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I. Introduction

S ENSOR failure can have catastrophic consequences when the
measurements are used for control. For example, failures of pitot

probes for airspeed measurement have resulted in several major
aircraft disasters [1]. Consequently, there is a pressing need to
continually diagnose the health of sensors to ensure reliable control-
system operation [2–5].
Various techniques can be used to detect a sensor failure. The most

basic approach is to monitor the sensor signal and use characteristics
of the data to detect faults [6–9]. However, this approach cannot
distinguish between sensor faults and atypical systembehavior due to
anomalous disturbances. Alternatively, if the predicted response of a
known control input differs significantly from the sensor data, then a
sensor fault may be present. In this case, however, it may be difficult
to distinguish sensor failure from the effects of disturbances, faulty
actuators, and model error [1].
In the present note, we adopt a third approach, which is to use

multiple sensors to detect discrepancies in the predicted output of one
sensor based on the remaining sensors. The basic idea is to develop a
model of the “transfer function” fromone set of sensors to another set.
Within the context of structural vibration, position-to-position,
velocity-to-velocity, and acceleration-to-acceleration transfer func-
tions are known as transmissibilities [10–14]. By using a
transmissibility model, the residual between pairs or sets of sensors
can be used to assess the health of a sensor. An advantage of the
transmissibility approach is that there is no need to measure the
excitation to the system, which can originate from either an actuator
or ambient disturbances.
Examination of the equations relating one sensor to another sensor

entails several issues that require special consideration. For example,
because the transfer function between sensors does not arise as the
forced response of a state space model, a sensor-to-sensor transfer
function is not a transfer function in the usual sense. Therefore, we
adopt the terminology pseudo-transfer function (PTF) and
transmissibility operator to refer to a dynamic model relating sensor
signals, which are called the pseudo-input and pseudo-output [15–
17]. To use a PTF identified under healthy conditions for fault
detection, it is necessary to show that the identified PTF is
independent of both the initial condition and the input to the system.
In fact, these properties can be shown to hold for single-input/single-
output and multi-input/multi-output PTFs [18]. For the case of a
pair of sensors and a single exogenous input, the numerator and

denominator of the PTF are the numerators of the transfer functions
between the input and the sensors. Generically, the poles of the plant
play no role in the numerator and denominator of a PTF, whose roots
are the zeros of the original transfer functions. These issues are
discussed in [15] and applied to structural vibration in [16,17].
In the present note, we use PTFs for rate-gyro health monitoring in

aircraft. TheNASAgeneric transportmodel (GTM) [19,20] is used to
simulate the fully nonlinear aircraft dynamics for data generation. In
particular, we excite the aircraft by using the ailerons, elevator, and
rudder, andwe use rate-gyromeasurements alongwith sideslip-angle
measurements to construct a 1 × 3 transmissibility operator. We then
use the transmissibility operator for health monitoring by computing
the resulting one-step residual. The case of gyro drift is considered as
an illustrative example.

II. Multi-Input/Multi-Output Transmissibility
Operators

We consider the linear system

_x�t� � Ax�t� � Bu�t� (1)

x�0� � x0 (2)

yi�t� � Cix�t� �Diu�t� ∈ Rm (3)

yo�t� � Cox�t� �Dou�t� ∈ Rp−m (4)

where u ∈ Rm, p is the number of measurements, m is the number
of pseudo-inputs, and p −m is the number of pseudo-outputs.
The coefficient matrices have dimensions A ∈ Rn×n, B ∈ Rn×m,
Ci ∈ Rm×n, Co ∈ R�p−m�×n, Di ∈ Rm×m, and Do ∈ R�p−m�×m.
The goal is to obtain a relation between yi and yo that is

independent of both the initial condition x0 and the input u. We
consider a time-domain approach using the differentiation operatorp.
Define

Γi�p� ≜ Ciadj�pI − A�B�Diδ�p� ∈ Rm×m�p� (5)

Γo�p� ≜ Coadj�pI − A�B�Doδ�p� ∈ R�p−m�×m�p� (6)

δ�p� ≜ det�pI − A� ∈ R�p� (7)

Then, the transmissibility operator from yi to yo is the operator [18]

T �p� � Γo�p�Γ−1
i �p� (8)

Note that Eq. (8) is independent of both the initial condition x0 and
the input u. As in [18],

yo�t� � T �p�yi�t� (9)

represents the differential equation
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det Γi�p�yo�t� � Γo�p��adjΓi�p��yi�t� (10)

The transmissibility operator Eq. (8) is in continuous time.
Henceforth, we assume that measurements of the output signals are
obtained in discrete time, and we consider discrete-time trans-
missibility operators in the forward-shift operator q [21].

III. Noncausal Finite Impulse Response Approximation
of Transmissibility Operators

Equation (8) shows thatT �p� contains information about the zeros
of the system andnot the poles. Therefore, a nonminimum-phase zero
in the pseudo-input channel of a transmissibility operator yields an
unstable transmissibility operator. Moreover, if the pseudo-output
channel of a transmissibility operator hasmore zeros than the pseudo-
input channel, then the transmissibility operator is improper and thus
noncausal. However, neither instability nor causality has the usual
meaning associated with transfer functions. Nevertheless, to facilitate
system identification, we consider a class of models that can approxi-
mate transmissibility operators that may be unstable, noncausal, and of
unknownorder. This class ofmodels consists of noncausal finite impulse
response (FIR) models based on a truncated Laurent expansion. The
causal (backward-shift) part of the Laurent expansion is asymptotically
stable because all of its poles are zero, whereas the noncausal (forward-
shift) part of the Laurent expansion captures the unstable and noncausal
components of the transmissibility operator [22].
Let T �q� be the discrete-time transmissibility operator whose

pseudo-input is yi and whose pseudo-output is yo, that is,

yo�k� � T �q�yi�k� (11)

It follows from [22] that the truncated Laurent expansion

T �q; θr;d� ≜
Xr
j�−d

Hjq
−j (12)

is a noncausal FIR approximation of T �q�, where r and d are positive
integers, H−d; : : : ; Hr ∈ R�p−m�×m are coefficients of the Laurent
expansion of the rational function T in an annulus that contains the
unit circle, and

θr;d ≜ �H−d : : : Hr � ∈ R�p−m�×�r�d�1�m (13)

Using Eq. (12), the one-step predicted output is given by

yo�kjθr;d� ≜ T �q; θr;d�yi�k� �
Xr
j�−d

Hjyi�k − j� (14)

If T has a pole on the unit circle, then we define T α�z� ≜ T �αz�,
where 0 < α < 1 and α is not themodulus of a pole of T . Note that T α
has no poles on the unit circle. LettingHj;α denote the coefficients of

the Laurent expansion of T α in an annulus containing the unit circle,
it follows that Hj � αjHj;α for all j.

IV. Identification of Transmissibility Operators Using
Prediction Error Methods

To identify transmissibility operators that are possibly unstable,
improper, and of unknown order, we use noncausal FIR models with
prediction error methods (PEMs) [23].
For each choice of transmissibility coefficients

�θr;d�
Δ � �H−d · · · �Hr � ∈ R�p−m�×�r�d�1�m (15)

it follows that

T �q; �θr;d� �
Xr
j�−d

�Hjq
−j (16)

The residual of the transmissibilityT �q; �θr;d� at time k is defined to
be the one-step prediction error

e�kj�θr;d��
Δ
yo�k� − yo�kj�θr;d�

� yo�k� − T �q; �θr;d�yi�k�

� yo�k� −
Xr
j�−d

�Hjyi�k − j� (17)

The accuracy of �θr;d is measured by the performance metric

V��θr;d;l� ≜
1

l − d − r� 1

Xl−d
k�r
ke�kj�θr;d�k22 (18)

where k · k2 is the Euclidean norm, and l� 1 is the number of data
samples. Then, the PEM estimate θ̂r;d;l of θr;d is given by

θ̂r;d;l ≜ argmin
�θr;d

V��θr;d;l� (19)

where

θ̂r;d;l ≜ � Ĥ−d;l · · · Ĥr;l � ∈ R�p−m�×�r�d�1�m (20)

It follows from Eq. (17) that the residual of the identified
transmissibility T �q; θ̂r;d;l� at time k is given by

e�kjθ̂r;d;l� � yo�k� − yo�kjθ̂r;d;l�

� yo�k� − T �q; θ̂r;d;l�yi�k�

� yo�k� −
Xr
j�−d

Ĥj;lyi�k − j� (21)

The identification data set used to obtain Eq. (19) is different from
the validation data set used to compute Eq. (21).

V. Aircraft Example

To apply transmissibility operators to aircraft sensor health
monitoring, we consider the NASA GTM model [19,20], which is a
fully nonlinear model with aerodynamic lookup tables. GTM
includes sensor models that can be modified to emulate sensor faults.
Let δβ denote the sideslip angle in degrees, and let ω ≜
�ωx ωy ωz �T be the angular velocity of the aircraft relative to the
Earth resolved in the aircraft frame, where ωx, ωy, and ωz are
measured by rate gyros in degrees per second. Define T �q� to be the
1 × 3 transmissibility operator whose pseudo-input is yi ≜
�ωx ωy δβ �T and whose pseudo-output is yo ≜ ωz, that is,

ωz�k� � T �q�
"ωx�k�
ωy�k�
δβ�k�

#
(22)

We set the sampling timeTs � 0.01 s, andwe assume that sampled
data are available for t ∈ �0; 500� s, that is, 0 ≤ k ≤ 50; 000 steps.
Let δa, δe, and δr denote the aileron, elevator, and rudder deflections,
respectively. For all 0 ≤ k ≤ 50; 000 let δa � sin�ΩkTs� deg,
δe � sin�ΩkTs � 45� deg, and δr � cos�ΩkTs� deg, where
Ω � 30 deg ∕s. Physically, the displacements of the ailerons,
elevator, and rudder are sinusoidal with an amplitude of 1 deg
and a period of 12 s. We consider the following initial GTM trim
conditions: level flight, altitude � 8000.00 ft, equivalent airspeed �
89.18 kt, true airspeed � 100.58 kt, alpha�3.00deg, beta�0 deg,
gamma � 0 deg, roll � 0.066 deg, pitch � 3.00 deg, yaw �
45.00 deg, ground track � 45.00 deg, elevator � 2.70 deg, and
throttle � 22.84%.
To emulate sensor noise, we add zero-mean white noise with a

siganal-to-noise ratio (SNR) of 50 to all identification and validation
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measurements of ωx, ωy, ωz, and δβ. We use PEM with a noncausal
FIRmodelwith r � 50 andd � 50, alongwith identification data for
2500 ≤ k ≤ 20; 000 steps to obtain the identified transmissibility

T �q; θ̂r;d;l� of T �q�. Figure 1 shows the Markov (impulse response)

parameters of T �q; θ̂r;d;l� from each pseudo-input ωx; ωy, and δβ to

the pseudo-output ωz. Data for 20; 000 < k ≤ 50; 000 are used for
validation. Figure 2 shows ωz and its one-step prediction

ω̂z�
Δ T �q; θ̂r;d;l��ωx ωy δβ �T for 28; 000 ≤ k ≤ 29; 000, that is,

for t ∈ �280; 290� s.
Next, we consider the case where a ramp-like drift with a slope of

0.05 deg ∕s2 is added to measurements of either ωx, ωy, or ωz
starting at t � 300 s. Measurements of ωx, ωy, ωz, and δβ are used
with the identified transmissibility operator T �q; θ̂r;d;l� to generate
the residual using Eq. (21). For all 2500 ≤ k ≤ 50; 000 − w − d,
where w� 1 is the data-window size, define

E�kjθ̂r;d;l; w� ≜

�������������������������������Xw�k
j�k

e2�jjθ̂r;d;l�

vuut (23)

Figure 3 shows E�kjθ̂r;d;l; w� for w � 1000 steps, where a ramp-
like drift is added to measurements of either ωx, ωy, or ωz. Figure 3
shows that the residual levels increase after t � 300 s, which
indicates that, in all three cases, at least one of the sensors is faulty.
However, we cannot conclude from Fig. 3 which sensor is faulty.
Similar results can be shown for other types of faults, such as
magnitude saturation, rate saturation, deadzone, and jam.

VI. Conclusions

Anestimate of the transmissibility operator between pairs or sets of
sensors can be used to detect sensor faults in the presence of unknown
external excitation. The ability to detect sensor faults by exploiting
the presence of unknown external excitation is the key difference
between this approach and techniques based on residual generation.
In particular, the transmissibility operator is a relationship between
pairs or sets of sensors that is independent of the time history of the
external excitation.
Transmissibility-based fault detection depends onvarious assump-

tions. In particular, this approach assumes that the plant itself does not
change between the identification and validation data sets and that the
location of the external excitation does not change. By using the
estimated transmissibility operator, the residual between pairs or sets
of sensors can be used to detect a sensor failure. Moreover, the
characteristic shape of the residual can be used to infer the type of
sensor failure. However, this approach does not identifywhich sensor
has failed. This problem is left for future research.
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