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SUMMARY

The problem of deriving a suboptimal LQG controller which is internally stable is considered. In the case
where the controller is internally unstable a procedure is given for modifying the optimization
parameters, i.e. the state weighting matrix and/or the process noise intensity. Sufficient conditions for
controller stability of appropriately modified optimization problems are given for both the full-order and
reduced-order cases. A final tuning procedure is then used to minimize the deviation from the original
LQG problem.
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I. INTRODUCTION

One of the major approaches to feedback design is the linear quadratic Gaussian (LQG)
optimization procedure. Except for the selection of weighting matrices for the mean square
error criterion and stochastic models for the disturbances and measurement noise, the design
of LQG controllers is automatic. These parameters together with the system parameters
constitute the required data for well-known procedures of deriving the optimal output control
law. In addition, the resulting closed loop is (under mild conditions) asymptotically stable.
These two attractive properties are probably the main reasons for the popularity of LQG
designs.

The LQG problem can be stated and solved either in the frequency domain or in the state
space. In the frequency domain the optimal closed-loop transfer function is sought and the
problem is formulated such that the Wiener-Hopf technique for optimal filtering may be
employed. The optimal controller is then calculated from the optimal closed-loop transfer
function. In the state space the solution is based on the separation principle, which states that
the optimal controller is a combination of the optimal observer (the Kalman filter) and the
optimal state feedback. The optimal controller does not appear explicitly in both solutions and
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no constraints are imposed on its structure and properties. Thus the optimal controller may
be unstable even in cases where the plant is stable and minimum phase.

Theoretically the stability of the controller is irrelevant in the design of feedback systems
since the closed-loop transfer function is the one that dictates the behaviour of the system. It
is also well known that there are cases in which an unstable plant can be stabilized only by
means of an unstable controller. I However, if the plant is originally stable, then in practice
a designer would be reluctant to use an unstable controller even if the latter is the outcome
of an optimization and even if the stability margins are satisfactory. Among other reasons this
is because the system then is always conditionally stable and becomes unstable when the gains
of the plant or the sensor decrease substantially. One such case is simultaneous failure or
saturation of the sensors in all loops. The system operates then in open loop and an unstable
controller would lead to unbounded response.

In recent years necessary conditions for reduced-order estimators 2 and compensators 3 were
given by means of the optimal projection equations. Those results were extended in several
directions to include, for example, singular cases4-6 and H",-bounds. 7 In this method the order
of the estimator or the controller is preconstrained and its parameters, namely the various
matrices of its state space realization, are optimized with respect to the quadratic cost function.
In the optimal compensation problem the solution consists of a set of four matrix equations,
two modified Riccati equations and two modified Lyapunov equations, coupled by a projection
matrix. As in the full-order case, the optimal closed loop is stable but internal stability of the
controller is not guaranteed.

Despite its practical importance, the problem of stable LQG controllers has not received
wide interest. A straightforward approach would be to solve a constrained parameter
optimization problem where, in addition to closed-loop stability, stability of the controller is
required. This problem was solved for a single-input/single-output system using the feasible
direction approach. 8 The order of the controller in this method is independent of that of the
plant, so full-order, reduced-order and even extended-order optimal stable controllers can be
found. As the order of the system and/or the number of inputs and outputs increase, this
approach becomes numerically tedious. A more sophisticated approach, though eventually
leading also to non-linear constrained parameter optimization, was given by Ganesh and
Pearson. 9 The order of the controller necessarily increases using that approach.

A different approach is to remain within the framework of the standard LQG problem and
to achieve the internal stability of the controller by modifying the optimization parameters, Le.
the weighting matrices and the noise intensities. 10In the case where the required modification
is relatively small the resulting controller is suboptimal with respect to the original problem.
This approach is adopted in this paper. Sufficient conditions for stable, stabilizing LQG
controllers for both the full-order and reduced-order cases are derived. After a stable LQG
controller has been found, a final tuning procedure is used to find the minimal required change
in that direction.

The paper is organized as follows. In Section 2 a stable suboptimal controller for the full-
order case is considered. Similar results for the reduced-order case are given in Section 3.
Section 4 gives two illustrative examples. The results are discussed in Section 5.

2. FULL-ORDER COMPENSA nON

Consider the nth-order plant
x = Ax + Bu + WI

Y= Cx + W2

(1)

(2)
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where WI and W2are mutually independent white noise processes having intensities V I ~ 0 and
V2 > 0 respectively. The performance index is given by

J = lim E{x T(l)R1x(t) + u T(t)R2U(t»), RI ~ 0, R2 > 0
(- 00

It is assumed that the pairs (A, B) and (A, V V2) are stabilizable and the pairs (A, C) and
(A, R 1/2) are detectable. Since we focus mainly on stable plants, these requirements are
satisfied automatically.

The optimal controller is given by II

i = (A - BF - KC)i + Ky

u = -FX

(4)

(5)
where

F = RilBTp

K = QCTVil

(6)

(7)

and P and Q are the non-negative definite solutions of

PA + A Tp - PEpP + RI =0

AQ + QAT - QEQQ+ VI =0

Ep~ BRiIBT, EQ~ CTVilC

The following results are well known. II

(i) The eigenvalues of the closed-loop system are those of A - BF and A - KC.
(ii) A - BF and A - KC are stability matrices, i.e. all of their eigenvalues lie in the open

left half-plane (OLHP).
(iii) No stability properties of A - BF - KC are guaranteed.

(8)

(9)

In the case where the compensator is unstable the following sufficient condition may be used.

Theorem J

Suppose P and Q are non-negative definite solutions of

AQ + QA T- QEQQ+ VI = 0 (10)

PA + A Tp - PEpP + RI + (pP - p-IEQQ1-a)Qa(pp - p-IEQQI-<»T = 0 (11)

for some scalars p and a. Then A - BF - KC, whereas F and K are defined in (6) and (7), is
a stability matrix and the controller (4), (5) stabilizes the plant (I), (2)_

Proof. Equation (11) may be rearranged, using QEQ = KC, as

P(A - KC) + (A - KC)Tp - PEpP + RI + p2pQ<>p+ p-2EQQ2-<>EQ= 0 (12)

This is a Riccati equation for the system (A - KC, B) with a state weighting matrix
R~ Rl + p 2pQap + p -2EQQ2-aEQ ~ O. Since A - KC is asymptotically stable, all
stabilizability and detect ability conditions are met. Using (ii), A - KC - BF is asymptotically
stable. The resulting controller is stabilizing since it is optimal with respect to the LQG
problem (3) with RI modified by a non-negative definite matrix (the last term of (11» and the
same R2.
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Remark 1

A dual result can be easily obtained by fixing the state weighting matrix R., which is the only
parameter that was changed, and modifying VI in a similar fashion.

For its numerical solution it is convenient to have (II) in the form of (12) with the quadratic
terms in P lumped together to give an indefinite term. - P(Ep - p2Q"')P. This type of Riccati
equation is encountered in Hac-theory. It is solved via the eigenvector matrix of the
Hamiltonian matrix 11

H =
[

A_
-Q

where A = A - KC, f: = - (Ep - p2Qa) and Q = R. + p-2EoQ2-aEO' Since f: is indefinite,
existence of a non-negative definite solution P is not guaranteed and it depends on the value
of p. When p --+0, f: --+- Ep and then a solution exists. However, in that case Q becomesvery
large. We therefore want to use the maximum possible p and search for it by increasing p until
a pair of eigenvalues of H reach the imaginary axis.

Theorem I is a sufficient condition for the stability of the controller and as such does not
give the minimal modification required. Several final tuning algorithms may be used to
minimize the change in RI' One way is to solve (8) with RI replaced by

R(A) = All + (I - A)RI = RI + A(pP - p-'EoQI-"')Q"'(pP - p-1EoQI-")T

_~T]

(13)

where P is the solution of (II). The controller poles are continuous with respect to P(A), which
is continuous itself, hence they are continuous with respect to A. For A= 0, where the
controller is unstable, at least one of these poles is in the right half-plane (RHP), and for A= I,
where it is strictly stable, all of them are in the OLHP. From continuity considerations there
exists A* < I such that the resulting controller is stable for all I > A> A*. (In general there
might be several crossings of the imaginary axis and A* corresponds to the last one. Therefore
it is sometimes possible to find and use A< A., which leads to a stable controller.) A slightly
different procedures is to replace (II) by

PA + A Tp - PEpP + RI + A(pP - p-1EoQI-O)Q"'(pP - p-1EoQI-a)T = 0 (14)

In this formulation we have an equation similar to (14) which is solved using the same method.
Again Ais increased until a stable controller is reached. Note that the two procedures are not
identical and coincide only for A= 0 and A= I.

In general the existence of p and 0: that lead to P ~ 0 is not guaranteed. For p --+0 or
0:--+- 00 the additional quadratic terms in P seems negligible; however, this makes the last
term of (12) infinite and consequently the quadratic terms in P in that equation dominate the
solution. Allowing another degree of freedom, the following lemma guarantees the existence
of a stable LQG compensator.

Lemma 2

Assume that A is asymptotically stable and that (A, R 112)is observable. Then there exist
e > 0,0: and p such that the equations

AQ + QA T - QEoQ + eV I = 0

PA + A Tp - PEpP + RI + (pP - p-1EoQI-"')Q"'(pP - p-1EoQI-O)T = 0 (15)

have non-negative definite solutions Q and P.
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Proof. Let QI be the solution of the Lyapunov equation

AQ\ + Q1A T + V I =0

SinceA is asymptoticallystable, Q\ ~ O.Then as e approaches zero, Q = eQl + o(e). Nowwith
(V= 0 and p = el/2 equation (15) becomes

PA + A Tp - PEpP + Rl + el/2(p - EQQd(P - Q1EQ) + o(el/2) = 0 (16)

Observability of (A, R 1/2) implies that for e = 0, i.e. the original Riccati equation, P is positive
definite. From continuity the solution of (16) with sufficiently small e is also positive definite.

3. REDUCED-ORDER COMPENSATION

The reduced-order optimal control problem is stated as follows.
For the plant (1), (2) find an neth-order compensator

Xc = Aexe + BeY

u = Cexe

(17)

(18)

which minimizes the cost (3).
The solution of this problem, actually necessary conditions characterizing all optimal

solutions, is summarized in the following theorem.

Theorem 23

Suppose (Ac, Be, Cd solves the reduced-order optimal control problem. Then there exist
n x n non-negative definite matrices Q, P, Q, P such that Ae, Be and Ce are given by

Ac = r(A - QEQ - EpP)GT

Be=rQCTVi\

Ce = -RiIBTpGT

(19)

(20)

(21)

where Q, P, Q, P, rand GT satisfy

AQ + QAT + Vt- QEQQ + T.LQEQQTl =0

(A - EpP)Q + Q(A - Epp)T + QEQQ - T.LQEQQTl = 0

A Tp + PA + RI - PEpP + TlPEpPT.L = 0

P(A - QEQ) + (A - QEQ)Tp + PEpP - TlPEpPT.L = 0

rank Q = rank P = rank QP= ne

QP=GTMr, rG T = I",., M (ne x ne) non-singular

T.L = I" - T

(22)

(23)

(24)

(25)

(26)

(27)

(28)

As in the full-order case, the optimal reduced-order controller (if exists) stabilizes the system
but may be unstable itself. To derive a stable controller, we use an approach similar to the one
used in the full-order case. The optimization parameters, or equivalently equations (22)-(25),
are modified and known stability results of a partial problem, LQ or optimal estimation, are
employed. We therefore start by stating the reduced-order optimal estimation problem.
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Given the system (1), (2), which is assumed now to be asymptotically stable, and the criterion

J1 = lim E{(Lx - Ye)TR(Lx - ye)} (29),-""
where L is a constant matrix representing linear combinations of the states that are to be
estimated and R > 0 is a weighting matrix, find an neth-order estimator

Xe = Aexe + BeY

Ye = CeXe

(30)

(31 )

which minimizes (29).
The following theorem gives necessary conditions for the reduced-order optimal estimator.

Theorem 32

Suppose (Ae, Be, Ce) solves the reduced-order optimal estimation problem. Then Ae, Be and
Ce are given by

Ae = r(A - QEQ)GT

Be = rQcTv i1

Ce = LGT

where Q, Q and P are non-negative definite matrices satisfying

AQ + QA T + VI - QEQQ + T.LQEQQT l =0- - T T
AQ + QA + QEQQ - T.LQEQQT .L= 0

P(A - QEQ) + (A - QEQfp + LTRL - TlLTRLT.L = 0

and GT, r, T and T.L are as in (26)-(28) with ne replacing ne.

Certainly if an optimal estimator exists, it is asymptotically stable. We are now in a position
to state the main result of this section, which gives a sufficient condition for the existence of
a stable, stabilizing suboptimal reduced-order controller.

Theorem 4

Suppose Q, P, Q and P are non-negative definite matrices satisfying

AQ + QA T - QEQQ + T.LQEQQTl + VI

+ (PIQ - p.IEpp1-O:)P"'(PIQ - p.IEppl-O:)T = 0
- - T T

(A - EpP)Q + Q(A - EpP) + QEQQ - T.LQEQQT .L= 0

PA + ATp - PEpP + TlPEpPT.L + RI + (P2P - pi1p)Ep(p2P - pi1p)

+P32ATA+pjP2=0

- T- T
P(A - QEQ) + (A - QEQ) P + PEpP - T.LPEpPT.L= 0

rank Q = rank P = rank QP = nc

rGT = In" M(ne X nO>non-singular

T = GTr , T.L= In - T

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)
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for some Pt,P2,P3 and Q. Then the controller (17), (18) with

Ae = r(A - QrQ - rp)GT

Be = rQCTVi1

Ce = RilBTpGT

is asymptotically stable and stabilizesthe system (1), (2).

(45)

(46)

(47)

Proof. To show that the compensator is stabilizing, note that the equations have the form
of (22)-(25), the necessary conditions for the optimal reduced-order compensator for the
original system, with

R. = RI + (P2P - pi1p)Ep(P2P - pilp) + pj"2A TA + p~p2 ~ 0 (48)

VI =V1+ (PIQ - P IIEpP l-a)p"(PIQ - P IIEppl-a)T ~ 0 (49)

replacing RI and V1 respectively.
Consider now equation (40), which can be written as

PEpP + PEpP + PEpP = (pj"IA + P3P)T(pj"IA + P3P) + TIPEpPT.l + RI
2 2 ~ -

+ P2PEpP + pi PEpP (50)

Since the right-hand side of (50) is non-negative definite, there exist R> 0 and L such that

PEpP + PEpP + PEpP = LTRL (51)

An important relation in the development of the optimal projection equations2-7 is PT =P
which implies PT.L =O. Subtracting the identically zero term TI (PEpP + PEpP)T.l from (41)
using (51) yields

P(A - EpP - QEQ) + (A - EpP - QEQ)Tp + LTRL - TIL TRLT.l =0 (52)

Rearranging (38), we get
T T -

(A - EpP)Q + Q(A - EpP) - QEQQ + T.lQEQQT .l + VI = 0 (53)

where

(54)

Equation (53), (39) and (52) are analogous to (35)-(37) and constitute the optimal projection
equations for a system with system matrix A= A - EpP, process noise intensity VI, and Land
R as defined in (51). To use the stability results of the reduced-order estimator, we still have
to show first that A is stable. Defining

- /j. T -I - - I- -2 T 2'
R1=RI+T.LPEpPT.l+(P2P-P2 P)Ep(p2P-p2 P)+P3 A A+P3P- (55)

equation (40) becomes

PA + ATp - PEpP + Rl =0 (56)

Since Rl ~ Rt, (A, Rill) detectable implies (A, R1/2) detectable, which from LQG theory II
implies A - EpP asymptotically stable. Now the dynamics of the reduced-order estimator for
the problem defined by (53), (39) and (52) is

Ae = reA - QEQ)GT = r(A - EpP - QEQ)GT (57)

which is asymptotically stable. This completes the proof.
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The two final tuning procedures outlined in Section 2 are applicable here as well, with the
distinction that in Theorem 4 both the process noise intensity and the state weighting matrix
were modified. The final tuning may be applied using either a single parameter}.. for both
modifications or two parameters }..Iand }..2to allow uneven deviations from the original
problem. The solution of (38)-(41) is not an easy task. The equations are coupled by the
projection and their quadratic terms have indefinite coefficient matrices. The method which we
used to solve these equations was repeated substitutions. Equations (38) and (40) were treated
as standard Riccati equations where all the additional terms were evaluated from the previous
iteration and added to the constant term. A final tuning scheme similar to (14) can be used
as a simple ad hoc homotopy algorithm, which gives a good initial guess for the solution.
Equation (38) and (40) are replaced by

AQ + QA T - QEQQ +., .lQEQQ.,l + VI
+ }..1(PIQ-P1IEppl-"')P"'(PIQ-P1IEppl-a)T =0 (58)

PA + ATp - PEpP + .,lPEpP.,.l + RI

+ }..2[(P2P-pilp)Ep(P2P-pilp)+pj"2ATA+ pJp2] =0 (59)

respectively. Starting with }..I= }..2 = 0, which is the optimal unstable case, and increasing}..I
and A2gradually while checking the stability of Ac is a convenient way to solve these equations
and to have final tuning at the same time.

4. EXAMPLES
Example I

Consider the system

i = [~3
y= [2 1]x + v

where wand v are unit-intensity white noise processes. The state and input weighting matrices
are

R =
[

2800 473

]
R = 1

I 473 80' 2

This example was first introduced by Doyle and Stein 12and was also considered in the context
of stable compensators. 8,9 The optimal compensator has an observer gain K = [30 - 50] T and
a state feedback F = [50 10]. Its transfer function is

C(s)= 1000(s+2'6)S2+ 24s - 797

which is unstable. The optimal cost is 2.44 x 105. Using the method of Theorem 1 with a = 0
and P = 0'064, we get the stable compensator

CI(s)=8'76X 103(s+5'1)S2+ 922s + 2215

which yields the cost 4.61 x 105. The final tuning described in (13) gives, with A= 0'013,

C2(s) = 1'32x 103(s+4'44)
s(s+ 118'2)
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and the cost 4-06 x 105. This value is close to the minimum cost possible by a second-order
stable compensator, which was found 8to be 3-95X 105_ Similar resultswereobtained by using
the final tuning method of (14). It is worth noting that better performance can be achieved by
increasing the order of the compensator. 9

Example 2

Consider the system

[

-1

x= ~

o
-2

o
o

o
o

-3
o

y = [1 1 1 1]x + v

with intensities W = 10314 and V = 1 and weighting matrices RI = 10414 and R2= 1. The
optimal compensator is given by KO= [22,20 15.10 12.56 11-21]T and
1'0 = [71'01 48,80 41.02 36-97] and its transfer function is

CO(5) = 3243(5+ 3- 753)(5+ 2- 693)(5+ 1.626)
(5 + 264. 49)(5 + 3, 504)(5 + 2-267)(5 - l' 397)

which is unstable. The optimal cost is 7-2156 X 106.
First we look for the stable suboptimal full-order compensator. With a = 0 and P = 0.0014

equation (11) has a non-negative definite solution, i.e. the corresponding state feedback
1'= [2'23 2.262.25 2-25] x 103 leads to a stable compensator. The cost is 8'2236x 106.
The final tuning procedure of (13) gives, for >-= 5' 5 X 10-4, a controller with one pole at the
origin and a cost of 7.2215 x 106. The increase in cost is therefore negligible, less than
O' 1 per cent.

The optimal second-order controller for this system is also unstable and leads to the cost
7.2157 X 106, practically the same as the optimal cost. To find a stable reduced-order
compensator, we choose PI = pz = P3= 0.001 and follow the procedure outlined at the end of
Section 3. For >-,= >-2 =4,05 X 10-8 we get

C(5) =531(5 + 2'02)
5(5+ 307'6)

and the cost is 7.2375 X 106, again a negligible increase. If one wishes to have a strictly stable
controller, then increasing >-, and >-2to 8 X 10-8 yields a controller with a slowest pole at
- O.45 with only O'6 per cent increase in cost. When the costs are practically equal, it is
reasonable to assume that a second-order stable controller is preferable to a fourth-order
unstable one. Incidentally, this example demonstrates a situation which is not uncommon in
optimization schemes. In the parameter space there might be directions along which the cost
function is relatively flat. Large variations of the parameters in those directions can be used
to achieve further performance specifications, such as stability of the controller in this case,
with only a small increase in cost.

5. DISCUSSION

The problem of stable LQG controllers was considered. By modifying the state weighting
matrix and/or the process noise intensity matrix, stable controllers were achieved for both the
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full-order and reduced-order cases. The modifications are implicit in the sense that they depend
on the new value of P in the full-order case or the new values of Q, P and P in the reduced-
order case. Consequently the generalized Riccati equations that have to be solved have a
generally indefinite matrix coefficient of the quadratic term as in Reo-theory.

A final tuning procedure is used to minimize the deviation from the original cost function,
which in turn normally means a reduction in the cost evaluated from the original cost function.
The sufficient conditions in Theorem 1 and 4 give controllers with poles which are generally
well into the LHP. The final tuning procedure pushes the unstable poles of the original optimal
controller towards the LHP and stops when the last of these poles reaches the imaginary axis.
Hence applying this procedure always results in a controller which is on the verge of instability.
Such controllers often lead to conditionally stable systems. 9To avoid such undesirable designs,
A.> A.* may be used, with the idea that a system with all its open-loop poles well into the LHP
is less likely to be conditionally stable.
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