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Abstract
The problem of finding a reduced order model, optimal in the

H2 sense, to a given system model is a fundamental one in con-
trol system analysis and design. The addition of a HOOconstraint
to the H2 optimal model reduction problem results in a more
practical yet computationally more difficult problem. Without
the global convergence of probability-one homotopy methods the
combined H2,HOOmodel reduction problem is difficult to solve.
Several approaches based on homotopy methods have been pro-
posed. The issues are the number of degrees of freedom, the well
posedness of the finite dimensional optimization problem, and the
numerical robustness of the resulting homotopy algorithm. Ho-
motopy algorithms based on several formulations - input normal
form; Ly, Bryson, and Cannon's 2X2 block parametrization; a new
nonminimal parametrization - are developed and compared here.

Key words: reduced order model problem, HOOcontrol, H2 control, probability-
one homotopy algorithm

AMS Subject Classifications: 93B20, 93B25, 93B40, 65H10

1 Introduction

In a feedback control setting, order reduction techniques may be used ei-
ther to simplify the plant for control design or to simplify the controller
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for ease of implementation. In either case, the resulting reduced-order sys-
tems must be constructed with their closed loop role in mind. Although
numerous order reduction techniques have been proposed, it is clear from
small-gain type arguments that the order reduction procedure should be to
approximate the system frequency response to the greatest extent possible.

Several order reduction techniques have been proposed for approximat-
ing the frequency response of a given system. For example, frequency
weighting has been studied in [5]in conjunction with balancing [12]. More-
over, Hankel norm reduction has been shown to have fundamental ramifi-
cations for frequency domain approximation [1], [2], [7]. An overview and
discussionof these ideas is given in [3]. .

In the present paper we follow the approach of [8], which is based upon
a state space Hoo formulation. In particular, by using a Riccati equation
to enforce an Hoo constraint on the horm of the reduction error in conjunc-
tion with an H2 upper bound or entropy cost [13], it was shown in [8] that
HOOconstrained reduced order systems can be characterized by necessary
conditions for optimality of the H2 upper bound. The resulting algebraic
conditions, which are a generalization of the "pure" H2 optimality condi-
tions given in [9], consist of nonstandard coupled Riccati and Lyapunov
type matrix equations.

The purpose of the present paper is to make significant progress in de-
veloping novel, stable, globally convergent numerical algorithms for solving
the optimality conditions for H2 /HOOorder reduction given in [8]. The ap-
proach we take is based on the construction of probability-one homotopy
maps, similar to those developed for the H2 order reduction problem in [6].

2 Statement of the Problem

Given the controllable and observable, time invariant, continuous time sys-
tem

x(t) = Ax(t) + B Du(t),
y(t) = Cx(t),

(2.1)

where t E [0,00), A E Rnxn is asymptotically stable, BE Rnxm, C E
R'xn, D E Rmxp (m $ p) and the input Du(t) is white noise with sym-
metric and positive definite intensity V ==DDT, find a nm-th order model
(nm < n)

xm(t) = Am xm(t) + Bm Du(t),
Ym(t) = Cmxm(t),

(2.2)

where Am E Rn",xn"" Bm E Rn",xm, Cm E R'xnm, which satisfies the
following criteria:
(i) Am is asymptotically stable;
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(ii) the transfer function of the reduced order model lies within 'Yof the
transfer function of the full order model in the Hoo norm, Le.,

(2.3)

where

H(s) = EC(sIn - A)-l BD,

'Y> 0 is a given constant, E E Rqxl (q ~ 1) is a given constant matrix; and
(iii) the H2 model reduction criterion

is minimized, where [ is the expected value and R =ET E is a symmetric
and positive definite weighting matrix.

3 The Auxiliary Minimization Problem

Define
n = n + nm, E=EO, D = ED,

-
(

A 0

)A= 0 Am '

-_ -T-_ -T -_ (
CTRC -CTRCm

)R=E E-C RC- -C'!;.RC C'!;.RCm '

- _ - -T _ - -T _ (
BV BT BV B'!;. )V = DD - BV B - B V BT B V BT .m m m

The full order system (2.1) and the reduced order system (2.2) can be
written as a single augmented system

O=(C (3.1)

(3.2)

i(t) =Ax(t) +Du(t),
y(t) = 0 x(t). (3.3)

Using this notation the cost J(Am,Bm,Cm) can be written as

J(Am,Bm,Cm) = lim [((y - Ym)T R(y - Ym)]= lim [(yT Ry)t-+oo t-+oo

= lim [(xT OTRO x) = lim [(iT Rx)t-+oo t-+oo

= tr (lim [(xT Rx)] = lim [(tr (xT Rx)]t-+oo t-+oo

= Urn[[tr (xxT R)] = tr rlim £(xxT)R] = tr (QR),t-+oo 4-+00
(3.4)
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where the variance matrix Q = lim £(fi fiT) = JoooeAt.aV.aT eAT t dt (seet --+00

[9]) satisfies
(3.5)

Lemma 1 [8] Let (Am, Bm, Om) be given and assume there exists Q E
R iixii satisfying

Q is symmetric and nonnegative definite (3.6)

and

(3.7)

Then

(..4,D) is stabilizable (3.8)

if and only if
Am is asymptotically stable.

Furthermore, if (3.8) holds, then

(3.9)

(Q - Q is nonnegativedefinite),

and

Hence the HOOconstraint is automatically enforced when a nonnegative
definite solution to (3.7) is known to exist. Furthermore, the solution Q
provides an upper bound for the actual state covariance Q along with a
bound on the H2 model reduction.

The satisfaction of (3.6)-(3.8) leads to (i) Am stable; (ii) a bound on
the Hoo distance between the full order and reduced order systems; and
(iii) a~ upper bound for the H2 model-reduction criterion. The auxil-
iary minimization problem is to determine (Am,Bm,Om) that minimizes
.J(Am, Bm, Om) and thus provides a bound for the actual H2 criterion
J(Am, Bm, Om).

In order that (3.6)-(3.7) have a solution, and degenerate solutions are
ruled out, (Am, Bm, Om) is restricted to the set

s =={(Am, Bm, Om) : A + i-2QR is asymptotically stable,

Q solving (3.7) is symmetric positive definite,

and (Am, Bm, Om) is controllable and observable }.
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S is open since asymptotic stability, positive definiteness, controllability,
and observability are all preserved under small perturbations. Requiring
that S be open is theoretically convenient, and a solution on its boundary
would only occur in rare degenerate cases [6], [8].

4 A Homotopy Approach

A HOMOTOPY ApPROACH BASED ON THE INPUT NORMAL FORM

Treating all the components of Am' Bm, Cm as unknowns is redun-
dant, since only nm(m+l) parameters suffice to describe the reduced order
model. There are numerous ways to parametrize the model (Am, Bm, Cm)
- input normal form is one way that uses the minimal number of param-
eters. As for the H2 model order reduction problem, a particular minimal
parametrization assumes some structure, which the optimal reduced order
model may not possess. A comparison of various minimal parametriza-
tions, and examples of the optimal reduced order models failing to have
prescribed structures (e.g., input normal form), are given in [6]for the H2
problem. Those counterexamples a priori extend to the fl2 /Hoo problem
considered here.

Theorem 1 [10] Suppose Am is asymptotically stable. Then for every
minimal (Am, Em, em), i.e., (Am' Em) is controllable and (Am' em) is
observable, there exist a similarity transformation U and a positive definite
matrix fl = diag(wI,... 'wnm)suchthat Am = U-1AmU, Bm = u-1 Em,
and Cm = emU satisfy

0= Am+A~ + BmVB;:,
o = A~fl + flAm+ C;:RCm.

(4.1)

In addition,

(Am)ii= -~(Bm VB;:)ii'
(C~RCm)..

Wi= (BmVB~)::'
(C~RCm) .. -Wj (BmVB~ ) ..

(A ) = " "
m ij ,

(4.2)

Definition 1 The triple (Am' Bm, Cm) satisfying (4.1) or (4.2) is said to
be in input normal form.
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To optimize .J(Am, Bm, Cm) over the open set S under the constraints
that symmetric positive definite Q satisfies (3.7), and (Am, Bm, Cm) is in
input normal form, the followingLagrangian is formed:

.L:(Am,Bm,Cm,n, Q,P,Me,Mo)

==tr [QR+(AQ+QAT +"Y-2QRQ+V)P

+ (Am +A~ +BmVB~)Me + (A~n+nAm +C~RCm)Mo],

where the symmetric matrices Me, Mo, and P E Rnxn are Lagrange mul-
tipliers.n = diag (WI."', wn",) is related to the input normal form con-
straint. Since the constraint matrix equations are symmetric, so are the
multipliers written in matrix form, and the trace is a concise way to write
the constraint portion of the Lagrangian function. Setting a.L:/aQ= 0
yields

(4.3)

Partition Q, P E Rnxn into

(4.4)

(4.5)

where
Zl ==PI QI + P12Qf2,

Z21 ==P'{;QI + P2Qf2,

8L/an = 0 and 8L/8Am = 0 yield

0= 2Me + 2nMo + 2 (P'{;Ql2 + P2Q2)'

Zl2 ==PI Ql2 + P12Q2,

Z2 ==P'{;QI2 + P2Q2.

A straightforward calculation shows

a.L: T )
8Bm = 2(PI2BV + P2Bm V + 2MeBm V,
8.L:

aCm = 2(RCmQ2- RCQI2)+ 2RCmMo (4.6)

+ "Y-2[-RC(Z[Q12 + ZltQ2 + Q1Z12+ Q12Z2)
. T T T ]+RCm(Q12Z12 + Zl2Q12+ Q2Z2+ Z2 Q2) .
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Theorem 2 [4] The matricesMe and Mo in (4.6) satisfy

(4.7)

where

(4.8)

At this point the unknowns are Bm and Cm (nm(m+l) parameters, due
to the input normal form structure in (4.2», and the equations to be solved
are the partials in (4.6) set to zero. Choose a problem for which a solution
is known, defined by the matrices Ao, Bo, Co, Ro, Vo, "Yo;exactly how
this initial problem is chosen is described in the next section. A homotopy

approach based on the input normal form is now described. Let Aft Bft
C, , R" V" and"Y,denoteA, B, C, R, V, and"Y in the aboveand define

A(.\) = Ao + .\(A, - Ao),

B(.\) = Bo+ .\(B, - Bo),
C(.\) = Co+ .\(C, - Co),

R(.\) = Ro+ .\(R, - Ro),
V(.\) = va+ .\(V, - Vo),
"Y(.\) = "Yo+ .\h, - "Yo).

(4.9)

For brevity, A(.\), B(.\), C(.\), R(.\), V(.\), and "Y(.\)will be denotedby A,
B, C, R, V, and"Y respectively in the following. Let

oL
(

T
)HB...(9,.\)= oBm = 2 P12B+P2Bm V + 2MeBmV,

oL
Hc...(9,.\) = oCm = 2R(CmQ2 - CQ12) + 2RCmMo

+ "Y-2[-RC(Z[Q12 +Z~Q2+ Q1Z12 +Q12Z2)

+ RCm( Q[2Z12 + Z{;Q12 + Q2Z2 + zl Q2)],

where

9 = (vec (Bm»)- Vec (Cm)

denotes the independent variables Bm and Cm, Mo and Me satisfy (4.7),
and Q and P satisfy respectively (3.7) and (4.3) with partitioned forms
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(4.4). Vec(P) for a matrix P E Rpxq is the concatenation of its columns:

The homotopy map is defined as

(vec [HB", (9, A)] )p(9,A) = Vec[He",(9,A)] ,
(4.10)

and its Jacobian matrix is

Dp(9,A) = (Dop(9, A), D>.p(9,A)). (4.11)

Define

fIB", (p(j), M~j») = 2 (p'{;(j) B + p~j)Bm)V + 2M~j)Bm V,

He (Q(j) Z(j) M(j» ) = 2R (c Q(j) - CQ(j» ) + 2RC M(j)'" , , 0 m 2 12 m 0

- 'Y-2RC(z'{(j)QI2 + Zi;(j)Q2 + Z[ QW + zft Q~j)

+ Q~j)Z12+ QIZg>+ QWZ2 + QI2Z~j»)

+ 'Y
-2RC (Z

T (j) Q + ZT
Q(j) + QT (j) Z + QT Z (j)

m 12 12 12 12 12 12 12 12

+ Q~) Z2 + Z~ (j) Q2 + Q2Z~j) + Z[ Q~j»),

where the superscript (j) means 8/89j: y(j) ==8Y/89j. Using the above

definitions, we have for 9j = (Bm) kl'

(4.12)

and for 9j = (Cm)kl'

8HB", = fI (p(j) M(j» )
8(Cm)kl B", , C ,

8~~~)kl =fIe", (Q(j), Z(j), M~j») + 2RE(k,l) (Q2 + Mo) (4.13)

+ 'Y-2RE(k,l)(Z?;QI2+ Q[2Z12+ QfZ2 + Z[Q2)'
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where E(k,l) is a matrix of the appropriate dimension whose only nonzero
element is ekl = 1. p(j) and Q(j) can be obtained by solving the Lyapunov
equations

0= (A + ')'-2QR) Q(j) + Q(j) (A + ')'-2QR) T + v(j)

+ A(j) Q + QAT(j) + ')'-2QR(j)Q,

0= (A + ')'-2 QR)Tp(j) + 1'(j)(A +')'-2QR) +R(j) (4.14)

+ (A(j) + ')'-2Q(j)R + ')'-2 Qfl(j») T1'

+ P(A(j) + ')'-2Q(j) R + ')'-2QR(j)).

Similarly for A, using a dot to denote 0/ oA,

OHB ~ ..
)

T (
. .

) ( )
.

oA'" = HB...(P,Mc + 21'12BV + BV + 2 P2 + Me BmV,
oHc ~ ..

oA'" =Hc...(Q, Z, Mo) + 2RCm(Q2+ Mo) - 2(RC + RC) Q12

+ ')'-2Rh>. - 2')'-3-yRh>.
2 . (

T T )- ')'- RC Z1 Q12 + Z21Q2 + Q1Z12 + Q12Z2 ,
(4.15)

where
h>. = -C(Z[ Q12 + zit Q2+ Q1Z12+ Q12Z2)

(
T T T )

'
+ Cm Q12Z12 + Z12Q12 + Q2Z2 + Z2 Q2

and P and Q are obtained by solvingthe Lyapunov equations

0= (A + ')'-2QR) Q + Q(A + ')'-2QR)T + V. . .
+ A Q + QAT + ')'-2QRQ - 2')'-3..yQRQ,

0= (A+')'-2QR)TP+P(A+')'-2QR) +R (4.16)

+ (A + ')'-2QR + ')'-2QR - 2')'-3-yQR)Tl'

+ P(A + ')'-2QR + ')'-2QR - 2')'-3-yQR).

5 Numerical Algorithm for Normal Form

The initial point (0,A) = (00,0) = (Bm)o,(Cm)o,O) is ideally chosenso
that the triple (Am)o, (Bm)o, (Cm)o)is in input normal form and satisfies
p(Oo,O)= O.

Theorem 3 {12]Suppose A is asymptotically stable. Then for every min-
imal (A, iJ, C), i.e., (A, iJ) is controllableand (...1,0) is observable,there
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exist a similarity transformation T and a positive definite matrix A -
diag (dI,d2,...,cin) with di ;::: dHl such that A = T-IAT, B = T-1fJ,
and C = CT satisfy

0= AA+AAT + BVBT,
0= ATA+AA+CTRC.

Definition 2 The triple (A, B, C) in the above theorem is balanced.

According to Moore [12],under certain conditions, the leading principal
nm xnm block of A, the leading principal nm xm block of B, and the leading
principal I x nm block of C in balanced form are good approximations to
the reduced order model. This suggests that the initial point (80,0) be
chosen as follows:

1) Transform the given triple (Aj,B/,C/) to balanced form (Ab,Bb,Cb)'
2) Partition (Ab, Bb, Cb) as

Bb= n...{ (Bl )B2 '

3) (Ao, Bo, Co) is chosen as

(All 0 )Ao = 0 A22 ' Co= ( C1 0) .

4) The initial point for the reduced order model is chosen as

8 _ (vec (l!m)o) _ (vec Bl )0- Vec (Cm)o - VecC1 '

and (Am)o = All by construction.
5) Transformthe initial point ((Am)o,(fJm)o,(Cm)o) to input normalform

so that the initial reducedorder model is

The initial point for the homotopy map is then (80,0), where

.

(vec (Bm)o )80 = Vec(Cm)o .
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(In general, the truncation to obtain the approximate reduced order model
should be based on the component costs instea.d of on the sizes of the
balanced gains ~ as done above [14]. This explains why in some cases the
above algorithm for choosing the initial points did not lead to a reduced
order model with a minimal cost.)

The above method for choosing the initial point will not give a zero
value for the homotopy at >.= 0 unless the initial '"'(is chosen so that the
term '"'(-2QRis n~gligible. The initial '"'(can be chosen as a sufficiently large
positive number ('"'(0) = 00 corresponds to p(90,O) = 0 exactly).

Once the initial point is chosen, the rest of the computation (which is a
standard globally convergent probability-one homotopy algorithm [16]) is
as follows:

1) Set>.:= 0, 9 := 90.
2) Calculate Am from Bm and Cm, R, V, and compute Q and P according

to (3.7) and (4.3).
3) Evaluate S from (4.8) and Mo and Me according to (4.7).
4) Evaluate the homotopy map p(O,>.)in (4.10) and Dp(O,>.) in (4.11).
5) Predict the next point Z(O) = (9(0),>.(0»)on the homotopy zero curve

using, e.g., a Hermite cubic interpolant.
6) For k := 0, 1, 2, . . . until convergence do

where [Dp(Z)] t is the Moore-Penrose inverse of Dp(Z). Let (917>'1) =
lim Z(k).

k oo
7) If >'1 < 1, then set 0 := OI,>.:= >.I,and go to step 2).
8) If >'1 2:: 1, compute the solution eat >.= 1. Am is then obtained from

Bm and Cm.

An alternative strategy for choosing an initial point is as follows:

1) ModifyAJ to Aj =cll + C2Af, where Cl ~ 0 and C22::O.
2) Transform (Aj,Bj,Cf) to balanced form and choose (~,Bo'Co) as

before.

3) Compute the initial reduced order model (Am)o, (Bm)o, (Cm)o) from
the triple (~, Bo, Co) as before.

When Cl = 0, C2 = 1, this strategy reduces to the previous one. For
some problems, Qur numerical experiments show that HOMPACK reaches
>.> 1 in fewer steps with Cl # 0 than with Cl =O. A modificationto the
homotopy map p(9, >.) in (4.10) is

PI (9, >.) = >.p(fJ, >.) + (1 - >')(0- (0),
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where 80 denotes the initial value of 8 at >. = O. For some problems this
homotopy map can be more efficient than the one in (4.10), while in other
cases it can be less efficient.

6 Homotopy Algorithm B~ed on Ly's Formulation

Ly, et al. [11] introduced another canonical form also with nmm + nml
parameters as in the input normal form formulation. The reduced order
model is represented with respect to a basis such that Am is a 2 x 2 block-
diagonal matrix (2 x 2 blocks with an additional 1 x 1 block if nm is odd)
with 2 x 2 blocks in the form

Bm is a full matrix, and

Cm =

(
~ ~ ~ ~

* * * *

Observe that the Ly structure has nm(m + I) unknowns - nm from Am,
nmm from Bm, and nm(l- 1) from Cm.

It is assumed that (Am, Bm, Cm) is in Ly's form. Let I be the set of
indices of those elements of Am which are parameters, Le.,

...

)

.. .

. .

I-= {(2,1),(2,2),...,(nm,nm)}.

To optimize .7(Am, Bm, Cm) over the open set S under the constraint that
symmetric positive definite Q satisfies (3.7), and (Am, Bm, Cm) is in Ly's
form, the following Lagrangian is formed:

.c(Am,Bm,Cm, P, Q) -=tr [QR+ (AQ + QAT +,-2QRQ + V)P],

where P E Riixii is a Lagrange multiplier. Setting a.c/aQ =0 yields (4.3).
Partition Q, P E Rnxn as in (4.4) and define PQ = Z as in (4.5). The
partial derivatives of .c can be computed as

a.c =2(P~ Q12 + P2 Q2, )ij' (i,j) E I
r"/'I]
a.c

( T )
aBm =2 P12BV + P2Bm V ,

a.c (6.1)
= 2(RCmQ2 - RCQ12)ij+

+ ,-2 [-RC(Z[ Q12+ zl,. Q2 + QIZ12 + Q12Z2)

+ RCm(Qf2Z12 + Z~Q12 + Q2Z2 + zl Q2)]ij"
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Now the equations to be solved are the partials in (6.1) set to zero.
Define Ao, Bo, Co, Ro, Vo, and 'Yoas in Section 4. Let Af, Bf, CJ , Rf,
Vj, and 'YJ denote A, B, C, R, V, and 'Yin the above and define A(..\),
B(..\), C(..\), R(..\), V(..\), and 'Y(..\)as in (4.9) and denote them by A, B,
C, R, V, and 'Yrespectively in the following. Let

.
HA...(0,..\) = 8~~ = 2(pl;Q12 + P2Q2) ,

HB... (0,..\) = 8O:m = 2 (Pl;B + P2Bm)V,
. 8£

Hc...(O,..\)= 8Cm = 2R(CmQ2 - CQ12)

+'Y-2[-RC(Z[Q12 + Z~Q2 + Q1Z12 + Q12Z2)

+ RCm(Qf2Z12 + Zl;Q12 + Q2Z2 + zIQ2)],

where in HA... only those elements corresponding to the parameter elements
of Am are of interest and

(6.2)

denotes the independent variables, Q and P satisfy respectively (3.7) and
(4.3), (Amh is a vector consisting of those elements in Am with indices in
the set I, Le.,

and (Cm)r. is the matrix obtained from rows T = {2,... ,I} of Cm.
The homotopy map is definedas

(6.3)

and its Jacobian matrix is

Dp(O,..\) = (D9p(O,..\),D>.p(O,..\»).
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Define

HA... (1'(;), Q(;)) = 2 (P'{;(;)Q12+ p?;QW + p~j)Q2 + p2Q~j»),

HB... (1'(;)) = 2(P'{;(;)B + p~j) Bm)V,

Hc...(Q(;),Z(;)) = 2R(CmQ~j)- CQW)

- "'(-2RC(Z[(;) Q12+ Z~(j) Q2 + z'[ QW + Z~ Q~j) (6.4)

+ QP) Z12 + QIZg> + QWZ2 + Q12Z~j»)

+ "V-2 RC (Z
T(;) Q +Z T Q(;) +Q T(;) Z +Q T Z (j)

, m 12 12 12 12 12 12 12 12

+ Q~j)Z2 + Z~ (j) Q2 + Q2Z~j) + zi Q~j»),

where the superscript (j) means a/a8j. Using the above definitions, we
have for 8j = (Am) kl' where (k,l) E I,

(6.5)

for 8j = (Bm)kl'

(6.6)

and for 8j = (Cm)kl, where k > 1,
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where pU> and QU> can be obtained by solving the Lyapunov equation
(4.14). Similarly for '\, using a dot to denote 8/8'\,

(6.8)

where

h>.= -C(Z[ Q12+ zlt Q2+ Q1Z12+ Q12Z2)

(
T T T )

'
+ Cm Q12Z12 + Z12Q12 + Q2Z2 + Z2 Q2

and P and Q are obtained by solving (4.16).
Choose the initial "I so that "1;2 is approximately zero. The initial point

(8,'\) =(80' 0) is chosen so that the triple ({Am)o, (Bm)o, (Cm)o) is in Ly's
form and satisfies p{80,0) = O. This can be done as follows:

1) Obtain the initial reduced order model ({Am)o. {Bm)o, (Cm)O)b in bal-
anced form in the same way as for the input normal form approach.

2) Transform the balanced ({Am)o, {Bm)o, (Cm)O)bto Ly's form, and build
80 as described in (6.2).
The homotopy curve tracking computation is the same as described in

Section 5.

7 Homotopy Algorithm

HOMOTOPY ALGORITHM BASED ON OVER-PARAMETRIZATION FORMU-
LATION

Now suppose all the components of Am, Bm, Cm are treated as in-
dependent unknowns. To optimize .J{Am, Bm, Cm) over the open set S
under the constraint that symmetric positive definite Q satisfies (3.7), the
following Lagrangian is formed:

where P E Rnxn is a Lagrange multiplier. Setting 8£/8Q =0 yields (4.3).
Partition Q, P E Rnxn as in (4.4) and define PQ = Z as in (4.5). A
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Choose the initial 1 so that 102 is approximately zero. The initial
point (e, A) = (eo,o) is chosen so that the triple ({Am)o, (Bm)o, (Cm)o) is
in balanced form and satisfies p(eo, 0) = O. This can be done as follows:

1) Obtain the initial reduced order model ({Am)o, {Bm)o, (Cm)O)b in bal-
anced form in the same way as for the input normal form approach.

2) Build eo from ({Am)o, {Bm)o, {Cm)O)bas described in (7.2).

The homotopy curve tracking computation is the same as described in
Section 5.

8 Numerical Results

The following systems are solved by the homotopy algorithms discussed
in the previous sections. The homotopy curve tracking was done with
HOMPACK [16].

Systems with transfer functions of the form

(s - 1)9

H{s) = {s + 1)10'

where q = 0,...,4, are studied. For these systems, controller canonical
form realizations are given by

-10 -45 -120 -210 -250 -210 -120 -45 -10 -1
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0

A=I 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0

B ={I 0 0 0 0 0 0 0 0 O)T.

For q = 0, C = ( 0 0 0 0 0 0 0 0 0 1) .
For q = 1, C = (O 0 0 0 0 0 0 0 -1 1).
For q = 2, C = ( 0 0 0 0 0 0 0 1 -2 1) .
For q = 3, C = ( 0 0 0 0 0 0 1 -3 3 -1) .
For q = 4, C = ( 0 0 0 0 0 1 -4 6 -4 1) .
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Fig. 1. IIH(s) - Hm(s)lIoo(solid), 100.7(dotted), and 100 J(dashed)
versus 'Y.
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Fig. 2. IIH (s) - Hm (s )II00 versus J for q = 0, balancedmodelat "x".
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The Hoo error IIH(s) - Hm(s)lIoc for the balanced reduced model of
order 4 and the corresponding Enns-Glover bounds [5] [7]are:

q
o
1
2
3
4

HOC error
0.017251178
0.031901448
0.057214882
0.098520472
0.16125935

Enns-Glover bound
0.021958271
0.042197266
0.079880388
0.14841709
0.27001110

For nm = 4 and q = 0, solutions of the auxiliary minimization problem
are obtained for 'Y ~ 0.0178 using the input normal form approach. For
'Y < 'Ymin == 0.0178, the Riccati equation solver fails and therefore no
solution can be found. Let Hm(s) be the transfer function of the reduced
order model obtained by minimizing.J. In Figure 1, IIH(s)- Hm(s)lIoc
(solid line), 100.1 (dotted line), and 100J (dashed line) are plotted against
'Y. As shown in the figure, as 'Ydecreases, II H (s ) - Hm (s ) II00 also decreases
while both .1 and J increase. As can be seen from the figure, .1 is a close
bound for J until 'Y becomes very small. To show the tradeoff between
the H2 cost and the Hoo error IIH(s) - Hm(s)lIoo, it is useful to plot
IIH(s) - Hm(s)lIoo against J (with 'Y as the parameter of the curve), as
shown in Figure 2. In Figure 2, the point marked by "x" corresponds to
the balanced reduced model, which has both large H2 cost and large HOO
error IIH(s) -Hm(s)lIoo, relative to the H2/Hoc reduced order model. The
ratio of HOOerror at 'Y= 'Ymin to that at 'Y= 00 is 0.8071, which indicates
that there is about 20% improvement of the reduced order model with
'Y= 'Yminover the reduced order model without the HOOconstraint. The
reduced order models of order 2, 3, 6 were also found, and have qualitative
behavior similar to the nm = 4 case.

For q = 1,... ,4, the same calculations are carried out. Figure 3 shows
similar results to those in Figure 2 for q = 1 with an improvement of about
19%. As q increases, the improvement of the optimal reduced order model
over the balanced reduced order model decreases. In Figure 4, the ratio of
Hoc error at 'Y= 'Yminto that at 'Y= 00 is plotted against q for q = 0,. . .,4.
The HOOnorm improvement of the optimal reduced order model with the
HOCconstraint over that without the Hoc constraint is 1 - ratio. As q
increases, the improvement decreases.

In Figure 5, the Bode plots of H(s) - Hm(s) for the system with q = 0,
nm = 4,and'Y = 'Ymin= 0.0178are shown.The reducedordermodelwith
the HOOconstraint at 'Y = 'Ymin is shown by the solid line; the balanced
reduced order model is shown by the dotted line; the reduced order model
without the HOOconstraint is shown by the dashed line. The magnitude
plots show that as 'Y goes to 'Ymin, the HOOerror becomes increasingly
"all pass", that is, fiat over a wide frequency range, which indicates Hoo
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optimality of the reduced order model. Figure 6 shows the poles and zeros
of the transfer function of the reduced order model for the system with
q =0 and nm =4 at; = imino

As another example, consider the system defined by

(
-2 -8 ) (

2

)A = 0 -8 ' B = 4 '

It is easy to verify that the system is balanced and the singular values are
all equal to 1, Le.,

A+AT+BBT=O,

AT + A + CT C = O.

The Hoo error of the balanced reduced model of order 1 is 2 and the
Enns-Glover bound is also 2. Optimal reduced models of order 1 are found
by the input normal form homotopy approach for; 2: ;min = 1.011. Figure
7 shows the HOOerror versus the H2 cost. The point x corresponds to the
balanced reduced order model. The ratio of the Hoo error at ; = ;min
to that at ; = 00 is 0.6249, which indicates that there is about 37.5%
improvement of the reduced order model with; = ;min over the reduced
order model without the Hoo constraint, and a 50% improvement over the
balanced reduced order model.

In Figure 8, 50IlH(s)- Hm(s)lIoo(solidline), .:J (dotted line), and
J (dashed line) are plotted against;. Unlike the previous systems, even
for small ;, the actual error IIH(s) - Hm(s)lIoo is very close to its bound
;, and .:J is a very close bound for the H2 error J. The Bode plots of
H(s) - Hm(s) are shown in Figure 9, where the reduced order model with
the Hoo constraint at ; = ;min is shown by the solid line; the balanced
reduced order model is shown by the dotted line; the reduced order model
without the Hoo constraint is shown by the dashed line. Again the reduced
order model for; = ;min indicates close to all pass model reduction error.
The reduced order model transfer function at ; = ;min has a single pole
at s = -129.1642.

9 Conclusion

One of the main conclusions for this study is that the more degrees of
freedom that a formulation uses, the more robust is the resulting numerical
algorithm. Both the input normal form and Ly form homotopies are very
efficient for both the H2 optimal and the combined H2 /Hoo model reduc-
tion problems. However, they may fail to exist or be very ill conditioned [6].
The over-parametrization formulation solves the ill conditioning issue, but
introduces singularity at the solution and may fail for a high dimensional
system, which will inevitably have a high order singularity at the solution.
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Fig. 9. Bode plots of H(s) - Hm(s) for H2/Hoo (solid), H2(dashed),
and balanced(dotted) reduced order model.

Solving the H2 optimal model order reduction problem may be well
worth the effort (compared to simple balancing), as shown by the last ex-
ample above. The examples also proved the worth of adding the Hoo con-
straint, resulting in a difficult combined H2 /HOOproblem. Finally, globally
convergenthomotopymethods are a viable approach to the computation-
ally very difficult combined H2 /Hoo model order reduction problem.
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