrid viscosity coefficients in the Burgers equation. Since
these coefficients relate the velocity gradient to shear stress,
it is not directly accessible if the only available measurement
is the flow velocity at a particular position.

We also consider the analogous problem for a modified
Burgers equation as a proxy for a large eddy simulation to
estimate a parameter that relates subgrid-scale stresses to
the resolved strain rate. The study in this paper can thus
be viewed as a precursor to the longer range goal of using
model refinement to construct representational models of
transport processes in large-scale computational fluid dynam-
ics models to capture unmodeled processes and subgrid-scale
features.

II. MODEL REFINEMENT

Consider the main system

x(k+1) = F(x(k),u(k),w(k)), (1)
yo(k) = G(x(k)), 2
y(k) = H(x(k)), 3)

where x(k) € Rk is the main system state, u(k) € R is the
main system input, w(k) € R is the known excitation signal,
yo(k) € R% is the main system measurement, and y(k) € R" is
the main system output. Note that (1)—(3) may be nonlinear.
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The main system (1)—(3) is interconnected with the un-
known subsystem modeled by

xs(k+1) = Agxs (k) + Bsy(k), 4)

u(k) = Csxs(k) 4 Dsy(k), )

where x;(k) € Rhs. Note that (4)-(5) can be represented as

u(k) = Gs(q)y(k), where q is the forward shift operator.
Together, (1)—(5) represents the true system.

For parameter estimation, Gy = Dy is a static gain, and
thus (4), (5) become

u(k) = Dsy(k). (6)

Next, we assume a model of the main system of the form

2(k+1) = F(&(k),a(k),w(k)), (N
Jo(k) = G(%(k)), (8)
I(k) = H(#(k)), ©)

where £(k) € R is the main system model state, @i(k) € Rl is
the main system model input, $ip(k) € R% is the main system
model measurement, and $(k) € R" is the main system model
output. Note that the vector functions F, G, and H are
assumed to be known.

The main system model is interconnected with the sub-
system model

a(k) = Gs(q)F (k).

Equations (7)—(10) represent the modeled system.

We assume that the unknown subsystem input y and
unknown subsystem output # are not measured, and thus
G, is inaccessible. The input § of the subsystem model G
is computed, and the input # of the main system model is
computed.

To update the subsystem model Gs, we minimize a cost
function based on the performance variable

(10)

Y

The model refinement problem is represented by the block
diagram in Figure 1.

2(K) £ $0(k) = yo (k) € RE.

III. RCMR ALGORITHM
In this section, we present the algorithm used to update
the subsystem model Gj.
A. Subsystem Model
We represent the subsystem model G, by

ne

(k) = ¥ @itk + 3 Ni(KE (k— i),

i=ko

12)

where M;(k) € Rb=l N;(k) € R"*!¢ are the coefficient ma-
trices, ko > 0, and & (k) € R’ consists of components of y,
z, and w. We rewrite (12) as

i(k) = d(k)0(k), (13)

................................. \
True system i

Yo :

A A 4

Main System

U Unknown | VY
Subsystem G |

;_Modeled system

i *I  Main system Yo ! L
! i model ! ()
; i
i \ i
i y |
i !
1 1

il Subsystem | VY
Model G, |

Fig. 1: Model refinement architecture. In the true system, the unknown
subsystem input y and output u are not measured, and hence the unknown
subsystem Gy is inaccessible. In the modeled system, the subsystem model
input ¥ is computed, and the subsystem model output & is computed using

the estimate Gy of the subsystem model. The performance z(k) 2 So(k) —
yo(k) is used to estimate the subsystem model Gi.

where the regressor matrix ®(k) is defined by

[ ak—1) 1"
o2 | 1Tk | eneren,
| E(k—ne)

009 2 vee [ M ()M (6) Nig(6)-+- N (4) ] € R,

A .
where lg = I3nc + Ll (nc + 1 — ko), “®” is the Kronecker
product, and “vec” is the column-stacking operator. Note
that for static parameter estimation, Gy is a zeroth order
controller, and (k) = (y' (k) @I, )vec(No(k)).
B. Retrospective Performance Variable

We define the retrospective input as
i(k) = ®(k)

and the corresponding retrospective performance variable as

20k) = 2(K) + (k)0 — s (K),

where 6 € R% is determined by optimization below, and
®p(k) € R=*le and (k) € R% are filtered versions of ®(k)
and 7(k), defined by

(14)

15)

(16)
a7
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The filter G¢ has the form

Gr(@) £ D7 ' (@) Ni(),

where Dy and Ny are polynomial matrices, and Dy is monic.

(18)

C. Retrospective Cost Function

Using the retrospective performance variable Z(k), we
define the retrospective cost function

k
J(k,0) 2 Y [FT(1)R2(0) + (P (i) 0) T Re<r(i) O]
i=1

+(6-6(0)"Re(8 - 6(0)),

where R, and Ry are positive definite, and Ry is positive
semidefinite.

Proposition: Let P(0) = R;l. Then, for all £ > 1, the retro-
spective cost function (19) has the unique global minimizer
0(k) given by

0(k) = 0(k—1)—P(k—1)®F ()T~ (k)

- [@r(k) B (k — 1) + (R + Re) ™' Re(2r(k) — ur(k))],
(20)

19)

Pk) = P(k—1)

— P(k—1)@f ()T (k) Pr(k)P(k— 1), 1)

where
(k) £ (R.+Re) ™" + De(k)P(k— 1) D] (k).

IV. PROBLEM FORMULATION

In this section, we formulate the problem of estimating
the viscosity in the Burgers equation in terms of the model
refinement architecture described in Section II.

In particular, we consider two problems. In the first prob-
lem, we estimate the viscosity in the Burgers equation using
RCMR. In the second problem, we estimate a parameter
relating the subgrid-scale stresses to the strain rate in the
modified Burgers equation using RCMR. In this paper, we
study the solutions of the Burgers equation on a periodic
domain.

We discretize the Burgers equation, and organize the
discretized equation such that the parameter to be estimated
is present only in the subsystem. Appropriate boundary
conditions are applied to make the domain periodic. Since
we are estimating a parameter, the modeled subsystem is a
static gain, which is updated by RCMR.

RCMR uses measurements of the solution u(x,z) of the
Burgers equation at a single point in the domain to update the
unknown parameter. Since RCMR utilizes the measurements
from the true and modeled system to estimate the subsystem
model, the accuracy and speed of model refinement are
expected to improve as the spectral content of the measure-
ments increases. This can be achieved by setting the initial
profile u(x,0) to be a sum of harmonics. This condition is
similar to, but not same as, the persistency of excitation
required for identification [16].

The Burgers equation is an unforced nonlinear convective
equation. Hence, a non-constant initial profile subsequently

convects and diffuses asymptotically to a constant solution,
at a rate defined by the viscosity v. However, two solution
profiles with same initial profile, but with different viscosity,
asymptotically reach the same solution. This means that
the difference between the two solutions converges to zero,
irrespective of the different values of viscosity. Therefore, an
initial profile with high spectral content is advantageous for
accurate estimation.

V. ESTIMATING THE VISCOSITY IN THE BURGERS
EQUATION

In this section, we consider the one-dimensional viscous
Burgers equation

9@ _a (o
ot  dx 2  Ox ox )’

where u(x,t) is a function of space and time, and the
constant V is the viscosity. The goal is to estimate v using
measurements of u at a single arbitrary location in the
domain.

(22)

A. Discretization of the Burgers equation

We discretize the Burgers equation using a forward Euler
approximation for the time derivative, a second-order accu-
rate upwind method for the convective term, and a second-
order accurate central difference scheme for the viscous term.
Note that u(x,f) is a continuous variable whose domain is
[0,1] for ¢ > 0, while u;(k) is a discrete variable defined on
the grid points j € {1,...,N} for k € N. Hence, at each grid
point,

wj(k+1) = u;(k)

- 2%(1.5%(1«)2 —2u; 1 (k)* +0.5u;_5(k)?)
A
+VEIZ(M;‘+1(7€)—2uj(k)+uj,1(k)). (23)

In this work, we assume u > 0, and hence the above scheme
is stable for a sufficiently small time step. To make the
domain infinite, periodic boundary conditions are enforced
by defining one ghost node at each end of the grid. The ghost

node O is juxtaposed with node 1 such that ug(k) 2 un(k),
and ghost node N+1 is juxtaposed with node N such that

i (k) 2 i (k).

Defining
URE[ k) w® . oax®) ] @4
we write (23) in vector form as
Ukk+1)= F(U(k))+W(k), (25)
Yo(k) = G(U(k)), (26)
Y(k)= H(U(k)), 27)

where Y (k) is the input to the unknown subsystem, and
W (k) is the output of the unknown subsystem. H is defined
such that W (k) = vY (k). Thus, F and H are vector functions,
appropriately defined using (23). Note that Gs(q) = v.
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B. Numerical simulation of the Burgers equation

We consider the finite domain x € [0,1], and partition
the domain by constructing a uniform grid with N = 100
nodes, so that Ax = ﬁ The time step Ar =5 X 1073

|umax|At

is chosen such that the CFL condition —3 = < Cpax is
satisfied. The Courant number Cyax depends on the chosen
discretization method [17]. In this paper, we set Cpax = 0.25.
We assume the true value v =0.15. The boundary conditions
are periodic. Finally, the initial profile u(x,0) is defined as

u(x,0) = 3+sin(27x) + sin(4nx + 3) + sin(147wx + 5).
(28)

Next, we define the measurement Yp(k) 2 uog(k), where
the grid point is chosen arbitrarily. (25)—(27) along with
the true value of v constitutes the true system. Figure 2
shows the solution U(k) at three time instants, as well as
the measurement Y(k) for the numerical simulation of the
true system.

32 .

—_ 3r
53
>° 28 .
26} .
, . | ! ,
05 1 15 2 25 3
(b) Time step (k) x10*

Fig. 2: Numerical simulation of the Burgers equation. The initial profile
is defined in (28). (a) shows the solution U (k) at k = 100, 200, and 300.
Note that the solution advects towards the right and diffuses simultaneously.
(b) shows the measurement Yy(k) = uogg(k). Note that the measurement
converges to a finite value that depends on the initial profile u(x,0) used in
the simulation.

C. RCMR

We estimate the viscosity in the Burgers equation using
RCMR. The main system model is defined as in (25)—(27).
Since W (k) = vY(k), we define a zeroth-order subsystem
model W (k) = Y (k)6, and update 6 by using the RCMR
algorithm in section III. Gy is chosen as a finite impulse filter
so that D¢(q) = 1. Further, we use N;(q) = q~2, Rg = 1073,
and 6(0) = 0. (25)—(27) along with the estimated viscosity 0
constitutes the modeled system. Figure 3 shows the RCMR
estimates of the unknown viscosity.

Next, we investigate the effect of the initial profile on
accuracy of the estimate. We set the initial profile to be a

0.04 0
0.02 2
N 4
N 0 >
o 6
-0.02 -
-0.04 -10
0 1 2 3 0 1 2 3
(a) Time step (k) x10* (b) Time step (k) x10*
05 34
True
0.4 —-—- Estimate
03
>
02} » 238
A —Yo(k)
0.1 26 —-=- Y (k)
0 24
0 1 2 3 0 1 2 3

(c) Time step (k) x10* (d) Time step (k) x10*

Fig. 3: Estimation of viscosity using RCMR in the Burgers equation. (a)
shows the performance z(k). RCMR minimizes a cost function based on
z(k) to estimate the subsystem model. (b) shows the performance z(k) on
logarithmic scale. (c) shows the estimate of viscosity 6. (d) shows the
measurement Yy(k) from the true system as well as ¥p(k) computed by
the main system model.

sum of asynchronous harmonics as

n
u(x,0) =4+ % Y sin(27xi+i%). (29)
i=1
Note that the initial profile is centered at a value of 4.
This choice is arbitrary as long as the CFL condition is
satisfied and u(x,#) > 0 on the entire domain. The initial
profile defined by (29) is a Schroeder-phased signal [18].
These signals minimize the peak-to-peak amplitude of multi-
sine signals. This choice furnishes a large number of small
amplitude peaks in the initial profile in the domain, instead
of a small number of high amplitude peaks where the phase
in (29) is zero.

Figure 4 shows the effect of various initial profiles on the
estimate and suggests that increasing the spectral content
of the initial profile increases the accuracy as well as
convergence speed of the estimate.

In this section, we applied RCMR to estimate the kine-
matic viscosity in the Burgers equation using the measure-
ment of the solution at one point. Further, we showed the
effect of spectral content of the initial profile on the quality
of the estimate.

VI. PARAMETER ESTIMATION IN THE MODIFIED
BURGERS EQUATION

In this section, we consider the modified one-dimensional
Burgers equation

du, 0 _ 0 (au) 1ot
ot dx2 Ix\ Ix 2 0x
This equation has the additional term 7, which, in the context
of large eddy simulations (LES), captures the effect of
subgrid-scales (SGS) of the flow. LES is a technique that

lies between direct numerical simulation (in which all scales
are resolved), and averaging techniques (which model all

(30)
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Fig. 4: Estimation of viscosity using RCMR in the Burgers equation with
various initial profiles. The solid red line is the true value v = 0.15, and
the dashed blue line is the estimate 6. n is the number of harmonics in the
initial profile, which is defined by (29). This figure shows that increasing the
spectral content of the initial profile by increasing the number of harmonics
increases both the accuracy and speed of convergence of the estimate.

scales other than the mean). In LES, large-scale features are
resolved through numerical computation of the underlying
physics, while features that are smaller than the mesh size
are modeled.

The SGS stress 7 represents the contribution of unresolved
scales to the total momentum transport. A classical model for
SGS stress is the Smagorinsky-type eddy viscosity model
[19], which relates the subgrid stress tensor to the resolved
strain rate

ou| ou

ox| ox’

where Cs is the Smagorinsky coefficient, and Ay is a charac-

1>

T=—2(CsAp)? (31)

teristic width. Commonly, % =1 or 2, we assume Ay = Ax.
For details, see Chapter 1 of [20]. The goal is to estimate Cg
using measurements of u(x,#) at a single arbitrary location
in the domain.

Note that (31) can be expressed as

d
t= oSt (32)
ox
where E (CsAf)2 % . Rewriting (30) with T given by (32)
yields
ou du> 9

du
8t+8x2_8x<(v+u)ax>' (33)
The effect of including the SGS stresses is equivalent to
adding artificial viscosity to the system. Note that the ar-
tificial viscosity depends on both spatially and temporally
evolving variables.

Similar to the qualitative behavior of the Burgers equation,
the artificial viscosity in the modified Burgers equation only
regulates the rate of diffusion. Hence, two solution profiles
with same initial profiles, but with different Smagorinsky co-
efficients, asymptotically reach the same solution. Therefore,
it is necessary that the initial profile u(x,0) have sufficient

spectral content for accurate estimation of the viscosity,
which can be realized by choosing the initial profile as a
sum of harmonics.

A. Discretization of modified Burgers Equation

We discretize the Burgers equation using forward Euler
approximation for the time derivative and the first spatial
derivatives, a second-order scheme for the convective term,
and a central difference scheme for the viscous term. Note
that u(x,) is a continuous variable whose domain is [0, 1] for
t >0, while u;(k) is a discrete variable defined on the grid
points j € {1,...,N} for k € N. Hence, at each grid point,

uj(k+1) = u;(k)

— s (1:5u ()% —2u;1 (k)* +0.5u;_2(k)%)
Ve 1 ()~ 20y (8) 1 ()
e (1 (9 = 00| (i a (6) — 58)

— [uj(k) —uj1 (k)| (uj(k) —uj—1 (K)), (34)

where ¢ é C%. To make the domain infinite, periodic bound-
ary conditions are enforced by defining two ghost nodes at
both ends of the grid as in Section V.

We define U (k) as defined in Section V, and express the
true system similar to (25)—(27), where F, G, and H are
defined appropriately using (34). Note that Gs(q) = c.

B. Numerical simulation of the modified Burgers equation

We consider the same domain as defined in Section (V).
The time step Ar = 5 x 10™* is according to the CFL
condition. We assume the true value v = 0.05, and ¢ = 0.05.
The boundary conditions are periodic. Finally, the initial
profile u(x,0) is arbitrarily defined as

1 6
u(x,0) =4+ - Y sin(2mxi+ 7). (35)
i=1

We define the measurement Yy(k) E uog (k). (25)-(27)
along with the true values of v and c¢ constitutes the true
system.

C. RCMR

We estimate the parameter ¢ in the modified Burgers
equation using RCMR. The main system model is (25)—(27),
defined appropriately using (34). Since W (k) = cY (k), we
define a zeroth order subsystem model W (k) = ¥ (k)6, and
update 6 by using the RCMR algorithm in section III. Gy is
chosen as a finite impulse filter, thus, D¢(q) = 1. N¢(q) = q 2,
Rg = 107>, Figure 5 shows the estimate.

Next, we investigate the effect of initial profiles on accu-
racy of the estimate. The initial profiles are defined by (29).
Figure 6 shows the effect of various initial profiles on the
estimate.

In this section, we applied RCMR to estimate the pa-
rameter relating the SGS stresses and the strain tensor in
the modified Burgers equation using the measurement of
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Fig. 5: Estimation of viscosity using RCMR in the modified Burgers
equation. (a) shows the performance z(k). RCMR minimizes a cost function
based on z(k) to estimate the subsystem model. (b) shows the performance
z(k) on logarithmic scale. (c) shows the estimate of viscosity, 6. (d) shows
the measurement Yo(k) from the true system and fo(k) computed by the
main system model.
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Fig. 6: Estimation of the parameter ¢ using RCMR in the modified Burgers
equation with different initial profiles. The solid red line is the true value
¢ = 0.05, and the dashed blue line is the estimate 0. n is the number of
harmonics in the initial profile.This figure shows that increasing the spectral
content of the initial profile increases the accuracy as well as convergence
speed of the estimate.

the solution at one point. Further, we showed the effect of
spectral content of the initial profile on the quality of the
estimate.

VII. CONCLUSIONS

In this paper, we showed that retrospective model refine-
ment can be used to estimate inaccessible parameters in
a nonlinear system with limited measurements. This is a
particularly useful application of RCMR, as it can be used
to refine large scale CFD models, which are usually based
on nonlinear models of physical phenomena.

We also showed that the spectral content of the initial
profile is particularly important for the estimation in unforced
systems where the asymptotic behavior of the system is

relatively insensitive to the choice of parameters to be esti-
mated. In fact, asymptotic solutions of the Burgers equation
considered in this paper are insensitive to the estimated
parameters.

Continuing work is focused on estimating the functional
relationship between the subgrid stress tensor and the re-
solved strain rate using measurements from direct numerical
simulations. Obtaining such an estimate is expected to result
in more accurate, data-driven subgrid-scale models.

REFERENCES

[1] A. M. D’Amato, A. J. Ridley, and D. S. Bernstein, “Retrospective-
cost-based adaptive model refinement for the ionosphere and thermo-
sphere,” Statistical Analysis and Data Mining, vol. 4, pp. 446-458,
2011.

[2] A. M. D’Amato, S. L. Kukreja, and D. S. Bernstein, “Data-based
model refinement using retrospective cost optimization,” in Proc. AIAA
Guid. Nav. Contr. Conf., Toronto, August 2010, alAA-2010-7889-784.

[3] M. A. Santillo and D. S. Bernstein, “Adaptive Control Based on
Retrospective Cost Optimization,” J. Guid. Contr. Dyn., vol. 33, pp.
289-304, 2010.

[4] J. B. Hoagg and D. S. Bernstein, “Retrospective Cost Model Reference
Adaptive Control for Nonminimum-Phase Systems,” J. Guid. Contr.
Dyn., vol. 35, pp. 1767-1786, 2012.

[5] A. A. Ali, A. Goel, A. J. Ridley, and D. S. Bernstein, “Retrospective-
cost-based adaptive input and state estimation for the ionosphere—
thermosphere,” J. of Aerospace Information Systems, pp. 1-17, 2015.

[6] A. G. Burrell, A. Goel, A. Ridley, and D. Bernstein, “Correction
of the photoelectron heating efficiency within the global ionosphere-
thermosphere model using retrospective cost model refinement,” J. of
Atmospheric and Solar-Terrestrial Physics, vol. 124, pp. 30-38, 2015.

[71 N. Smaoui, “Boundary and distributed control of the viscous Burgers
equation,” Journal of Computational and Applied Mathematics, vol.
182, no. 1, pp. 91-104, 2005.

[8] J. Marburger and R. Pinnau, “Optimal control for Burgers equation
using particle methods,” arXiv preprint arXiv:1309.7619, 2013.

[9] J. A. Burns and S. Kang, “A control problem for Burgers equation
with bounded input/output,” Nonlinear Dynamics, vol. 2, no. 4, pp.
235-262, 1991.

[10] M. Krstic, “On global stabilization of Burgers equation by boundary
control,” Systems & Control Letters, vol. 37, no. 3, pp. 123—141, 1999.

[11] S. Kutluay, A. Bahadir, and A. Ozde§, “Numerical solution of one-
dimensional Burgers equation: explicit and exact-explicit finite differ-
ence methods,” Journal of Computational and Applied Mathematics,
vol. 103, no. 2, pp. 251-261, 1999.

[12] B.Inan and A. R. Bahadir, “Numerical solution of the one-dimensional
Burgers equation: Implicit and fully implicit exponential finite differ-
ence methods,” Pramana, vol. 81, no. 4, pp. 547-556, 2013.

[13] M. FE. Hamilton, D. T. Blackstock et al., Nonlinear acoustics.
demic press, 1998, vol. 427.

[14] A. Aw and M. Rascle, “Resurrection of “second order” models of
traffic flow,” SIAM journal on applied mathematics, vol. 60, no. 3, pp.
916-938, 2000.

[15] C.-K. Cho, S. Kang, and Y. Kwon, “Parameter estimation problem
for nonhysteretic infiltration in soil,” Journal of Korean Society for
Industrial and Applied Mathematics, vol. 4, no. 1, pp. 11-22, 2000.

[16] N. Shimkin and A. Feuer, “Persistency of excitation in continuous-
time systems,” Systems & control letters, vol. 9, no. 3, pp. 225-233,
1987.

[17] R. Courant, K. Friedrichs, and H. Lewy, “On the partial difference
equations of mathematical physics,” IBM journal of Research and
Development, vol. 11, no. 2, pp. 215-234, 1967.

[18] M. R. Schroeder, “Synthesis of low-peak-factor signals and binary se-
quences with low autocorrelation,” IEEE Trans. Infor. Theory, vol. 16,
no. 1, pp. 85-89, January 1970.

[19] J. Smagorinsky, “General circulation experiments with the primitive
equations: 1. the basic experiment*,” Monthly weather review, vol. 91,
no. 3, pp. 99-164, 1963.

[20] B. J. Geurts, Elements of Direct and Large-Eddy simulation. R.T.
Edwards, 2004.

Aca-

6988



