
F
riction is a dynamic phenomenon of widespread
importance, and the associated literature is vast;
overviews are given in [1]–[5]. Friction can be
viewed as an emergent, macroscopic phenomenon
arising from molecular interaction. Consequently,

both physical (physics-based) and empirical (experiment-
based) models have been studied [2], [6]–[14]. Esti-
mation and control methods are available for
applications involving friction [15]–[18]; however,
these topics are beyond the scope of this article.

Friction models distinguish between presliding
friction and sliding friction. Presliding or micro-slip
friction refers to the friction forces that occur when
the relative displacement between two contacting
surfaces is microscopic, that is, on the order of the
asperities (roughness features) on the surfaces. Slid-
ing friction refers to the friction forces that arise
when the relative displacement is macroscopic. Under-
standing presliding friction is useful for high precision
motion control applications. For example, hysteresis can
occur between the presliding friction force input and the
displacement output [7], [11], [12].

From a mathematical point of view, friction modeling is
challenging since these models often involve nonsmooth
dynamics. For example, the most widely used dry friction
model, namely, Coulomb friction, is discontinuous. Addi-
tional discontinuous dry friction models are studied in
[19]. Some friction models are continuous but have non-
Lipschitzian dynamics, which is a necessary condition for

finite-settling-time behavior and the associated lack of
time-reversibility [20], [21]. Table 1 classifies the properties
of some widely used friction models.

Hysteresis is the result of multistability, which refers to
the existence of multiple attracting equilibria [22]–[24].
Multistability implies that hysteresis is a quasi-static phe-
nomenon in the sense that the hysteresis map is the limit of
a sequence of periodic dynamic input-output maps as the
period of the input increases without bound. In both pres-
liding and sliding friction models, there exist multiple equi-
libria corresponding to states that correspond to constant
friction forces under constant displacement or velocity.

In this article we examine several classical friction mod-
els from a hysteresis modeling point of view and study the
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hysteresis induced by these friction models when incorpo-
rated into a physical system. Our starting point is [25],
which focuses on the Duhem model for hysteresis. For
more information on Duhem models, see [26]. The Duhem
model has the property that, under constant inputs, every
state is an equilibrium. When there exist multiple attract-
ing (step-convergent) equilibria for a given step input, the
system exhibits hysteresis under inputs that drive the sys-
tem through distinct equilibria that map into distinct out-
puts. In certain cases, the limiting input-output map is
independent of the input period; this case is known as rate-
independent hysteresis. In general, the hysteresis map is rate
dependent, although the terminology is slightly misleading
since, as already noted, hysteresis per se is a quasi-static
phenomenon.

The generalized Duhem model ẋ = f (x, u)g (u̇) and its
specialization ẋ = (Ax + Bu)g (u̇), known as the semilinear
Duhem model, are considered in [25]. These models give
rise to rate-independent hysteresis when the function g is
positively homogeneous; otherwise, the hysteresis is gen-
erally rate dependent.

In the present article we consider three friction models,
namely, the Dahl, LuGre (Lund/Grenoble), and Maxwell-slip
models. We recast each model in the form of a generalized or
semilinear Duhem model to provide a unified framework for
comparing the hysteretic nature of these models. For exam-
ple, the Dahl model is shown to be a rate-independent gener-
alized Duhem model. Furthermore, in one special case, the
Dahl model is also a semilinear Duhem model for which a
closed-form solution is available. Similarly, the LuGre model
is a rate-dependent generalized Duhem model. Next, we
embed each friction model within a single-degree-of-freedom
mechanical model to examine and compare the hysteretic
response of the combined system.

Finally, we develop an experimental testbed for friction
identification. The testbed consists of a dc motor with a
speed-reduction gearhead, encoder measurements of the
shaft, tachometer measurements of the shaft angular veloc-
ity, and load-cell tension measurements of a cable wound
around the drum. By operating this testbed under quasi-
static conditions, we compare its hysteretic response to the
simulated response of the system under various friction

models. The goal is to identify a model for the friction and
stiction effects observed in the testbed by comparing the
simulation and experimental results.

The objective of this article is to reformulate the Dahl,
LuGre, and Maxwell-slip models as Duhem models to
understand their hysteretic properties. This classification
provides the framework for identifying a friction model
that captures the hysteretic behavior of the motor gearbox.

The contents of the article are as follows. In the fol-
lowing section we review the basic theory of the Duhem
model. Next, we recast the Dahl, LuGre, and Maxwell-
slip models as Duhem models and relate their dynamic
behavior to properties of the Duhem models. We then
study the sliding friction dynamics of the three friction
models. Next, we consider friction-induced hysteresis in
a mass-spring system. This system is studied as a special
case of a linear time-invariant system with Duhem feed-
back. We then develop a model of the experimental
setup and simulate the model using all three friction
models. We then report the experimental results and
compare them with the simulation results to obtain esti-
mates of the friction parameters. Finally, we give some
concluding remarks.

GENERALIZED AND SEMILINEAR DUHEM MODELS
In this section, we summarize the main results of [25]
concerning the generalized and semilinear Duhem mod-
els. Consider the single-input, single-output generalized
Duhem model

ẋ(t) = f (x(t), u(t))g(u̇(t)), x(0) = x0, t ≥ 0, (1)

y(t) = h(x(t), u(t)), (2)

where x : [0,∞) → Rn is absolutely continuous,
u : [0,∞) → R is continuous and piecewise C1 ,
f : Rn × R → Rn×r is continuous, g : R → Rr is continu-
ous and satisfies g (0) = 0, and y : [0,∞) → R , and
h : Rn × R → R are continuous. The value of ẋ(t) at a
point t at which u̇(t) does not exist can be assigned arbi-
trarily. We assume that the solution to (1) exists and is
unique on all finite intervals. Under these assumptions, x
and y are continuous and piecewise C1. The terms closed
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TABLE 1 Classification and properties of friction models. Each friction model is a Duhem model, with either rate-independent
or rate-dependent dynamics. Non-Lipschitzian dynamics is a necessary condition for finite-settling-time convergence.

Friction Model Duhem Type Rate Dependence Continuity
Coulomb Static Rate independent Discontinuous
Dahl γ = 0 Generalized Rate independent Discontinuous

0 < γ < 1 Generalized Rate independent Continuous but not Lipschitz
γ = 1 Semilinear Rate independent Lipschitz
γ > 1 Generalized Rate independent Lipschitz

LuGre Generalized Rate dependent Lipschitz
Maxwell-slip Generalized Rate independent Discontinuous
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curve, limiting periodic input-output map, hysteresis map,
and rate independence are defined as follows. 

Definition 1
The nonempty set H ⊂ R2 is a closed curve if there exists a
continuous, piecewise C1 , and periodic map
γ : [0,∞) → R2 such that γ ([0,∞)) = H.

Definition 2
Let u : [0,∞) → [umin, umax] be continuous, piecewise C1,
periodic with period α, and have exactly one local maxi-
mum umax in [0, α) and exactly one local minimum umin in
[0, α). For all T > 0, define uT(t) � u(αt/T ), assume that
there exists xT : [0,∞) → Rn that is periodic with period T
and satisfies (1) with u = uT , and let yT : [0,∞) → R be
given by (2) with x = xT and u = uT . For all T > 0, the peri-
odic input-output map HT (uT, yT, x0) is the closed curve
HT(uT, yT, x0) � {(uT(t), yT(t)) : t ∈ [0,∞)}, and the limit-
ing periodic input-output map H∞(u, x0) is the closed
curve H∞(u, x0) � limT→∞ HT (uT, yT, x0) if the limit
exists. If there exist (u, y1), (u, y2) ∈ H∞(u, x0) such that
y1 �= y2, then H∞(u) is a hysteresis map, and the general-
ized Duhem model is hysteretic. If, in addition H∞(u, x0)

is independent of x0 then the generalized Duhem model
has local memory, and we write H∞(u) . Otherwise,
H∞(u, x0) has nonlocal memory.

Definition 3
The continuous and piecewise C1 function τ : [0,∞) → [0,∞)

is a positive time scale if τ(0) = 0, τ is nondecreasing, and
limt→∞ τ(t) = ∞. The generalized Duhem model (1), (2) is
rate independent if, for every pair of continuous and piece-
wise C1 functions x and u satisfying (1) and for every posi-
tive time scale τ , it follows that xτ (t) � x(τ(t)) and
uτ (t) � u(τ(t)) also satisfy (1).

The following result is proved in [25]. 

Proposition 1
Assume that g is positively homogeneous, that is,
g (αv) = αg (v) for all α > 0 and v ∈ R. Then the general-
ized Duhem model (1), (2) is rate independent.

If g is positively homogeneous, then there exist
h+, h− ∈ Rr such that 

g (v) =
{

h+v, v ≥ 0,

h−v, v < 0,
(3)

and the rate-independent generalized Duhem model (1),
(2) can be reparameterized in terms of u [25]. Specifically,
consider 

dx̂(u)

du
=

⎧⎨
⎩

f+(x̂(u), u), when u increases,
f−(x̂(u), u), when u decreases,
0, otherwise,

(4)

ŷ(u) = h(x̂(u), u), (5)

for u ∈ [umin, umax] and with initial condition x̂(u0) = x0,
where f+(x, u) � f (x, u)h+ , f−(x, u) � f (x, u)h− , and
u0 ∈ [umin, umax] . Then x(t) � x̂(u(t)) and y(t) � ŷ(u(t))
satisfy (1), (2). Note that the reparameterized Duhem
model (4) and (5) can be viewed as a time-varying dynami-
cal system with nonmonotonic time u.

As a specialization of (1) and (2), we now consider the
rate-independent semilinear Duhem model

ẋ(t) = [ u̇+(t)In u̇−(t)In ]

×
([

A+
A−

]
x(t) +

[
B+
B−

]
u(t) +

[
E+
E−

])
, (6)

y(t) = Cx(t) + Du(t), x(0) = x0, t ≥ 0, (7)

where A+ ∈ Rn×n , A− ∈ Rn×n , B+ ∈ Rn , B− ∈ Rn ,
E+ ∈ Rn, E− ∈ Rn, C ∈ R1×n, D ∈ R, and 

u̇+(t) � max{0, u̇(t)}, u̇−(t) � min{0, u̇(t)}. (8)

Let ρ(A) denote the spectral radius of A ∈ Rn×n and let
the limiting input-output map F∞(u, y) be the set of points
z ∈ R2 such that there exists an increasing, divergent
sequence {ti}∞i=1 in [0,∞) satisfying

lim
i→∞

‖(u(ti), y(ti)) − z‖ = 0.

The following result given in [25] provides a sufficient con-
dition for the existence of the limiting periodic input-output
map for the rate-independent semilinear Duhem model.

Theorem 1
Consider the rate-independent semilinear Duhem model (6),
(7), where u : [0,∞) → [umin, umax] is continuous, piecewise
C1, and periodic with period α and has exactly one local maxi-
mum umax in [0, α) and exactly one local minimum umin in
[0, α). Furthermore, define β � umax − umin, and assume that

ρ(eβA+ e−βA−) < 1. (9)

Then, for all x0 ∈ Rn , (6) has a unique periodic solution
x : [0,∞) → Rn , and the limiting periodic input-output
map H∞(u, x0) exists. Specifically, if A+ and A− are invert-
ible, then 

H∞(u) = {(u, ŷ+(u)) ∈ R
2 : u ∈ [umin, umax]}

∪ {(u, ŷ−(u)) ∈ R
2 : u ∈ [umin, umax]}, (10)

where

ŷ+(u) = CeA+(u−umin)x̂+ − CZ+(u, umin) + Du,

ŷ−(u) = CeA−(u−umax)x̂− − CZ−(u, umax) + Du,

and 
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x̂+ � −(I − e−βA− eβA+)−1(e−βA−Z+(umax, umin)

+ Z−(umin, umax)),

x̂− � −(I − eβA+ e−βA−)−1(eβA+Z−(umin, umax)

+ Z+(umax, umin)),

Z+(u, u0) � A−1
+ (uI − u0eA+(u−u0))B+

+ A−2
+ (I − eA+(u−u0))B+ + A−1

+ (I − eA+(u−u0))E+,

Z−(u, u0) � A−1
− (uI − u0eA−(u−u0))B−

+ A−2
− (I − eA−(u−u0))B− + A−1

− (I − eA−(u−u0))E−.

See [25] for the case in which A+ or A− is singular.
Definition 2 and Theorem 1 imply that the rate-inde-

pendent semilinear Duhem model has local memory since
the hysteresis map H∞(u) given by (10) is independent of
the initial condition x0 ∈ Rn.

FRICTION MODELS

Dahl Model
The Dahl model [6], [27], [28] has the form 

Ḟ (t) = σ

∣∣∣∣1 − F(t)
FC

sgn u̇(t)
∣∣∣∣γ sgn

(
1 − F(t)

FC
sgn u̇(t)

)
u̇(t),

(11)

where F is the friction force, u is the relative displacement
between the two surfaces in contact, FC > 0 is the
Coulomb friction force, γ ≥ 0 is a parameter that deter-
mines the shape of the force-deflection curve (as represent-
ed by a plot of the friction force versus the relative
displacement), and σ > 0 is the rest stiffness, that is, the
slope of the force-deflection curve when F = 0. The right-
hand side of (11) is Lipschitz continuous in F for γ ≥ 1 but
not Lipschitz continuous in F for 0 ≤ γ < 1.

When u is increasing, Ḟ(t) given by (11) is positive for
all F(t) < FC and negative for all F(t) > FC . Similarly,
when u is decreasing, Ḟ(t) given by (11) is positive for all
F(t) < −FC and negative for all F(t) > −FC . Hence the
magnitude of the friction force F(t) approaches FC under
monotonic inputs. As shown in Figure 1, the parameter γ
determines the shape of the hysteresis map. In practice, γ
is typically set to zero or one. As shown in Figure 2, the
friction force given by the Dahl model lags the friction
force given by the Coulomb model when the direction of
motion is reversed.

To represent (11) as a Duhem model, let 

D+(F ) � σ

∣∣∣∣1 − F
FC

∣∣∣∣γ sgn
(

1 − F
FC

)
, (12)

D−(F ) � σ

∣∣∣∣1 + F
FC

∣∣∣∣γ sgn
(

1 + F
FC

)
. (13)

Then the Dahl model (11) can be rewritten as 

FIGURE 1  Displacement u versus friction force F for hysteresis
maps of the Dahl model for several values of γ . The shape of the
hysteresis map from u to F depends on the value of γ . The
numerical values used are FC = 0.75 N, σ = 1.5 N/m, and
u(t ) = sin 0.1t m.
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Ḟ(t) = σ [D+(F(t)) D−(F(t)) ]

×
[

u̇+(t)
u̇−(t)

]
, (14)

y = F, (15)

which, for all γ ≥ 0, is a generalized Duhem model of the
form (1), (2). Furthermore, since g(u̇) = [ u̇+(t) u̇−(t) ]T is
positively homogeneous, Proposition 1 implies that (14) is
rate independent for all γ ≥ 0.

Let γ = 1. Then (11) becomes 

Ḟ (t) = σ

(
1 − F (t)

FC
sgn u̇(t)

)
u̇(t)

=
[
− σ

FC
F (t) + σ σ

FC
F (t) + σ

] [
u̇+(t)
u̇−(t)

]
,

which is a rate-independent semilinear Duhem model.
Furthermore, the convergence condition (9) becomes 

e−2 βσ

FC < 1, (16)

which holds if and only if β > 0. As a direct consequence
of Theorem 1, which explicitly characterizes the hysteresis
map, we have the following result. The corresponding hys-
teresis map is shown in Figure 1.

Corollary 1
Consider the Dahl model (11) with γ = 1. Let
u : [0,∞) → [umin, umax] be continuous, piecewise C1, and
periodic with period α and have exactly one local maxi-
mum umax in [0, α) and exactly one local minimum umin in

[0, α). Then (16) holds, and (14), (15) has a unique periodic
solution F : [0,∞) → Rn , and, for all x0 ∈ Rn, the limiting
periodic input-output map H∞(u) exists. Furthermore,

H∞(u) =
{
(u, F̂+(u)) ∈ R

2 : u ∈ [umin, umax]
}

∪
{
(u, F̂−(u)) ∈ R

2 : u ∈ [umin, umax]
}

, (17)

where 

F̂+(u) � e− σ
FC

(u−umin)
α̂+ + FC

(
1 − e− σ

FC
(u−umin)

)
,

F̂−(u) � e
σ

FC
(u−umax)

α̂− − FC

(
1 − e− σ

FC
(u−umax)

)
,

and 

α̂+ = −α̂− = FC
e

−βσ

FC − 1

e−
βσ

FC + 1
.

Corollary 1 implies that the Dahl model (11) with γ = 1 has
local memory since it is a rate-independent semilinear Duhem
model and H∞(u) defined by (17) is independent of x0.

LuGre Model
The LuGre model [10], which models the asperities of two
surfaces as elastic bristles, is given by 

ẋ(t) = u̇(t) − |u̇(t)|
r(u̇(t))

x(t), (18)

F(t) = σ0x(t) + σ1ẋ(t) + σ2u̇(t), (19)

where x is the average deflection of the bristles, u is the rel-
ative displacement, F is the friction force, and σ0, σ1, σ2 > 0
are stiffness, damping, and viscous friction coefficients,
respectively. The right-hand side of (18) is Lipschitz contin-
uous with respect to x. In [1] and [10], r(u̇(t)) is defined by 

r(u̇(t)) = FC

σ0
+ FS − FC

σ0
e−(u̇(t)/vS)

2
, (20)

where FC > 0 is the Coulomb friction force, FS is the stic-
tion (sticking friction) force, and vS is the Stribeck velocity.

For a given constant velocity u̇, the steady-state friction
force Fss obtained from (18) and (19) is

Fss(u̇) = σ0r(u̇)sgn(u̇) + σ2u̇ . (21)

The drop in friction force (see Figure 3) at low magni-
tudes of velocity is due to the Stribeck effect, while the
Stribeck velocity is the velocity at which the steady-state
friction force begins to decrease when the velocity is posi-
tive and increasing. The LuGre model (18), (19) combines
the friction lag of the Dahl model with the Stribeck effect
[10], [29].

Letting FS = FC in (20) and σ1 = σ2 = 0 in 19, the LuGre
model (18), (19), (20) is equivalent to the Dahl model (11)

FIGURE 3  Steady-state friction force (21) given by the LuGre model.
The drop in the friction force at low velocities is the Stribeck effect,
while the Stribeck velocity vS = 0.001 m/s is the velocity at which
the steady-state friction force begins to decrease when the velocity
is positive and increasing. The numerical values are FC = 1 N,
FS = 1.5 N, vS = 0.001 m/s, σ0 = 105 N/m, σ1 = √

105 N-s/m, and
σ2 = 0.4 N-s/m.
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with γ = 1 and σ = 1. With y = F, the state equations (18)
and (19) can be written as 

ẋ(t) = [ 1 x(t) ]
[

u̇(t)
− |u̇(t)|

r(u̇(t))

]
, (22)

y(t) = σ0x(t) + σ1ẋ(t) + σ2u̇(t), (23)

which is a generalized Duhem model of
the form (1). Since r given in (20) is not a
positively homogeneous function of u̇, the
LuGre model is not necessarily rate inde-
pendent. In fact, the input-output maps in
Figure 4 show that the LuGre model is rate
dependent.

As noted in [30] and [31] the LuGre
model has local memory. Thus the hystere-
sis map H∞(u, x0) of the LuGre model is
independent of x0.

Maxwell-Slip Model
The Maxwell-slip model [7], [12], [13]
shown in Figure 5 has N masses and N
springs. For i = 1, . . . , N, the mass mi with
displacement xi is connected by a stiffness ki
to a common termination point whose dis-
placement is u. Associated with each mass is
a displacement deadband of width �i > 0,
below which the mass does not move, and
above which the mass moves with velocity
u̇, that is, the inertia of the masses is ignored
when the mass is sliding. Hence, ki�i is the
minimum spring force needed to move the
mass mi. Once the mass mi begins to move,
the spring force remains at ki�i for all velocities of the
mass. Hence, each mass-spring combination in the
Maxwell-slip model is subjected to an equivalent Coulomb
friction force F = ki�i.

We can represent this system as the Duhem model 

ẋi(t) = [U(−xi(t) + u(t) − �i) 1 − U(−xi(t)

+ u(t) + �i)]
[

u̇+(t)
u̇−(t)

]
, (24)

F(t) =
N∑

i=1

ki(−xi(t) + u(t)), i = 1, . . . , N, (25)

where F is the friction force and

U(v) �
{

1, v ≥ 0,

0, v < 0.
(26)

The Maxwell-slip model (24), (25) is a generalized
Duhem model of the form (1), (2). Since [u̇+(t) u̇−(t)]T is
positively homogeneous, Proposition 1 implies that (24),
(25) is rate independent. Since the step function U is dis-
continuous, the Maxwell-slip model is discontinuous.

Illustrative input-output maps for the Maxwell-slip
model for N = 1 and N = 10 are shown in Figure 6(a) and
(b), respectively.

Consider the ith mass-spring element in the Maxwell-
slip model. If the deflection xi − u of the spring is less than
�i, then mi does not move, that is, xi = 0, and the friction
force due to the i th element is given by F = kiu and thus

FIGURE 4  Input-output maps for the LuGre model. This sequence of input-output
maps at increasingly lower frequencies shows that rate-dependent hysteresis exists
from the relative displacement u to the friction force F . The numerical values are
FC = 1 N, FS = 1.5 N, vS = 0.001 m/s, σ0 = 105 N/m, σ1 = √

105 N-s/m, σ2 = 0.4
N-s/m, and u(t ) = 10−4 sin ωt m.
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Ḟ = kiu̇. If the deflection is equal to �i, then ẋi = u̇, and
hence F = ki�i and thus Ḟ = 0. Consequently, each mass-
spring combination in the Maxwell-slip model is a Dahl
model with γ = 0 and σ = ki, which has the form

Ḟ(t) = ki

[
sgn

(
1 − F(t)

FC
sgn u̇(t)

)]
u̇(t).

The Maxwell-slip model has nonlocal memory. Consider
(24), (25) with N = 2 and N = 10 shown in Figure 7(a) and (b),
respectively. The input u(t) is initially u1(t) = 0.025 sin(0.1t)
m in Figure 7(a) and u1(t) = 0.01 sin(0.1t) m in Figure 7(b),
while the friction force corresponds to the major loops in (a)
and (b). When u(t) changes to u2(t) = 0.005 sin(0.1t) m after
one period, the friction force F corresponds to the upper
minor loops in Figure 7(a) and (b). When u(t) changes to
u2(t) after one and a half periods, F corresponds to the lower
minor loops in Figure 7(a) and (b). Consequently, with iden-
tical inputs but different initial conditions, (24), (25) result in
distinct hysteresis maps for the same input u(t). Thus,
H∞(u, x0) depends on x0, and the Maxwell-slip model has
nonlocal memory.

SLIDING BEHAVIOR OF THE FRICTION MODELS
We now consider the behavior of the presliding friction mod-
els in the sliding regime, that is, the behavior of these models
when subject to large-magnitude displacement and velocity.

Dahl Model
Consider the Dahl model (11) with γ = 1. The friction force
F as a function of displacement u and velocity u̇ is shown
in Figure 8, where u and u̇ are initially set to zero. The
position is −20 m when the sign of the velocity changes
from negative to positive, and is 0 m when the sign of the
velocity changes from positive to negative.

As mentioned above, Figure 8(b) shows that each veloc-
ity reversal leads to a delayed change in the sign of the
friction force.

LuGre Model
The friction force F as a function of displacement u and
velocity u̇ for the LuGre model is shown in Figure 9. The
Stribeck effect causes the friction force to drop at low mag-
nitudes of velocity.

Maxwell-Slip Model
The friction force F as a function of displacement u and
velocity u̇ for the Maxwell-slip model is shown in Figure 10.
The behavior is similar to that of the Dahl model, that is,
sign reversals of the friction force lag velocity sign changes.

ENERGY DISSIPATION DUE TO FRICTION
The energy dissipated during one cycle of motion of a
mechanical system in periodic motion is equal to the area
enclosed by the counterclockwise force-displacement loop.
Since the hysteresis in a friction model occurs between the

FIGURE 6  Input-output maps for the Maxwell-slip model (a) with N = 2,
�1 = [2.5, 15] × 10−3 m, k = [2, 3] N/m, and u(t ) = 0.01 sin 0.1t m,
and (b) with N = 10, � = [1.5, 2.4, 3.3, 4.2, 5.1, 6, 6.9, 7.8, 8.7, 9.6]
×10−3 m, k = [1, 1.8, 2.6, 3.4, 4.2, 5, 5.8, 6.6, 7.4, 8.2] N/m, and
u(t ) = 0.01 sin 0.1t m. The maps show hysteresis from the displace-
ment u to the friction force F .
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friction force and the relative displacement of the surfaces, the
area enclosed by the hysteresis map is approximately equal to
the kinetic energy lost due to friction at low frequencies. If the
hysteresis is rate independent, then the area enclosed by the
hysteresis map is equal to the energy dissipated during one
cycle of operation at all frequencies.

Dahl Model
Consider the Dahl model (11) with γ = 1. In this case, the
hysteresis map shown in Figure 1 encloses an area of 2.6
N-m = 2.6 J. Since the hysteresis is rate independent, the
energy dissipated during one cycle of operation at all fre-
quencies is 2.6 J.

LuGre Model
For the LuGre model (18), (19), the curve in Figure 4 for the
input frequency ω = 0.1 rad/s is essentially a hysteresis
map. The area enclosed by this curve and thus dissipated
during one cycle of operation at low frequency, is approxi-
mately 5 × 10−4 J.

Maxwell-Slip Model
Consider the Maxwell-slip model with N mass-spring ele-
ments as shown in Figure 5. Under periodic motion, the
springs gain potential energy in compression and exten-
sion but do not return this energy to the system. The lost
energy is therefore the energy dissipated by the friction.
Provided umax > �i for all i, where umax is the maximum
value of the periodic input, the potential energy gained by
the springs in one complete cycle of the periodic input is
given by Ediss = ∑N

i=1 ki�
2
i . For the Maxwell slip model

with ten elements considered in Figure 6(b),
Ediss = 2.4 × 10−3 J, where J denotes Joule. By numerical
integration, the area enclosed by the hysteresis map in Fig-
ure 6(b) is found to be approximately 2.5 × 10−3 J.

HYSTERESIS INDUCED
BY DUHEM FEEDBACK
To study hysteresis induced by Duhem friction models,
we consider the feedback interconnection of a single-
input, single-output linear system and a Duhem hysteretic
model as shown in Figure 11.

The following definition given in [32] is needed.

Definition 4
Consider the system in Figure 11 with constant u. The sys-
tem is step convergent if limt→∞ y(t) exists for all initial
conditions and for all u ∈ R.

Suppose the feedback system in Figure 11 is step con-
vergent. Then it follows from Definition 4 that
limt→∞ y(t) exists for every constant u. Now, let
u : [0,∞) → [umin, umax] be periodic with period α, and let
uT (t) = u(αt/T ) for all t. Now assume that, for all x0 ∈ Rn,
the periodic input-output map HT (uT, yT, x0) exists for all
T > 0 and that the limiting periodic input-output map

FIGURE 7  Nonlocal memory of the Maxwell-slip model with (a)
N = 2, �1 = 2.5 × 10−3 m, �2 = 1.5 × 10−2 m, k1 = 2 N/m, and
k2 = 3 N/m, and (b) with N = 10, � = [1.5, 2.4, 3.3, 4.2, 5.1,

6, 6.9, 7.8, 8.7, 9.6] × 10−3 m, and k = [1, 1.8, 2.6, 3.4, 4.2, 5,

5.8, 6.6, 7.4, 8.2] N/m. The input u(t ) is init ial ly
u1(t ) = 0.025 sin(0.1t) m in (a) and u1(t ) = 0.01 sin(0.1t) m in (b),
where the friction force corresponds to the major loops. When u(t )

changes to u2(t ) = 0.005 sin(0.1t) m after one period, the friction
force F corresponds to the upper minor loops. When u(t )

changes to u2(t ) after one and a half periods, the friction force F
corresponds to the lower minor loops.
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We consider three friction models, namely the Dahl model, the

LuGre (Lund/Grenoble) model, and the Maxwell-slip model.
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H∞(u, x0) exists. Since the set H∞(u, x0) represents the
response of the feedback system in the limit of dc operation,
each element (u, y) of H∞(u, x0) is the limit of a sequence of
points {(ui, yi)}∞i=1 , where (ui, yi) ∈ HTi(uTi, yTi, x0) , as
Ti → ∞, that is, as the input becomes increasingly slower.
Since a constant input u∞ can be viewed as a periodic input
with infinite period, the component y∞ of each limiting
point (u∞, y∞) ∈ H∞(u, x0) is given by y∞ = limt→∞ y(t)
under the constant input u∞. This observation suggests that
step convergence of the feedback system is necessary and
sufficient for the existence of H∞(u, x0).

Let ȳ1 and z̄1 represent limiting values of the outputs
of the linear system G(s) and the Duhem model, respec-
tively, for a constant input u. If G(s) has no poles in the
closed right-half plane and the system in Figure 11 is
step convergent, then

ȳ1 = G(0)(u − z̄1). (27)

Now suppose that, for some constant u, the hysteretic
Duhem model has distinct equilibria z̄1 and z̄2. Then the
output of the feedback system also has distinct equilibria
ȳ1 = G(0)(u − z̄1) and ȳ2 = G(0)(u − z̄2). Hence, the limit-
ing periodic map H∞(u, x0) exists, that is, there exists hys-
teresis between u(t) and y(t). Furthermore, for a given u,
the horizontal width of the hysteresis map is given by
ȳ1 − ȳ2 = G(0)(z̄2 − z̄1). In the following section we illus-
trate these observations with an example.

HYSTERESIS INDUCED BY FRICTION 
IN A MASS-SPRING SYSTEM
We now consider the force-actuated mass-spring system
shown in Figure 12, whose dynamics are given by

FIGURE 8  (a) Friction force versus displacement and the corre-
sponding (b) friction force versus velocity for the Dahl model with
FC = 0.75 N, γ = 1, σ = 7.5 N/m, and u(t ) = 10((cos 0.01t) − 1)

m. The friction force saturates at FC, while its sign reversal lags
the sign change in velocity.
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FIGURE 9  (a) Friction force versus displacement and the correspond-
ing (b) friction force versus velocity for the LuGre model (18), (19) with
FC = 1 N, FS = 1.5 N, vS = 0.001 m/s, σ0 = 105 N/m, σ1 = √

105 N-
s/m, σ2 = 0.4 N-s/m, and u(t ) = 0.01((cos 0.01t) − 1) m. The fric-
tion force saturates at FS, while its sign reversal lags the sign change
in velocity.
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q̈(t) + ks

m
q(t) = 1

m
Fe(t) − 1

m
F , (28)

where q(t) is the displacement of the mass, ks is the spring
constant, m is the mass, Fe(t) is the external force exerted
on the mass, and F is the friction force acting on the mass.
Let v = q̇ denote the velocity of the mass.

In Figure 11, this system is represented as the feedback
interconnection of a linear system with a Duhem hys-
teretic model, where u = Fe, y = q, z = F, and the transfer
function G(s) is given by

G(s) = 1
ms2 + ks

. (29)

Dahl Model
Using the Dahl model (11) for the friction force with mass
displacement u = q, we have

Ḟ(t) = σ

∣∣∣∣1 − F(t)
FC

sgn q̇(t)
∣∣∣∣γ sgn

(
1 − F(t)

FC
sgn q̇(t)

)
q̇(t).

(30)

As shown above, the friction force given by the Dahl
model converges to the constant values FC or −FC
depending on the sign of the relative velocity and acts in
a direction opposing the motion. Consequently, the Dahl
friction acting on the mass in the mass-spring system
plays the role of a damper. Hence, the force-actuated
mass-spring system with Dahl friction is step convergent,
and the states in the feedback representation (29), (30)
converge to constant values for every constant Fe ∈ R.
Letting q̄, v̄, and F̄ denote steady-state values, (27), (28),
and (30) yield

FIGURE 10  (a) Friction force versus displacement and the corre-
sponding (b) friction force versus velocity for the Maxwell-slip model
with N = 10, � = [1.5, 2.4, 3.3, 4.2, 5.1, 6, 6.9, 7.8, 8.7, 9.6] × 10−5

m, k = [1, 1.8, 2.6, 3.4, 4.2, 5, 5.8, 6.6, 7.4, 8.2] N/m, and
u(t ) = 0.01((cos 0.01t) − 1) m. The friction force sign reversal lags
the sign change in velocity.
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FIGURE 11  Single-input, single-output linear system with Duhem feed-
back. This model is used to study hysteresis induced by a Duhem fric-
tion model when connected by feedback to a linear system.
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FIGURE 12  Force-actuated mass-spring system. The friction force
is denoted by F , while the external force is Fe. The system exhibits
hysteresis from the external force Fe to the displacement q when
the Dahl and LuGre models are used to model the friction force F .
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v̄ = 0, (31)

q̄ = G(0)(u − z̄) = Fe − F̄
ks

, (32)(
1 − F̄

FC
sgn v̄

)
= 0. (33)

For a constant external force input, the steady-state values of
displacement, velocity, and friction force are given by (31),
(32), and (33), respectively. Thus, for a low-frequency exter-
nal force input, v(t) → 0 as t → ∞, and the displacement of
the mass satisfies q(t) → q̄ as t → ∞, where q̄ is given by
(32). Now, if (33) holds, then F̄ = FC or F̄ = −FC depending
on the sign of v(t). Consequently, from (32), the steady-state
displacement q̄ can assume two different values, namely,

q̄1 = G(0)(Fe + FC) = Fe + FC

ks
,

q̄2 = G(0)(Fe − FC) = Fe − FC

ks
.

These observations suggest that the limit of the periodic
map HT (FeT, qT ) exists as T → ∞, that is, there exists hys-
teresis between Fe(t) and q(t). The width of the map is
given by q̄1 − q̄2 = 2Fc/ks . For ks = 1.5 N/m, Fc = 0.75 N,

and Fe(t) = 5 sin(0.001t) N, the hysteresis map from the
mass displacement q(t) to the external force Fe(t) is shown
in Figure 13. It can be seen that the vertical width of the
hysteresis map is 1 m.

LuGre Model
Using the LuGre model (18), (19) with u(t) = q(t), we have

ẋ(t) = q̇(t) − |q̇(t)|
r(q̇(t))

x(t), (34)

F(t) = σ0x(t) + σ1ẋ(t) + σ2 q̇(t), (35)

where

r(q̇(t)) = FC

σ0
+ FS − FC

σ0
e−(q̇(t)/vS)

2
. (36)

Due to the Stribeck effect, relating the equilibria map to
the hysteresis map in the case of the LuGre model is
more complicated compared to the Dahl model. The fric-
tion force acts in a direction opposing the motion and,
consequently, plays the role of a damper in the force-
actuated mass-spring system. Hence, the force-actuated
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FIGURE 13  Hysteresis map from the external force Fe(t ) to the dis-
placement q(t ) of the mass for the force-actuated mass-spring
system (28) in Figure 12, with the Dahl model. The numerical val-
ues are FC = 0.75 N, γ = 1, σ = 7.5 N/m, ks = 1.5 N/m, m = 1 kg,
and Fe(t ) = 5 sin(0.001t) N. The vertical width of the hysteresis
map is 1 m.
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FIGURE 14  Hysteresis map from the external force Fe(t ) to the dis-
placement q(t ) of the mass for the force-actuated mass-spring
system (28) in Figure 12, with the LuGre model (34), (35). The
staircase pattern is caused by the Stribeck effect in the LuGre
model. The numerical values are FC = 1 N, FS = 1.5 N,
vS = 0.001 m/s, σ0 = 105 N/m, σ1 = √

105 N-s/m, σ2 = 0.4 N-s/m,
and Fe(t ) = 10 sin(0.001t) N.
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Due to the Stribeck effect, relating the equilibria map to the hysteresis map in

the case of the LuGre model is more complicated compared to the Dahl model.
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mass-spring system with LuGre friction is step conver-
gent, and the states in the feedback representation given
by (29), (34), and (35) converge to constant values for
every constant Fe ∈ R.

The hysteresis map from the input Fe to the output q
for a low-frequency input Fe = 10 sin(0.001t) N is shown
in Figure 14. The time histories of the friction force F and
the position of the mass q are shown in Figure 15. The
mass-spring system exhibits stick-slip motion [10] in
which the mass sticks until the friction force exceeds the
breakaway force FS. Once the mass starts moving, the
friction force drops because of the Stribeck effect. Conse-
quently, the mass accelerates, and thus the spring con-
tracts and the spring force increases.  The mass
accelerates until the external force is balanced by the fric-
tion force and the spring force. When the spring force
becomes sufficiently large, the mass decelerates and
sticks again. This process repeats. Stick-slip is reflected
by the regions of zero velocity shown in Figure 15(b).
The staircase pattern in the hysteresis map shown in Fig-
ure 14 is caused by the stick-slip motion. The low-slope
horizontal segments of the map correspond to sticking,
while the high-slope vertical segments correspond to
slip. It should be noted that the hysteresis map is contin-
uous despite the steep vertical segments.

The amplitude of the oscillations in the friction force
shown in Figure 15(a) is equal to FS − FC = 0.5 N. The
length �Fe of the horizontal segments of the hysteresis
map is twice the amplitude of the oscillations in the fric-
tion force, that is, �Fe = 1 N. The horizontal segments cor-
respond to the sticking phase of the motion, in which the
mass is at rest and thus the external force is balanced by
the spring force and the friction force. As the external force
increases, the friction force also increases until reaching FS,
after which the mass slips, the friction force drops, and the
spring force increases. The larger spring force causes the
mass to stick again, leading to new balanced forces.

The vertical segments of the hysteresis map corre-
spond to the slipping phase, and their size can be deter-
mined by balancing forces. For instance, consider the first
vertical step starting from the origin in the hysteresis
map in Figure 15(b). Let �q denote the length of the
vertical segment. The external force is Fe = 1.5 N, and it
can be seen in Figure 15(a) that the friction force drops to
F = 0.6 N. By balancing the forces, we have thus the
spring force

ks�q = Fe − F = 1.5 − 0.6 = 0.9 N,

which implies that
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FIGURE 15  (a) Friction force F(t ) and (b) displacement q(t ) of the mass for the force-actuated mass-spring system (28) in Figure 12, with
the LuGre model (34), (35). The friction force oscillates with amplitude FS − FC, and the mass exhibits stick-slip motion. The numerical val-
ues are FC = 1 N, FS = 1.5 N, vS = 0.001 m/s, σ0 = 105 N/m, σ1 = √

105 N-s/m, σ2 = 0.4 N-s/m, and Fe(t ) = 10 sin(0.001t) N.
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When the spring force becomes sufficiently large,

the mass decelerates and sticks again.
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�q = 0.9
ks

= 0.9
2

m = 0.45 m.
The hysteresis map can thus be completely determined in
terms of the parameters FS, FC, m, and ks.

EXPERIMENTAL SETUP
We now describe an experimental setup for studying the
effects of gearbox friction on the dynamics of a dc motor.
The experimental setup is shown in Figure 16, while a
schematic of the setup is shown in Figure 17. Two cables
are wound around a drum attached to the motor shaft
and connected to load cells L1 and L2, which measure the
force exerted by the springs k1 and k2. Since hysteresis is
an asymptotically low-frequency phenomenon, the iner-
tia of the load cells does not affect the hysteretic proper-
ties of the system.

The dynamics of the drum are given by

Iθ̈ = Tm − Tf + F2r − F1r , (37)

where θ is the angle of rotation of the drum, I is the
drum’s moment of inertia, Tm is the torque exerted by
the motor, Tf is the torque due to friction, r is the radius
of the drum, and F1 and F2 are the forces exerted on the
drum by the springs. The cables are wound such that, as
the shaft rotates counterclockwise, F1 increases and F2
decreases. The springs are sufficiently pre-stressed that
neither spring slacks while the shaft rotates in either
direction. Let F10 and F20 denote the values of the spring
forces at the initial drum angle, and let δ1 and δ2 denote
the deflections in the two springs. Then

F1 = F10 + k1δ1, F2 = F20 + k2δ2

and

δ1 = rθ, δ2 = −rθ.

Hence,

Iθ̈ = Tm − Tf − (F10 − F20)r − (k1 + k2)r2θ. (38)

The motor torque Tm is assumed to be proportional to the
motor current, that is,

Tm = kmim, (39)

where km is the proportionality constant and im is the
motor current. Hence, (38) becomes

θ̈ (t) + (k1 + k2)r2

I
θ(t) = km

I
im(t) − 1

I
Tf − (F10 − F20)r

I
.

(40)

If F10 = F20, then, with the correspondences

FIGURE 17  Schematic of the experimental setup looking toward
the drum along its axis. The motor is behind the drum and is not
shown. The drum angle θ is positive for counterclockwise rotation
of the shaft.

k2k1

L2
F2F1L1

2r θTm

Tf

FIGURE 16  Experimental setup. This testbed involves a dc motor
with a gearbox for studying the effects of gearbox friction. A pair of
cables are wound around a drum attached to the gearbox and con-
nected to a pair of springs through two load cells. The forces exerted
by the springs are measured by the load cells.
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ks

m
= (k1 + k2)r2

I
,

Fe

m
= km

I
im,

F
m

= 1
I

Tf , (41)

the dynamics in (40) are identical to the dynamics of the
mass-spring system (28).

The setup is connected to a digital computer through a
dSPACE 1103 system, which has one encoder, five analog
to digital (A/D) channels, and five digital to analog (D/A)
channels. Each load cell, whose output is amplified by an
Endevco voltage amplifier model 136, can measure a maxi-
mum load of 75 kg and has a sensitivity of 0.26 mV/kg. The
amplifier gain can be set between zero and 1000, and the
amplified signals are sampled by the dSPACE system. The
dc motor has a built-in tachometer that measures the angu-
lar velocity of the motor shaft. The angular velocity signal
is read through an A/D channel. The conversion for the
tachometer output is 0.01 V/rpm. A Heidenhain encoder
measures the angle of the drum. The gear ratio between the
motor shaft and the drum is 1:68.8. Current is supplied to
the dc motor through a Quanser linear current amplifier
LCAM. The required current profile is commanded to the
current amplifier through one of the D/A channels. The

amplifier provides a voltage signal proportional to the cur-
rent supplied to the dc motor. Estimated parameter values
are k1 = k2 = 2 N/m, F10 = F20 = 0.01 N, r = 1 inch,
km = 16.5 N-m/A, and I = 3 × 10−4 kg-m2.
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FIGURE 18  Simulation of the experimental setup with the Dahl model. (a) Drum angle θ and (b) drum angular velocity θ̇ . The numerical
values are FC = 0.84 N-m, γ = 1, σ = 7.5 N-m/rad, and im(t ) = 0.05 sin(0.2π t) A.
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FIGURE 19  Simulation of hysteresis in the experimental setup with
the Dahl model. The hysteresis map is from the motor torque Tm to
the drum angle θ . The numerical values are FC = 0.84 N-m, γ = 1,
σ = 7.5 N-m/rad, and im(t ) = 0.05 sin(0.2π t) A.

−1 −0.5 0 0.5 1
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

A
ng

ul
ar

 D
ef

le
ct

io
n 

θ 
[r

ad
] 

Motor Torque Tm [N-m]

From a mathematical point of view, friction modeling is challenging

since these models often involve nonsmooth dynamics.
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SIMULATION RESULTS
In this section we simulate the dc motor dynamics (40).
The friction torque Tf is modeled using the Dahl, LuGre,
and Maxwell-slip models. The motor current is chosen to
be im(t) = 0.05 sin(0.2π t) A. For the Dahl model, the drum
angle θ and the drum angular velocity θ̇ are shown in Fig-
ure 18. The hysteresis map from the motor torque Tm to
the drum angle θ is shown in Figure 19. For the LuGre
model, θ and θ̇ are shown in Figure 20, while the hysteresis
map from the motor torque to the drum angle θ is shown
in Figure 21. For the Maxwell-slip model, θ and θ̇ are
shown in Figure 22, while the hysteresis map from the
motor torque to the drum angle θ is shown in Figure 23.

FIGURE 22  Simulation of the experimental setup with the Maxwell-
slip model. (a) Angular deflection θ and (b) angular velocity 
θ̇ of the motor shaft.  The numerical values are N = 10,
� = [1.5, 2.4, 3.3, 4.2, 5.1, 6, 6.9, 7.8, 8.7, 9.6] × 10−3 rad,
k = [2.60, 4.68, 6.76, 8.84, 10.92, 13.00, 15.08, 17.16, 19.24,

21.32] N-m/rad, and im = 0.05 sin(0.2π t) A.
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FIGURE 21  Simulation of hysteresis in the experimental setup with
the LuGre model. The hysteresis map is from the motor torque Tm

to the drum angle θ . The numerical values are FC = 0.6 N-m,
FS = 1 N-m, vS = 0.001 rad/s, σ0 = 103 N-m/rad, σ1 =

√
103

N-m-s/rad, σ2 = 1.3 N-m-s/rad, and im(t ) = 0.05 sin(0.2π t) A.
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FIGURE 20  Simulation of the experimental setup with the LuGre friction model showing (a) drum angle θ and (b) drum angular velocity. The
numerical values are FC = 0.6 N-m, FS = 1 N-m, vS = 0.001 rad/s, σ0 = 103 N-m/rad, σ1 =

√
103 N-m-s/rad, σ2 = 1.3 N-m-s/rad, and

im(t ) = 0.05 sin(0.2π t) A.
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EXPERIMENTAL RESULTS
In this section we present and analyze results obtained
from the experimental setup. The current profile com-
manded to the current amplifier is 0.05 sin(0.2π t) A. The
load cell readings, the actual current supplied by the
amplifier to the dc motor, the shaft angular velocity
measured by the tachometer, and the drum angle mea-
sured by the encoder are shown in Figure 24. Because of
asymmetry in the setup, the force values F10 and F20 in
the two springs are not equal. Once the current supply
is switched on, the motor shaft reaches an equilibrium
position at approximately t = 5 s in which both springs
are equally stressed and then oscillates about that posi-
tion. This behavior is evident in the load cell readings as
shown in Figure 24.

The motor shaft rotates slowly in one direction until
the motor torque cannot exceed the torque exerted by the
springs and the gearbox friction, after which the motor
stops rotating and remains motionless until the motor
torque changes direction. This behavior can be seen in
Figure 24 where the shaft has zero angular velocity in
periodic time intervals, which matches best with the angu-
lar velocity obtained from the simulations using the
LuGre model shown in Figure 20(b). The motor torque
and drum angle exhibiting hysteresis in the experiment
are shown in Figure 25. After initial transients, the motion
approaches a hysteresis map.
Aside from the transients and
the bias in the motor torque, the
hysteresis map in Figure 25 has
the same form as the map simu-
lated using the LuGre model
shown in Figure 21. Conse-
quently, of the three friction
models considered, the LuGre
model provides the best model
of the gearbox friction.

Parameter Identification
Since simulation with the LuGre
model gives a hysteresis map
that qualitatively resembles the
experimental hysteresis map, we
determine LuGre friction para-
meters to quantitatively match
the simulated and experimental
hysteresis maps. Using a manual
tuning approach, suitable para-
meter values are found to be
FC = 0.6 N-m, FS = 1 N-m,
vS = 0.001 rad/s, σ0 = 103 N-
m/rad, σ1 =

√
10 3 N-m-s/rad,

and σ2 = 1.3 N-m-s/rad. Simu-
lation of the experimental setup
using these parameters yields

the plots of θ and θ̇ shown in Figure 20. Figure 26 compares
the experimental and simulated hysteresis maps. Adjust-
ments are made for bias in the motor current and asymme-
try in the motor setup.

FIGURE 23  Simulation of hysteresis in the experimental setup
with the Maxwell-slip model. This hysteresis map is from the
motor torque Tm to the drum angle θ . The numerical values are
N = 10, � = [1.5, 2.4, 3.3, 4.2, 5.1, 6, 6.9, 7.8, 8.7, 9.6] × 10−3

rad, k = [2.60, 4.68, 6.76, 8.84, 10.92, 13.00, 15.08, 17.16, 19.24,

21.32] N-m/rad, and im = 0.05 sin(0.2π t) A.
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FIGURE 24  Experimental results. These plots show (a) load-cell measurements, (b) current sup-
plied by the amplifier, (c) the drum angle, and (d) the drum angular velocity readings for the dc
motor experiment. The input current is im(t ) = 0.05 sin(0.2π t) A. Note that the drum angular
velocity plot resembles the plot in Figure 20(b).
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CONCLUSIONS
In this article we recast the Dahl, LuGre, and Maxwell-slip
models as extended, generalized, or semilinear Duhem
models. We classified each model as either rate indepen-
dent or rate dependent. Smoothness properties of the three
friction models were also considered.

We then studied the hysteresis induced by friction in
a single-degree-of-freedom system. The resulting system
was modeled as a linear system with Duhem feedback.
For each friction model, we computed the corresponding
hysteresis map. Next, we developed a dc servo motor
testbed and performed motion experiments. We then
modeled the testbed dynamics and simulated the system
using all three friction models. By comparing the simu-
lated and experimental results, it was found that the
LuGre model provides the best model of the gearbox
friction characteristics. A manual tuning approach was
used to determine parameters that model the friction in
the dc motor.
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