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Abstract— Large-scale physics models typically involve un-
known parameters that are either inaccessible or representative
of complex, unknown dynamics. The focus of this paper is on
the estimation of the eddy diffusion coefficient (EDC), which
represents the dissipative effect of turbulent mixing in the lower
atmosphere. Retrospective cost parameter estimation is used to
estimate EDC using measurements of the total electron content.
The novel element of the paper is concurrent optimization
of the filter that defines the retrospective cost function. Since
this optimization problem is biquadratic, an alternating convex
search algorithm is used.

I. INTRODUCTION

In many applications of science and engineering, a mathe-
matical description of a system is available from first princi-
ples, but the values of the parameters describing the system
are unknown or uncertain. This may be due to practical
limitations of measurement. For example, estimation of a
friction coefficient must rely on a dynamic model due to
the fact that direct measurements of the friction force are
not available. In such cases, we say that the parameter is
inaccessible.

In addition to inaccessibility, a parameter may be unknown
due to its representational nature. For example, lift and
drag coefficients are used as an alternative to integrating the
pressure field over the surface of an airfoil.

The present paper is concerned with estimation of such
uncertain parameters arising in a model of the upper atmo-
sphere, which extends from about 60 km to 1000 km. The
basis of this model is the Navier-Stokes equations coupled
with electrodynamics equations. The source terms driving the
ionosphere, such as the solar flux and the Earth’s magnetic
field, as well as coupling effects such as viscosity and
diffusion, are constructed statistically [1] or empirically to
match the predicted output of the model with measurements
from various ground stations and satellites in orbit.

It is well known that turbulent diffusion affects energy
deposition and transport of chemical species in the upper at-
mosphere. Eddy diffusion coefficient (EDC) is used to model
this mixing process. However, no measurement device can
directly measure EDC, and no first-principles physics model
is available to determine its value. Nevertheless, models of
the upper atmosphere routinely simulate the turbulent mixing
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at various altitudes by using shape functions parameterized
by EDC [2].

In this paper, we apply retrospective cost parameter esti-
mation (RCPE) to the problem of estimating EDC. RCPE
is a specialization of retrospective cost model refinement
(RCMR), which can be used to identify the dynamics of
an inaccessible subsystem [3], [4]. RCPE was applied to
atmospheric models in [5]–[7].

The estimates of EDC obtained in the present paper are
based on measurements of the total electron content (TEC).
TEC, defined as the total number of electrons integrated
along a vertical column of one meter squared cross section,
is a widely used quantity to describe the ionosphere. TEC
is measured in TEC unit (TECU), where 1 TECU = 1016

electrons/m2. The free electrons in the ionosphere cause
delay in the propagation of radio waves in the atmosphere.
Ionospheric irregularities also cause random amplitude and
phase fluctuations in the signals [8]. TEC measurements
are thus used to correct positioning errors and improve the
accuracy of the Global Navigation Satellite Systems [9].
Consequently, the physics of TEC are widely studied [10]–
[13]. TEC is routinely used to estimate the state of the
ionosphere and thermosphere [14]–[16]. The use of TEC
measurements to estimate EDC is a novel element of the
present paper.

The present paper extends RCPE by simultaneously opti-
mizing the filter Gf , which is used to define the retrospective
cost function [17], [18]. Within the context of adaptive con-
trol, Gf is chosen to capture knowledge of the leading sign,
relative degree, and nonminimum-phase zeros. For parameter
estimation within the context of a high-order nonlinear model
such as the atmospheric model considered in this paper, there
are no clear guidelines for constructing Gf . Consequently,
the present paper updates Gf online through a combined
optimization procedure. A related optimization technique
within the context of adaptive control was considered in [19],
[20].

The optimization problem involving both the unknown
parameters and the filter Gf turns out to be biquadratic.
Although this biquadratic function is strictly convex in each
variable separately, it is highly nonconvex as a joint function
of its arguments. Unfortunately, numerical algorithms that
converge globally to the global minimizer of biquadratic
functions are not available [21], and this poses a technical
challenge within the context of parameter estimation for
large-scale physics models. In the present paper we apply
an alternating convex search method that is guaranteed to
converge to a local minimizer.
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The paper is organized as follows. In Section II, we
describe GITM and the role played by EDC. In Section
III, we formulate the problem of estimating an unknown
parameter in a dynamic system, in Section IV, we present
the RCPE algorithm. In section V, an algorithm to optimize
the biquadratic retrospective cost function is presented. A
low-dimensional system illustrating the application of RCPE
is presented in Section VI. Estimation of EDC using TEC is
presented in VII. Finally, in Section VIII, we summarize the
results of the paper and discuss future directions.

II. GLOBAL IONOSPHERE-THERMOSPHERE MODEL

GITM is a computational code that models the thermo-
sphere and the ionosphere of the Earth as well as that of
various planets and moons by solving coupled continuity,
momentum, and energy equations [22]. By propagating the
governing equations, GITM computes neutral, ion, and elec-
tron temperatures, neutral-wind and plasma velocities, and
mass and number densities of neutrals, ions, and electrons.
GITM uses a uniform grid in latitude with width 2π

nlat

rad, where nlat is the number of grid points. In longitude
and altitude, GITM uses a stretched grid to account for
temperature and density variations.

GITM is implemented in parallel, where the computational
domain (the atmosphere from 100 km to 600 km) is divided
into blocks. Ghost cells border the physical blocks to ex-
change information. GITM can be run in one-dimensional
mode, where horizontal transport is ignored, or in global
three-dimensional mode. Furthermore, GITM can be run at
either a constant or a variable time step, which is calculated
by GITM based on the physical state and the user-defined
CFL number in order to maintain numerical stability. To
initialize GITM, neutral and ion densities and temperatures
for a chosen time are set using the Mass Spectrometer and
Incoherent Scatter radar (MSIS) model [23] and International
Reference Ionosphere (IRI) [24].

The model inputs for GITM are 10.7 cm solar radio flux
(F10.7 index), hemispheric power index (HPI), interplanetary
magnetic field (IMF), solar wind plasma (SWP), and solar
irradiance, all of which are read from a text file containing
the time of measurements and the measured values. These
signals are available from various terrestrial sensor platforms.

The present paper focuses on estimation of the eddy
diffusion coefficient (EDC), which plays a key role in
GITM and many computational codes simulating the upper
atmosphere. Specifically, EDC models turbulent mixing in
the upper atmosphere [25]. According to mass continuity and
the momentum equations, the altitude profile of the neutral
constituents changes from full mixing at lower altitudes (be-
low 150 km), where turbulent mixing prevails, to molecular
diffusion at higher altitudes (above 150 km). The value of
EDC represents the intensity of the turbulent mixing, which
is a key factor in determining the free-electron density in
the ionosphere, usually measured by total electron content
(TEC). In the present paper, EDC is estimated by using
measurements of TEC.

III. PARAMETER-ESTIMATION PROBLEM

Consider the multi-input, multi-output (MIMO) discrete-
time physical system model

x(k + 1) = f (x(k), u(k), ν) + w1(k), (1)
y(k) = h (x(k), u(k), ν) + w2(k), (2)

where x ∈ Rlx is the state, u ∈ Rlu is the input, y ∈ Rly is
the measured output, w1 ∈ Rlx , w2 ∈ Rly are the process and
measurement noise, and ν ∈ Rlν is the unknown parameter.

Next, we consider the estimation model

x̂(k + 1) = f (x̂(k), u(k), ν̂(k)) , (3)
ŷ(k) = h (x̂(k), u(k), ν̂(k)) , (4)

where x̂(k) is the computed state, ŷ(k) is the output of the
estimation model, and ν̂(k) is the output of the parameter
estimator at step k. The parameter estimator is updated
by minimizing a cost function based on the performance
variable

z(k)
4
= ŷ(k)− y(k) ∈ Rly . (5)

The problem objective is to estimate ν using measurements
of u and y. The parameter-estimation problem is represented
by the block diagram in Figure 1.

Physical
System Model

Estimation
Model

Subsystem
Model

Adaptive Estimator

u
y

ŷ

ν̂

−

z

Parameter
Estimator

Fig. 1: Parameter-estimation problem. The physical system modeled by the
physical system model (1), (2) is driven by u and produces measurements
y. The adaptive estimator consists of the estimation model (3), (4), which is
driven by measurements of u and where the parameter estimate ν̂ is updated
by the parameter estimator, which minimizes the error signal z.

IV. RETROSPECTIVE COST PARAMETER ESTIMATION

In this section, we present the RCPE algorithm used to
compute the estimate ν̂ of the unknown parameter ν.
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A. Parameter Estimator

We consider a parameter estimator represented by an
ARMA model with a built-in integrator. The parameter
estimate ν̂ is thus given by

ν̂(k) =

nc∑
i=1

Pi(k)ν̂(k − i) +

nc∑
i=1

Qi(k)z(k − i) +R(k)g(k),

(6)

where

g(k) = g(k − 1) + z(k − 1), (7)

and Pi(k) ∈ Rlν×lν , Qi(k), R(k) ∈ Rlν×ly are the coeffi-
cient matrices, which are updated by the RCPE algorithm.
The integrator is embedded in the estimator to ensure that
z(k) → 0 as k → ∞ and thus, assuming identifiability and
data persistency, that ν̂(k)→ ν as k →∞.

We rewrite (6) as

ν̂(k) = Φ(k)θ(k), (8)

where the regressor matrix Φ(k) is defined by

Φ(k)
4
= Ilν ⊗ φT(k) ∈ Rlν×lθ ,

where

φ(k)
4
=



ν̂(k − 1)
...

ν̂(k − nc)
z(k − 1)

...
z(k − nc)
g(k)


, (9)

θ(k)
4
= vec

[
P1(k) · · ·Pnc

(k) Q1(k) · · ·Qnc
(k) R(k)

]
∈ Rlθ ,

(10)

lθ
4
= l2νnc + lν ly(nc + 1), “⊗” is the Kronecker product, and

“vec” is the column-stacking operator.

B. Retrospective Performance Variable

We define the retrospective performance variable

ẑ(k) = z(k) + Ĝf(q)(Φ(k)θ̂ − ν̂(k)), (11)

where q is the forward-shift operator, θ̂ ∈ Rlθ contains the
parameter estimator coefficients to be optimized, and Ĝf is
an FIR filter of order nf to be optimized, given by

Ĝf(q) =

nf∑
i=1

N̂i
qi
, N̂i ∈ Rly×lν . (12)

We rewrite (11) as

ẑ(k) = z(k) + N̂Φb(k)θ̂ − N̂Ub(k), (13)

where

N̂
4
=
[
N̂1 · · · N̂nf

]
∈ Rly×nf lν ,

Φb(k)
4
=

 Φ(k − 1)
...

Φ(k − nf)

 ∈ Rlνnf×lθ ,

Ub(k)
4
=

 ν̂(k − 1)
...

ν̂(k − nf)

 ∈ Rlνnf .

C. Retrospective Cost Function

Using the retrospective performance variable ẑ(k), we
define the retrospective cost function

J(k, θ̂, N̂)
4
=

k∑
i=1

ẑT(i)Rz ẑ(i) + θ̂TRθ θ̂, (14)

where Rz and Rθ are positive definite. Note that the retro-
spective cost J(k, θ̂, N̂) is a biquadratic function, that is,
J(k, θ̂, N̂) is a quadratic function of θ̂ for fixed N̂ , and
a quadratic function of N̂ for fixed θ̂. We use alternating
convex search (ACS) described in [21] to optimize the
retrospective cost with respect to the parameter estimator
coefficients and the filter. The parameter estimate is given
by

ν̂(k) = Φ(k)θ(k), (15)

where θ(k) is the minimizer of J(k, θ̂, N̂) at the kth step.

V. BIQUADRATIC RETROSPECTIVE COST OPTIMIZATION

In this section we show that J(k, θ̂, N̂) defined by (14) is
biquadratic as a joint function of the arguments θ̂ and N̂ and
strictly convex in θ̂ and N̂ separately. This property suggests
an optimization algorithm in which J(k, θ̂, N̂) is minimized
alternately with respect to θ̂ and N̂

A. Retrospective cost as a quadratic function of θ̂

We write the retrospective cost function (14) as

J(k, θ̂, N̂) = θ̂TAθ(k, N̂)θ̂ + θ̂Tbθ(k, N̂)

+ bθ(k, N̂)Tθ̂ + cθ(k, N̂), (16)

where

Aθ(k, N̂)
4
=

k∑
i=1

Φb(i)TN̂TN̂Φb(i) +Rθ ∈ Rlθ×lθ , (17)

bθ(k, N̂)
4
=

k∑
i=1

(
N̂Φb(i)

)T(
z(i)− N̂Ub(i)

)
∈ Rlθ , (18)

cθ(k, N̂)
4
=

k∑
i=1

Ub(i)TN̂TN̂Ub(i) + z(i)Tz(i)

+ Ub(i)TN̂Tz(i) ∈ R. (19)

For fixed N̂ , the global minimizer θ∗(N̂) of (14) is given by

θ∗(N̂) = −Aθ(k, N̂)−1bθ(k, N̂). (20)
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B. Retrospective cost as a quadratic function of N̂

We write the retrospective cost function (14) as

J(k, θ̂, N̂)
4
= tr

(
N̂AN (k, θ̂)N̂T + N̂BN (k, θ̂)T+

BN (k, θ̂)N̂T + CN (k, θ̂)
)
, (21)

where

AN (k, θ̂)
4
=

k∑
i=1

(
Φb(i)θ̂ − Ub(i)

)(
Φb(i)θ̂ − Ub(i)

)T
∈ Rnf lν×nf lν , (22)

BN (k, θ̂)
4
=

k∑
i=1

z(i)
(
Φb(i)θ̂ − Ub(i)

)T ∈ Rly×nf lν , (23)

CN (k, θ̂)
4
=

k∑
i=1

z(i)z(i)T ∈ Rly×ly . (24)

For fixed θ̂, the global minimizer N∗(θ̂) of (14) is given by

N∗(θ̂)
4
= −BN (k, θ̂)AN (k, θ̂)−T ∈ Rly×nf lν . (25)

C. The structure of Gf

The following result shows that the estimate ν̂(k) of
ν is constrained to lie in a subspace determined by the
coefficients of Gf .

Theorem 5.1: Let Ĝf(q) =
N̂1

q
, Rθ = βIlθ , and ly = 1.

Then,

ν̂(k) = α(k)N̂T
1 , (26)

where

α(k)
4
= − 1

β

k∑
i=1

φ(k)Tφ(i− 1)[z(i)− N̂1ν̂(i− 1)

+ N̂1Φ(i− 1)θ(k)]. (27)

Theorem 5.1 shows that the estimate ν̂(k) produced by
RCPE with a first-order FIR filter Gf is constrained to lie
in the range of N̂T

1 ∈ Rlν×ly . If ν is scalar and N̂1 6= 0,
then R(N̂T

1 ) = R. We therefore use a first-order FIR filter
to estimate a scalar parameter ν.

D. Alternating Convex Search algorithm

The ACS algorithm consists of using (25) and (20) alter-
nately to converge to a stationary point of (14). At step k,
ACS consists of the following rules:

1) Set i = 0 and choose nonzero N0.
2) Use (20) with Ni to compute θi+1.
3) Use (25) with θi+1 to compute Ni+1.
4) Compute Ji+1(k, θi+1, Ni+1) using either (16) or (21).
5) For i > 2, if Ji+1 − Ji ≤ ε, then stop, where ε > 0 is

the user-defined stopping criteria, and set θ(k) = θi+1

and N(k) = Ni+1. Otherwise, replace i by i + 1 and
go to 2).

The parameter estimate is given by

ν̂(k) = Φ(k)θ(k). (28)

VI. ILLUSTRATIVE EXAMPLE

In this section RCPE is used to estimate an unknown
scalar parameter ν that appears nonlinearly in a linear system
realization. Consider the LTI physical system model

x(k + 1) = A(ν)x(k) +B(ν)u(k) + w1(k), (29)
y(k) = C(ν)x(k) + w2(k), (30)

where

A(ν) =

[
e−ν 1− ν
ν2 log(1 + ν2)

]
, (31)

B(ν) =

[
sin ν

1 + cos ν

]
, (32)

C(ν) =
[

1 + ν ν2
]
. (33)

The true value of ν is 0.8. The estimation model is thus

x̂(k + 1) = A(ν̂(k))x̂(k) +B(ν̂(k))u(k), (34)
ŷ(k) = E(ν̂(k))x̂(k), (35)

where ν̂(k) is the output of the parameter estimator updated
by RCPE.

The measurement y(k) is generated using the input u(k) =
2+sin

(
2π
40 k
)
+sin

(
2π
80 k − 0.3

)
+sin

(
2π
160k − 0.5

)
, the initial

state x(0) = [10 10]T, each component of the process
noise w1 is N (0, 10−6), and the measurement noise w2 is
N (0, 10−6). To reflect the absence of additional information,
the initial state x̂(0) of the estimation model and the initial
estimate ν̂(0) of the unknown parameter ν are set to zero. We
use RCPE to estimate the unknown parameter ν in the linear
system (29), (30) with the nonlinear parameter dependence
(31)-(33). We set nc = 1, nf = 1, Rz = 1, and Rθ = 106Ilθ .
At each step, ACS is initialized with N0 = −1. Figure 2
shows the estimate ν̂(k) of ν.

Next, we investigate the effect of the ACS filter initializa-
tion N0 and the weight Rθ on the performance of RCPE.
We set nc = 1, nf = 1, and Rz = 1. Figure 3 shows the
estimate ν̂(k) of ν and the filter coefficient N(k) for various
initializations and weights. Note that RCPE successfully es-
timates the unknown parameter ν for ACS filter initialization
choices ranging several orders of magnitude, thus indicating
that ACS filter initialization choice is not critical.

VII. ESTIMATION OF EDC IN GITM

Finally, we consider the problem of estimating the EDC
in the global ionosphere thermosphere model (GITM) using
measurements of TEC at a fixed ground station on Earth.

To generate the measurements of TEC, we simulate the up-
per atmosphere of Earth using GITM for the period starting
at 00:00:00, 21-Nov-2002 and ending at 00:00:00, 8-Dec-
2002 with EDC = 1750. TEC is computed at every minute
at a fictitious ground station located at 1 deg North, 45 deg
East. The initial state of the upper atmosphere, comprising
neutral and ion densities and temperature, is set using MSIS
and IRI for the chosen start time. The inputs to GITM, such
as F10.7 index, IMF data, SWP data, and HPI data, are read
from text files.
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Fig. 2: RCPE estimate of the unknown parameter ν in the linear system
(29), (30) with the nonlinear parameter dependence (31)-(33). (a) shows the
performance z on a linear scale, (b) shows the parameter estimate ν̂, (c)
shows the measured input u to the system, (d) shows the adapted coefficients
θ of the parameter estimator, (e) shows the measured output and the output
of the estimation model, and (f) shows the adapted coefficient N(k) of the
filter Gf .

To estimate the unknown EDC, we compute the TEC at
every minute at the ground location 1 deg North, 45 deg
East for the period starting from 00:00:00, 21-Nov-2002 to
00:00:00, 8-Dec-2002. The initial state of the upper atmo-
sphere, comprising neutral and ion densities and temperature,
is set using MSIS and IRI for the chosen start time. GITM
is run for one simulation day, that is from 00:00:00, 21-Nov-
2002 to 00:00:00, 22-Nov-2002 with EDC = 1500. At the
start of the second simulation day, RCPE is switched on.
Note that the delayed starting of RCPE ensures that, at the
instant RCPE starts, the state of the atmosphere updated by
the estimation GITM model is the not same as the GITM
model used to generate the TEC measurements.

We set nc = 2, nf = 1, Rz = 1, and Rθ = 10−1Ilθ , and
use RCPE to update the estimate of EDC at every minute.
Figure 4 shows the estimate of EDC using RCPE. Figure 5
shows the measured and computed TEC.

Note that RCPE does not use GITM to update the param-
eter estimator. Instead, GITM is used as a black box model,
although the EDC estimate is injected into GITM as a gray
box model. In fact, the internal parameter dependence of
GITM on EDC is extremely complicated; fortunately, there
is no need to explicitly characterize this dependence.
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Fig. 3: Effect of the ACS filter initialization N0 and the weight Rθ on
the performance of RCPE. (a) and (c) show the parameter estimate ν̂ for
various values of the filter initialization N0 and the weight Rθ . (b) and (d)
show the filter coefficient N for various values of the filter initialization N0

and the weight Rθ .
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Fig. 4: RCPE estimate of the unknown EDC in GITM. (a) shows the
performance z on a linear scale, (b) shows the EDC estimate, (c) shows
the adapted coefficient N(k) of the filter Gf , and (d) shows the adapted
coefficients θ of the parameter estimator.

VIII. CONCLUSIONS AND FUTURE WORK

This presented an extension of retrospective cost parameter
estimation (RCPE) by concurrently optimizing the filter Gf

and the parameter estimator. This technique was used to
estimate an unknown parameter in a large-scale model of
a physical system, namely, the eddy diffusion coefficient in
the global ionosphere-thermosphere model.

Analysis of RCPE focused on the biquadratic nature of
the retrospective cost function as well as the structure of the
filter Gf for which RCPE is potentially able to estimate the
unknown parameter ν. Alternating convex search algorithm
was used to optimize the biquadratic retrospective cost
function. In addition, it was shown that, if ν is scalar and
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Fig. 5: Measured and computed TEC at the fictitious ground station located
at 1 deg North, 45 deg East. y denotes the TEC measurements generated
using GITM with a constant EDC= 1750, and ŷ denotes the TEC computed
by GITM where EDC is updated at every minute by RCPE.

Gf is a first-order FIR filter, then R(NT
1 ) = R. It thus

follows from (26) that the subspace R(NT
1 ), which contains

ν̂, is independent of the choice of N1. The situation is more
complicated, however, in the case where ν is a vector. In this
case, analysis of the retrospective cost showed that Gf must
be higher order. This case is a priority for future research.

To improve the accuracy of GITM, better empirical re-
lationships describing various physical processes, such as
turbulent mixing and Joule heating, need to be embedded
in GITM. One way to improve such empirical functions is
to parameterize them with more than one parameter. Future
work will thus focus on application of RCPE to systems with
two or more uncertain parameters using higher order filters
Gf .
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