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Abstract— For stably stabilizable plants, that is, plants that
can be stabilized by asymptotically stable controllers, LQG
controllers are often unstable. This typically occurs in the case
where the plant is unstable or nonminimum phase (NMP). In
this paper, we apply retrospective cost adaptive control (RCAC)
to stably stabilize plants whose LQG controllers are unstable.
RCAC is implemented by using a composite FIR/IIR controller
consisting of a high-order FIR component and a low-order
IIR component. Asymptotic stability of the IIR component
is enforced at each step by reflecting its unstable poles into
the open unit disk. These controllers are used for command
following and disturbance rejection for Lyapunov-stable and
NMP plants.

I. INTRODUCTION

Unstable controllers are undesirable for multiple reasons:
they are difficult to start up; they are more susceptible to the
adverse effects of saturation; and momentary disconnection
from the plant due to delays or data loss can lead to
divergence [1]. Stable stabilization, that is, the ability to
stabilize a plant using an asymptotically stable controller, is
thus a crucial issue in feedback control. As discussed in [2,
3], some unstable plants can be stabilized only by unstable
controllers; such plants are pathologically difficult to control
but, fortunately, are rare in practice. These plants are outside
the scope of the present paper.

For plants that are stably stabilizable, it is obviously desir-
able to use an asymptotically stable controller, whether the
objective is stabilization, command following, or disturbance
rejection. For plants that are stably stabilizable, however,
it is a well-known but unfortunate fact of feedback control
that H2-optimal and H∞-optimal dynamic control laws are
often unstable; this typically occurs if the plant is unstable
or nonminimum phase (NMP). If the optimal controller
is unstable, then all asymptotically stable controllers are
necessarily suboptimal; it is thus of interest to determine the
performance tradeoff due to the restriction to asymptotically
stable controllers.

In some cases, it may be possible to obtain asymptotically
stable suboptimal control laws by adjusting the weights of
the cost function, but such trial-and-error techniques lack
guarantees of success. In addition, by modifying the weights,
the resulting controller does not address the performance
objective associated with the original weights. Although
more systematic techniques have been developed [4–7],
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these techniques add computational complexity and are not
guaranteed to be successful.

The present paper focuses on the problem of obtaining
asymptotically stable controllers within the context of adap-
tive control. In particular, we consider retrospective cost
adaptive control (RCAC), which is a direct adaptive discrete-
time control law that can be used for stabilization, command
following (including model reference adaptive control), and
disturbance rejection [8–11]. As shown in [11], RCAC
controllers are similar to LQG controllers. Consequently,
in cases where the LQG controller is unstable, the RCAC
controller may converge to an unstable controller. The goal
of the present paper is to modify RCAC in order to avoid
convergence to unstable controllers.

There are various ad hoc techniques that can be used to
enforce asymptotic stability of the RCAC controller. For
example, if the updated controller Gc,k is unstable, then
Gc,k can be modified by replacing each unstable pole by its
reflection inside the unit circle. Unfortunately, this requires
computation at each step of all of the controller poles as well
as the construction of the modified controller. In addition,
this approach can destabilize the closed-loop system. A more
rigorous approach would be to update the controller subject
to a stability constraint; however, this constraint is not convex
and thus is computationally expensive.

The approach taken in the present paper is to adapt FIR or
composite FIR/IIR (CFI) control laws, that is, control laws
all or most of whose poles are fixed at the origin. A related
approach is developed in [12], where the motivation for
sparse controllers is based on computational complexity and
accuracy rather than controller stability. For a CFI controller
comprised of the product of high-order FIR component and
a low-order IIR component, the low-order IIR component
provides the ability to adaptively develop an internal model
or to facilitate pole placement. Asymptotic stability of the
IIR component of the controller is enforced at each step by
reflecting its unstable poles into the open unit disk. Since
the IIR component is low order, the computational task is
alleviated relative to the use of a fully IIR controller.

II. ADAPTIVE STANDARD PROBLEM

Consider the standard problem consisting of the discrete-
time, linear time-invariant system

x(k + 1) = Ax(k) +Bu(k) +D1w(k), (1)
y(k) = Cx(k) +D0u(k) +D2w(k), (2)
z(k) = E1x(k) + E2u(k) + E0w(k), (3)
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where x(k) ∈ Rn is the state, y(k) ∈ Rly is the measure-
ment, u(k) ∈ Rlu is the control input, w(k) ∈ Rlw is the
exogenous input, and z(k) ∈ Rlz is the performance variable.
The goal is to develop a feedback or feedforward controller
that operates on y to minimize z in the presence of the
exogenous signal w. Depending on the choice of D1, D2, and
E0, the components of w can represent either a command
signal r to be followed, an external disturbance d to be
rejected, or sensor noise v that corrupts the measurement.
Depending on the application, components of w may or
may not be measured. For fixed-gain control, z need not
be measured, whereas, for adaptive control, z is assumed to
be measured.

Using the forward shift operator q, we can rewrite (1)–(3)
as

y(k) = Gyw(q)w(k) +Gyu(q)u(k), (4)
z(k) = Gzw(q)w(k) +Gzu(q)u(k), (5)

where

Gyw(q)
4
= D−1(q)Nyw(q) = C(qI −A)−1D1 +D2, (6)

Gyu(q)
4
= D−1(q)Nyu(q) = C(qI −A)−1B +D0, (7)

Gzw(q)
4
= D−1(q)Nzw(q) = E1(qI −A)−1D1 + E0, (8)

Gzu(q)
4
= D−1(q)Nzu(q) = E1(qI −A)−1B + E2. (9)

The controller has the form u(k) = Gc,k(q)y(k), where
the adaptive controller Gc,k is updated at each step. Figure 1
illustrates the adaptive standard problem, which consists of
(4)–(9) with the adaptive controller Gc,k.

Gzw Gzu

GyuGyw

Gc,k

w z

yu

Gc,k

Fig. 1: Adaptive standard problem. The controller Gc,k is updated at each
step and thus is linear time varying.

A. Adaptive Servo Problem

The adaptive servo problem is a special case of the
adaptive standard problem with

x(k + 1) = Ax(k) +Bu(k) + D̄1d(k), (10)
y0(k) = C̄x(k) + D̄0u(k), (11)
e0(k) = r(k)− y0(k), (12)
yn(k) = y0(k) + v(k), (13)
en(k) = r(k)− yn(k). (14)

We can rewrite (11) in terms of q as

y0(k) = Gu(q)u(k) +Gd(q)d(k), (15)

where

Gu(q)
4
= C̄(qI −A)−1B + D̄0, (16)

Gd(q)
4
= C̄(qI −A)−1D̄1. (17)

In the notation of the standard problem,

w =

 r
d
v

 , y = en, z = en. (18)

The measured error signal en is the difference between
the command r and the measurement yn, which may be
corrupted by noise. Since only the measured error signal
available for feedback, it serves as the performance variable
within RCAC. However, the true error signal e0, which
is the difference between the command r and the plant
output y0, provides a true measure of the command-following
performance. Since this signal is not available for feedback,
it is used only as a diagnostic. If, however, sensor noise
is absent, then en and e0 are identical. In all examples in
this paper, we consider the case where Gd = Gu, which is
denoted by G.

III. RCAC ALGORITHM

A. Controller Structure

Define the IIR dynamic controller

u(k) =

nc∑
i=1

Pi(k)u(k − i) +

nc∑
i=1

Qi(k)y(k − i), (19)

where Pi(k) ∈ Rlu×lu and Qi(k) ∈ Rlu×ly are the controller
coefficient matrices. We rewrite (19) as

u(k) = Φ(k)θ(k), (20)

where the regressor matrix Φ(k) is defined by

Φ(k)
4
=



u(k − 1)
...

u(k − nc)
y(k − 1)

...
y(k − nc)



T

⊗ Ilu ∈ Rlu×lθ , (21)

and the controller coefficient vector θ(k) is defined by

θ(k)
4
= vec

[
P1(k) · · · Pnc

(k) Q1(k) · · · Qnc
(k)
]T ∈ Rlθ ,

(22)

lθ
4
= l2unc + luly(nc), “⊗” is the Kronecker product, and

“vec” is the column-stacking operator. In terms of q, the
transfer function of the controller from y to u is given by

Gc,k(q) =
(
qncIlu − qnc−1P1(k)− · · · − Pnc(k)

)−1
·
(
qnc−1Q1(k) + · · ·+Qnc

(k)
)
. (23)
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B. Retrospective Performance Variable

We define the retrospective performance variable as

ẑ(k, θ̂)
4
= z(k) +Gf(q)[Φ(k)θ̂ − u(k)], (24)

where θ̂ ∈ Rlθ and Gf is an nz × nu filter specified below.
The rationale underlying (24) is to replace the control u(k)
with Φ(k)θ̂∗(k), where θ̂∗ is the retrospectively optimized
controller coefficient vector obtained by optimization below.
The updated controller thus has coefficients θ(k + 1) = θ̂∗.
Consequently, the implemented control at step k+1 is given
by

u(k + 1) = Φ(k + 1)θ(k + 1). (25)

The filter Gf is constructed below based on the required
modeling information. This filter has the form

Gf
4
= D−1f Nf , (26)

where Df is an lz × lz polynomial matrix with leading
coefficient Ilu , and Nf is an lz × lu polynomial matrix. For
reasons given below, we henceforth refer to Gf as the target
model. By defining the filtered versions Φf(k) ∈ Rlz×lθ and
uf(k) ∈ Rlz of Φ(k) and u(k), respectively, (24) can be
written as

ẑ(k, θ̂) = z(k) + Φf(k)θ̂ − uf(k), (27)

where

Φf(k)
4
= Gf(q)Φ(k), uf(k)

4
= Gf(q)u(k). (28)

C. Retrospective Cost

Using the retrospective performance variable ẑ(k, θ̂) de-
fined by (24), we define the cumulative retrospective cost
function

J(k, θ̂)
4
=

k∑
i=1

λk−iẑT(i, θ̂)Rz(i)ẑ(i, θ̂)

+

k∑
i=1

λk−i(Φf(i)θ̂)
TRu(i)Φf(i)θ̂

+ λk(θ̂ − θ(0))TRθ(θ̂ − θ(0)), (29)

where λ ∈ (0, 1] is the forgetting factor, Rθ is positive
definite, and, for all i ≥ 1, Rz(i) is positive definite and
Ru(i) is positive semidefinite. The performance-variable and
control-input weighting matrices Rz(i) and Ru(i) are time-
dependent and thus may depend on present and past values of
y, z, and u. Recursive minimization of (29) is used to update
the controller coefficient vector θ̂. The following result uses
recursive least squares to obtain the minimizer of (29).

Proposition: Let P (0) = R−1θ . Then, for all k ≥ 1,
the retrospective cost function (29) has the unique global
minimizer θ(k + 1) = θ̂∗, which is given by

θ(k + 1) = θ(k)− P (k)ΦT
f (k)Υ−1(k)

·
[
Φf(k)θ(k) + R̄(k)Rz(k)(z(k)− uf(k))

]
,

(30)

and where P (k) satisfies

P (k + 1) =
1

λ
P (k)− 1

λ
P (k)ΦT

f (k)Υ−1(k)Φf(k)P (k),

(31)

where

R̄(k)
4
= (Rz(k) +Ru(k))

−1
, (32)

Υ(k)
4
= λR̄(k) + Φf(k)P (k)ΦT

f (k). (33)

For all examples in this paper, we initialize θ(0) = 0
in order to reflect the absence of additional prior modeling
information. Furthermore, for all i ≥ 1, we use Rz(i) = Ilz .

IV. TARGET MODEL Gf

Using (20), the retrospective performance variable (24) can
be written as

ẑ(k, θ̂) = z(k)−Gf(q)[u(k)− Φ(k)θ̂]. (34)

It can be seen from (34) that minimizing (29) determines the
controller coefficient vector θ̂ that best fits Gf(q)[Φ(k)θ(k)−
Φ(k)θ̂] to the performance data z(k). In terms of the optimal
controller coefficient vector θ̂∗, (34) can be written as

ẑ(k,θ̂∗) = z(k)−Gf(q)[Φ(k)θ(k)− Φ(k)θ̂∗]. (35)

For convenience, we define

u∗(k)
4
= Φ(k)θ̂∗, (36)

ũ(k)
4
= u(k)− u∗(k), (37)

so that

u(k) = u∗(k) + ũ(k). (38)

Using this notation, (35) can be written as

ẑ(k, θ̂∗) = z(k)−Gf(q)ũ(k). (39)

Using (38) to replace u in Φ by u∗ + ũ, it follows from
(19)–(21) and (36) that u∗(k) satisfies

u∗(k) =

nc∑
i=1

P ∗i [u∗(k − i) + ũ(k − i)] +

nc∑
i=1

Q∗i y(k − i).

(40)

Note that, in (38), the actual input u(k) to the plant at step
k is written as the sum of the pseudo control input u∗(k) and
the virtual external control perturbation ũ(k). From (40) it
follows that

u∗(k) = D∗−1c (q)[(qncIlu −D∗c (q))ũ(k) +N∗c (q)y(k)],
(41)

where

D∗c (q)
4
= qncIlu − qnc−1P ∗1 − · · · − P ∗nc

, (42)

N∗c (q)
4
= qnc−1Q∗1 + · · ·+Q∗nc

, (43)

G∗c
4
= D∗−1c N∗c . (44)
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It follows from (38) and (41) that

z(k) = Gzw(q)w(k)

+Gzu(q)

[( qnc

D∗c (q)
−1
)
ũ(k)+G∗c(q)y(k)+ũ(k)

]
, (45)

y(k) = Gyw(q)w(k)

+Gyu(q)

[( qnc

D∗c (q)
−1
)
ũ(k)+G∗c(q)y(k)+ũ(k)

]
. (46)

Solving (46) for y(k) and substituting y(k) into (45) yields

z(k) = G̃∗zw(q)w(k) + G̃∗zũ(q)ũ(k), (47)

where

G̃∗zw
4
=
Nzw
D

+
NzuNywN

∗
c

D(DD∗c −NyuN∗c )
(48)

and

G̃∗zũ(q)
4
=

Nzu(q)qnc

D(q)D∗c (q)

[
1 +

N∗c (q)Nyu(q)

[D(q)D∗c (q)−Nyu(q)N∗c (q)]

]
(49)

=
Nzu(q)qnc

D(q)D∗c (q)−Nyu(q)N∗c (q)
. (50)

It can be seen from (39) that ẑ(k, θ̂∗) = z(k)−Gf(q)ũ(k)
is the residual of the fit between z(k) and the output of the
target model Gf with input ũ(k). However, it follows from
(47) that G̃∗zũ, whose coefficients are given by θ̂∗, is the
actual transfer function from ũ to z. Therefore, minimizing
the retrospective cost function (29) yields the value θ(k +
1) = θ̂∗ of θ̂ and thus the controller Gc,k+1 that provides the
best fit of Gf by the transfer function G̃zũ,k+1 from ũ to z.
In other words, RCAC determines Gc,k+1 so as to optimally
fit G̃zũ,k+1 to Gf .

V. MODELING INFORMATION REQUIRED FOR Gf

In this section we specify the modeling information re-
quired by RCAC. This information includes the relative
degree, leading numerator coefficient, and NMP zeros of
Gzu.

A. NMP Zeros

A key feature of G̃zũ is the factor Nzu in its numerator.
This means that, since RCAC adapts Gc,k so as to match
G̃zũ to Gf . In particular, by placing controller poles at the
locations of the NMP zeros, RCAC may cancel NMP zeros
of Gzu that are not included in the roots of Nf in order
to remove them from G̃zũ. This phenomenon motivates the
need to include all of the NMP zeros of Gzu in Nf [10, 13].

B. FIR Target Model

If there is no possibility of unstable pole-zero cancellation,
then we use the FIR target model

Gf(q)
4
=
Hdzu

qdzu
. (51)

The target model (51) can be used in the case where either
Gzu is minimum phase or the poles of Gc are fixed. If,
however, Gzu is NMP and the poles of Gc are optimized,
we use the FIR target model

Gf(q)
4
=

HdzuNzu,u(q)

qdzu+deg(Nzu,u)
, (52)

where Nzu,u denotes the NMP portion of Nzu. We use
(52) in the case where Gzu is NMP and unstable pole-zero
cancellation is possible.

VI. POLE REFLECTION

In order to enforce asymptotic stability of the controller,
we apply a reflection technique. In particular, if the updated
controller Gc,k is unstable, then Gc,k is modified by replac-
ing each unstable pole by its reciprocal inside the unit disk.
For an IIR controller of order nc, all of the poles may need
to be reflected. However, in the next section we consider
controllers all or most of whose poles are fixed inside the
open unit disk. In this case, only a small number of controller
poles may require reflection in order to enforce controller
stability.

VII. CFI CONTROLLER STRUCTURE

As an alternative to the IIR controller (19), we consider
the ncth-order CFI controller

u(k) =

l∑
i=1

Pi(k)u(k − i) +

nc∑
i=1

Qi(k)y(k − i), (53)

where l ≤ nc is the number of possibly nonzero poles of the
controller. The controller (53) has at most l nonzero poles
as well as nc − l poles fixed at zero. At each step k, if
one or more of the l free poles is unstable, then we reflect
each unstable pole to its reciprocal inside the unit disk. This
technique relocates at most l poles, whereas, for the IIR
controller, as many as nc poles may need to be reflected
within the unit disk. We use (53) to obtain asymptotically
stable controllers in the case where the high-authority LQG
controller is unstable. This approach implicitly assumes that
the plant can be stabilized by a controller with the CFI
structure (53).

We also consider a controller with an FIR controller
implemented in parallel with an integrator

u(k) =

nc∑
i=1

Qi(k)y(k − i) +KI(k)γ(k), (54)

where the integrator state satisfies

γ(k) = γ(k − 1) + Fy(k), (55)

γ(k) ∈ Rlγ and F ∈ Rlγ×ly selects components of y(k). The
motivation for (54) is to fix the poles of the controller in order
to remove the possibility of unstable pole-zero cancellation.
We use (54) for step-command following for the adaptive
servo problem.
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VIII. H2 COST OF STRICTLY PROPER CONTROLLERS

For the plant (1)–(3), given a strictly proper controller

Gc ∼
[
Ac Bc

Cc 0

]
, we can compute the H2 cost as follows.

We define

D̃
4
=

[
D1

BcD2

]
, Ṽ = D̃D̃T. (56)

Then the H2 cost is given by

J(Ac, Bc, Cc) = tr(Q1R1) + tr(Q2C
T
c R2Cc), (57)

where Q1 ∈ Rn×n, Q2 ∈ Rnc×nc satisfy

Q̃ =

[
Q1 Q12

QT
12 Q2

]
, (58)

and Q̃ ∈ Rn+nc×n+nc is the solution of the discrete-time
Lyapunov equation

Q̃ = ÃQ̃ÃT + Ṽ . (59)

IX. EXAMPLES

Example 1. Broadband disturbance rejection for a
NMP plant using an IIR controller. We consider the
Lyapunov-stable, NMP plant

G(q) =
(q− 0.8)(q− 1.1)

(q− 0.85)(q2 − 1.9q + 1)
, (60)

and let w be zero-mean Gaussian white noise with standard
deviation 0.01. For this plant, the high-authority LQG con-
troller is unstable with a pole at 1.0235. The H2 cost of
the LQG controller is 2.4587. Next, we apply RCAC with a
high-order IIR controller structure (see [11] for details) and
the FIR target model (52) with nc = 50, Rθ = 0.02Ilθ , and
Ru = 0. The RCAC controller has an unstable pole at 1.03
with H2 cost 2.4606. Figure 2 shows that the closed-loop
frequency response of the final RCAC controller, which is
unstable, approximates the closed-loop frequency response
of the unstable high-authority LQG controller.

Alternatively, we apply RCAC with the CFI controller
(53) with l = 2 and the FIR target model (52). The RCAC
controller is asymptotically stable with H2 cost 2.5129, as
compared to the H2 cost 2.4587 of the unstable LQG con-
troller. Figure 3 shows the closed-loop response of the RCAC
controller and the closed-loop frequency response of the
LQG controller and the final RCAC controller. Note that the
closed-loop frequency response of the final RCAC controller,
which is asymptotically stable, approximates the closed-
loop frequency response of the unstable high-authority LQG
controller. During the adaptation, RCAC performs a total of
12 pole reflections. Note that the pole reflections have no
discernible effect on either the closed-loop spectral radius or
the H2 cost, as shown in Figure 4. �
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Fig. 2: Example 1: Broadband disturbance rejection for the NMP plant (60)
using the IIR controller structure (19). RCAC approximates the closed-loop
frequency response of the high-authority LQG controller. The frequency-
response plots are shown at step k = 105. However, RCAC converges to
an unstable controller (not shown).

Example 2. Step command following for a MISO NMP
plant using a CFI controller. Consider the asymptotically
stable, NMP, MISO plant

G(q) =
[

(q−0.99)(q2+0.98)
D(q)

(q−0.925)(q−0.975)(q−1.2)
D(q)

]
,

(61)

where D(q) = (q− 0.995)(q− 0.975)(q2− 1.9q + 0.9125).
Let r be an alternating sequence of step commands with
heights ±1, let v = 0, and let d be zero-mean Gaussian white
noise with standard deviation 2×10−6. Applying RCAC
with the IIR controller (19) yields an unstable controller
(not shown). Alternatively, we apply RCAC with the CFI
controller (54). Since (54) consists of an FIR portion and
an integrator, there is no possibility of unstable pole-zero
cancellation, and thus we use the FIR target model (51) for
both channels, with nc = 10, Rθ = 1010Ilθ , and Ru = 0.
Figure 5 shows the closed-loop response. Note that RCAC
follows the sequence of step commands without knowledge
of the NMP zeros of G. �

X. CONCLUSIONS

This paper considered retrospective cost adaptive control
(RCAC) with composite FIR/IIR (CFI) controllers along
with a reflection technique to enforce asymptotic stability
of the controller. In several examples for which the high-
authority LQG controller is unstable, this method was used
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Fig. 3: Example 1: Broadband disturbance rejection for the NMP plant
(60) using the CFI controller (53). RCAC approximates the closed-loop
frequency response of the high-authority LQG controller. The frequency-
response plots are shown at step k = 105.
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Fig. 4: Example 1: Broadband disturbance rejection for the minimum-
phase plant (60) using the CFI controller (53). During the adaptation,
RCAC performs 12 pole reflections. Note that the pole reflections have
no discernible effect on either the closed-loop spectral radius or the H2

cost.

to obtain asymptotically stable, stabilizing controllers whose
H2 performance is close to the performance of the high-
authority LQG controller. In addition, an FIR controller in
parallel with an integrator was used to achieve command
following without knowledge of the NMP zeros of the plant.
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Fig. 5: Example 2: Step command following for the MISO, NMP plant (61)
using the CFI controller (54). RCAC follows the sequence of step commands
without knowledge of the NMP zeros of G, and does not converge to an
unstable controller.

Using CFI controllers, future work will focus on refinements
of the reflection technique for the case of NMP plants with
unmodeled NMP zeros.
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