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Abstract— This paper considers attitude estimation of
a gravity-gradient-stabilized spacecraft. In particular, an
observability analysis based on the linearized equations of
motion, as well as numerical simulations, show that it is
possible to estimate attitude using only a rate gyroscope.
The ability to estimate the attitude using only a rate
gyroscope reduces the need for additional sensing hardware
such as sun sensors and horizon sensors. These savings
allow for more mass, volume, and power resources to
be devoted to scientific payloads, communications, and
other operations, which in the context of Earth orbiting
microsatellites and nanosatellites, is highly desirable.

I. INTRODUCTION

Earth-pointing spacecraft can be designed so that
Earth’s gravitational field acts to stabilize the space-
craft’s attitude through a gravity-gradient torque. One of
the attractive features of gravity-gradient stabilization is
that it is passive. By exploiting the intrinsic dynamics
of the satellite orbiting the Earth, attitude stabilization
is achieved without consuming power and without ded-
icated hardware for sensing or actuation [1, pp. 282].
Numerous spacecraft have been designed, launched, and
placed in service that rely on gravity-gradient stabiliza-
tion including, for example, GEOS-II launched in 1968
[2], the Radio Astronomy Explorer (RAE-1) Satellite
launched in 1968 [3], the Long Duration Exposure
Facility (LDEF) launched in 1984 [4], and the Orsted
satellite launched in 1999 [5].

The recent interest in small spacecraft, such as mi-
crosatellites and nanosatellites, have introduced the need
for small, light-weight, attitude sensing and control sys-
tems that consume little power and require only limited
computing requirements. As a result, with respect to
attitude sensing and attitude estimation, the use of star-
trackers, sun sensors, and horizon sensors, must be care-
fully budgeted. With respect to attitude control, some
research has been done on incorporation of gravity-
gradient stabilization into the design of small satellites
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[6], [7], [8], [9]. By reducing the hardware and software
resources required for attitude sensing and control, more
resources can be devoted to mission operations.

The main contribution of this paper is demonstrating
that the restorative nature of the gravity-gradient torque
enables the attitude of the spacecraft to be estimated
using a rate gyroscope (rate gyro) and an extended
Kalman filter (EKF). In Section II, the nonlinear atti-
tude dynamics of a spacecraft under the influence of a
gravity-gradient torque is reviewed and the linearized
equations of motion assuming small angles about an
Earth-pointing attitude are presented. Section II also
presents an observability analysis based on the linearized
equations of motion showing that with angular rate
measurements, the spacecraft’s attitude is observable.
Section III outlines the linear Kalman filter and the
EKF. Finally, Section IV presents simulation results.
Specifically, the attitude of the linearized system and
the attitude of the nonlinear system are successfully
estimated using a Kalman filter and an EKF, respectively.

II. LINEARIZED ATTITUDE DYNAMICS

Although the kinematics and dynamics for a gravity-
gradient-stabilized spacecraft are well known [1], [10],
[11], for completeness, derivation of the relevant equa-
tions of motion will be represented here. The following
derivation follows that of [10, pp. 268-272]. Consider
a spacecraft in a circular low-Earth orbit, with orbit
radius r, with orbital rate ωo =

√
µ
r3 , and with an

inertia matrix resolved in the spacecraft’s body-fixed
frame, denoted Fb, given by Ib = diag {I1, I2, I3}. Let
b−→1, b−→2, and b−→3 represent the physical basis vectors of
Fb. In addition to Fb, consider also the frames Fi and
Fo where Fi is the Earth-centered inertial (ECI) frame
and Fo is the orbit frame. The physical basis vectors
composing Fo are o−→1, o−→2, and o−→3, as illustrated in
Fig. 1. In Fig. 1, r−→ is the spacecraft position relative to
the center of the Earth. The nonlinear attitude dynamics
including the gravity gradient torque are

Ibω̇bib + ωbib
×

Ibωbib = τ ggb + τ cb + w, (1)

where ωbib is the angular velocity of the spacecraft body
frame relative to the ECI frame resolved in the body
frame, (·)× is the cross matrix [1, pp. 546], τ cb are
control torques provided by an actuation system such as
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Fig. 1. Spacecraft in orbit around the Earth.

magnetic torque rods, w is a disturbance torque, and τ ggb
is the gravity-gradient torque resolved in the spacecraft
body frame. The gravity-gradient torque is given by [10,
p. 269]

τ ggb =
3µ

r5
r×b Ibrb =

3µ

r5
Cbor×o CT

boIbCboro, (2)

where µ is Earth’s gravitational parameter, rb is the
spacecraft orbital position resolved in the spacecraft
body frame, Cbo is the direction cosine matrix of the
spacecraft body frame relative to the orbit frame, and
ro = [0 0 − r]T is the position of the spacecraft
relative to the center of the Earth resolved in the orbit
frame. The control torque τ cb is included for generality.
For instance, often natural oscillations associated with
a gravity-gradient-stabilized spacecraft are dampened
using magnetic torque rods [11, pp. 126-131].

It is desired to determine the attitude of the spacecraft
relative to the orbital frame Fo. This attitude described
by Cbo can also be parameterized by a 3-2-1 Euler
sequence, where ψ is a rotation about o−→3 of the orbit
frame, θ is a rotation about the 2-axis of the intermediate
frame, and φ is a rotation about b−→1 of the body-
fixed frame. The relationship between Cbo and the Euler
angles is given by

Cbo = C1(φ)C2(θ)C3(ψ)

=

 cθcψ cθsψ −sθ
sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ
cφsθcψ + sφsψ cφsθsψ − sφcψ cφcθ

 ,
where sb = sin b and cb = cos b. The angular velocity of
Fb relative to Fo resolved in Fb is related to the Euler
angle rates via

ωbob =

1 0 − sin θ
0 cosφ sinφ cos θ
0 − sinφ cosφ cos θ

φ̇θ̇
ψ̇

 = Sθ̇, (3)

where θ = [φ θ ψ]T is a column matrix of Euler
angles. Using these relations, the angular velocity of the
spacecraft body frame relative to the ECI frame resolved

in the body frame is

ωbib = ωbob + Cboωoio (4)

= Sθ̇ + Cboωoio , (5)

where the angular velocity of the orbit frame relative
to the ECI frame resolved in the orbit frame is ωoio =
[0 −ωo 0]T. For a circular orbit, ωoio is constant. Taking
the time derivative of ωbib yields

ω̇bib = ω̇bob − ωboo
×

Cboωoio (6)

= Sθ̈ + Ṡθ̇ − ωboo
×

Cboωoio , (7)

where Ċbo = −ωboo
×Cbo has been used in going from

from (4) to (6) [1, p. 23]. Substituting (4) and (6) into
(1) and solving for ω̇bob results in

ω̇bob = I−1
b (ωbob + Cboωoio )×Ib(ωbob + Cboωoio )

+ ωbob
×

Cboωoio +
3µ

r5
I−1
b (Cboro)×IbCboro

+ I−1
b τ

c
b + I−1

b w, (8)

Likewise, substituting (5) and (7) into (1) allows θ̈ to
be solved for. By using a small angle assumption,

sinφ ≈ φ, cosφ ≈ 1, sin θ ≈ θ,
cos θ ≈ 1, sinψ ≈ ψ, cosψ ≈ 1,

the linearized equations of motion for the spacecraft’s
attitude are then given by [10, pp. 268-272][
θ̇

θ̈

]
=

[
03×3 13×3

A1 A2

] [
θ

θ̇

]
+

[
03×3

I−1
b

]
u +

[
03×3

I−1
b

]
w,

(9)
where

A1 = ω2
o diag

{
4

(I3 − I2)

I1
, 3

(I3 − I1)

I2
,

(I1 − I2)

I3

}
,

A2 =

 0 0 ωo
I1−I2+I3

I1
0 0 0

−ωo I1−I2+I3I3
0 0

 ,
1n×n denotes the n× n identity matrix, 0n×m denotes
a n × m matrix full of zeros and u is the linearized
system’s control input.

Measurements from a rate gyro are of the form

y = ωbib + β + ν (10)

where β is a measurement bias and ν is measurement
noise. In the present analysis, the gyro bias is not
considered, but will be considered in future work. Using
(4) and neglecting β, this measurement can be written
in terms of θ̇ as

y = ωboo + Cboωoio + ν (11)

= Sθ̇ + Cboωoio + ν.
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Using a small angle assumption S ≈ 13×3 and C ≈
13×3, and subtracting ωoio from y results in the lin-
earized measurement equation

y = θ̇ + ν

=
[
03×3 13×3

] [θ
θ̇

]
+ ν. (12)

Equation (9) and (12) can be written succinctly as

ẋ = Ax + Bu + Γww, y = Cx + ν,

where x = [θT θ̇
T

]T. To verify that this linearized
system is observable, the rank of the observability ma-
trix must be n where n is the number of states. The
observability matrix is given by

O3×3 =


C

CA
CA2

...
CAn−1


The first two blocks of this matrix are[

C
CA

]
=

[
03×3 13×3

A1 A2

]
which is already rank 6 provided that I1 6= I2, I1 6= I3,
and I2 6= I3. Given that n = 6, the system is observable
provided the principal inertias are unique.

III. ATTITUDE ESTIMATION

A. Kalman Filter

A Kalman filter is used to estimate the attitude of the
linearized spacecraft system using angular rate measure-
ments from a rate gyro. Defining the state of the Kalman
filter to be the estimate of the attitude and angular rates,
that is x̂ = [θ̂

T ˙̂
θT]T, then the estimate of the attitude

and angular rates can be computed via [12, pp. 235-236]

˙̂x = Ax̂ + Bu + K(y− Cx̂), K = PCTR−1. (13)

The covariance of the state estimation error, P, evolves
according to Ṗ = AP + PAT − PCTR−1CP + ΓwQΓT

w,
where Q = QT ≥ 0 and R = RT > 0 are the covariance
matrices of the process noise and measurement noise,
respectively.

B. Extended Kalman Filter

To accurately estimate the state of the nonlinear
spacecraft system, the Kalman filter is modified so that
the linearized system equations are linearized about the
current state estimate. This modification results in an
implementation of the extended Kalman filter (EKF).
The state estimate is given by [12, pp. 401]

˙̂x = f(x̂,u,0) + K(y − h(x̂,0))

where x = [θT ωbob
T

]T, and u = τ cb is the control input
for the nonlinear system. The expression for θ̇ and the
expression for ωbob that compose f(x,u,w) are taken
from (3) and (8), respectively. For the nonlinear system,
the measurement y = h(x,ν) is the angular velocity
ωbib as given in (11) rather than the Euler angle rates.
The gain matrix K is given by K = PHTR−1 where

H =
∂h(x,ν)

∂x

∣∣∣∣
x̂,0

is the Jacobian of the measurement model evaluated at
the current state estimate. The time-rate-of-change of P
is given by Ṗ = FP + PFT − PHTR−1HP + GQGT,
where

F =
∂f(x,u,w)

∂x

∣∣∣∣
x̂,u,0

G =
∂f(x,u,w)

∂w

∣∣∣∣
x̂,u,0

are the Jacobians of the process model evaluated at the
current state estimate and control input, and Q = QT ≥
0 and R = RT > 0 are the covariance matrices of the
process noise and measurement noise, respectively.

IV. SIMULATION RESULTS

To verify that it is indeed possible to estimate
the attitude of a gravity-gradient-stabilized spacecraft
using rate gyro measurements only, a set of simu-
lated test cases will now be presented. A satellite in
a circular Keplerian orbit with orbital radius r =
6821.2 [km], inclination i = 87◦, right ascension of
the ascending node Ω = π

2 [rad], and initial mean
anomaly M0 = 0 [rad] is simulated. The orbital rate
is ωo = 1.1207 × 10−3 [rad/s], and the spacecraft
inertia is Ib = diag {0.0612, 0.0664, 0.0066} [kg·m2].
The initial attitude of the spacecraft’s body-fixed
frame relative to the ECI frame is qbi(0) =[
0.3207 −0.4755 0.5892 0.5690

]T
, where qbi is

the quaternion representation of Cbi, and the ini-
tial angular velocity of the spacecraft ωbib (0) =
[−4.857 −0.181 1.174]T×10−4 [rad/s]. Relative to the
orbit frame, the initial attitude and angular velocity are
θ(0) = [−0.1075 0.3742 0.1059]T [rad] and ωbob (0) =
[−0.375 1.085 0.280]T × 10−3 [rad/s]. No additional
torque inputs are considered, and as such, u = 0 and
w = 0.

A. Kalman Filter Estimating the State of the Linearized
System

The first case considered is the application of a
Kalman filter, from (13), to estimate the Euler angles and
Euler angle rates associated with the linearized system.
The Kalman filter initial estimate is x̂0 = 0, the initial
covariance matrix is P0 = diag{13×3, 10−4 × 13×3

[(rad/s)2]}, Q = (1 × 10−7)2 × 13×3 [(N·m)2], and
R = (5 × 10−6)2 × 13×3 [(rad/s)2]. Measurements are
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corrupted by a zero-mean Gaussian noise process ν,
as indicated in (12). This noise process had variances
σ2
ν = (1 × 10−6)2 [(rad/s)2] in each component with a

characteristic length-scale of 10 [s], and was modelled
using the method outlined in [13, Chap. 2, Sec. 2]. The
simulation duration is 5 h. The true Euler angles and
rate, provided by simulation, and the estimated Euler
angles and rates provided by the Kalman filter are shown
in Fig. 2 and Fig. 3. The estimation errors are shown
in Fig. 4 and Fig. 5. From these results it is apparent
that state estimates converge to the true states. These
results indicate it is possible to estimate the attitude for
the linearized dynamics of a gravity-gradient-stabilized
spacecraft using only angular rate measurements using
a Kalman filter.

B. EKF Estimating the State of the Nonlinear System

The second case considered is the application of an
EKF to estimate the Euler angles and angular velocity
of the nonlinear gravity-gradient-spacecraft system as
described by (3) and (8). The EKF initial estimate
is x̂0 = 0, the initial covariance matrix is P0 =
diag{13×3, 10−4×13×3 [(rad/s)2]}, Q = (1×10−7)2×
13×3 [(N·m)2], and R = (5× 10−6)2× 13×3 [(rad/s)2].
As with the linear case, the angular velocity measure-
ment provided by a rate gyro is corrupted by a zero-
mean Gaussian process with variances σ2

ν = (1×10−6)2

[(rad/s)2] in each component and a characteristic length-
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Fig. 2. True and estimated Euler angles for the linearized dynamics
using a Kalman filter.

scale of 10 [s]. Again, the simulation duration is 5 h.
The true Euler angles and angular velocities, provided by
simulation, and the estimated Euler angles and angular
velocities provided by the EKF are shown in Fig. 6 and
Fig. 7. Estimation errors are shown in Fig. 8 and Fig 9.
These results show that the state estimates converge to
the true states indicating it is also possible to estimate the
attitude of a gravity-gradient-stabilized spacecraft using
only angular velocity measurements with an EKF.

V. CONCLUSIONS

In this study the ability to estimate the attitude of a
gravity-gradient-stabilized spacecraft using only a rate
gyro is demonstrated. The nonlinear attitude dynamics
for a spacecraft under the influence of a gravity-gradient
torque are first reviewed. These equations of motion
are then linearized about an Earth pointing attitude,
and a linear observability analysis demonstrates that
the attitude of the linear system is observable using
angular rate measurements provided by a rate gyro only.
Simulation results show that the attitude estimate of
a spacecraft under the influence of a gravity-gradient
torque converges to the true attitude for both a Kalman
filter implemented on the linearized system and an EKF
implemented on the nonlinear system. The ability to
estimate the attitude of a satellite using only angular rate
measurements from a rate gyro is particularly attractive
in the context of microsatellites and nanosatellites. In the
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Fig. 3. True and estimated Euler angle rates for the linearized
dynamics using a Kalman filter.
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Fig. 4. Estimation error associated with Euler angles for the linearized
dynamics using a Kalman filter.
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Fig. 5. Estimation error associated with Euler angle rates for the
linearized dynamics using a Kalman filter.
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Fig. 6. True and estimated Euler angles for nonlinear dynamics with
EKF.
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Fig. 7. True and estimated angular velocity for nonlinear dynamics
with EKF.
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Fig. 8. Estimation error for Euler angles for nonlinear dynamics with
EKF.

0 1 2 3 4 5

ω
bo b,
1
−
ω̂
bo b,
1
[r
ad

/
s]

×10
-4

-1

0

1
Est. Error
±3σ Bounds

0 1 2 3 4 5

ω
bo b,
2
−
ω̂
bo b,
2
[r
ad

/
s]

×10
-4

-1

0

1

t [h]
0 1 2 3 4 5

ω
bo b,
3
−
ω̂
bo b,
3
[r
ad

/s
] ×10

-4

-1

0

1

Fig. 9. Estimation error for angular velocities for nonlinear dynamics
with EKF.

case of small spacecraft, with their very strict mass and
power requirements, rate-gyro-based attitude estimation
can allow more resources to be budgeted to mission sup-
porting operations instead of attitude estimation. Future
work will consider using the attitude estimates acquired
via a rate gyro plus EKF for attitude control within a
feedback control architecture.
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