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Non-linear system identification using Hammerstein and non-linear feedback models

with piecewise linear static maps

TOBIN H. VAN PELT}* and DENNIS S. BERNSTEIN{

We consider the identification of Hammerstein/non-linear feedback models by approximating internal non-linearities
using piecewise linear static maps. The resulting method utilizes a point-slope parameterization that leads to a compu-
tationally tractable optimization problem. The computational appeal of this technique is derived from the fact that the
method only requires a matrix inverse and singular value decomposition. Furthermore, the identification method simul-
taneously identifies the linear dynamic and static non-linear blocks without requiring prior assumptions on the form of

the static non-linearity.

1. Introduction

Empirical or data-based modelling, generally
referred to as system identification, plays an essential
role in control systems engineering as well as many
other branches of science and engineering. System iden-
tification using linear model structures has been exten-
sively developed and the theory is mature. Issues such as
model order selection, consistency and optimal input
selection have been discussed at length in several land-
mark texts (Ljung and Soderstrom 1983, Soderstrom
and Stoica 1989, Ljung 1999).

In practice, however, all real systems possess some
non-linearity, and this non-linearity can degrade the
effectiveness of linear system identification methods.
Accordingly, there has been significant effort during
the past several decades to develop techniques for non-
linear system identification (Billings 1980, Bendat 1989,
Juditsky et al. 1995, Sjober et al. 1995, Wemhoff et al.
1999, Fitzgerald et al. 2000, Young 2000). While a large
variety of techniques have been proposed for this prob-
lem, most research has focused on either black-box
modelling (i.e. a purely input—output framework), or
alternatively, physical modelling, which is based on
scientific principles that retain parametric interpretation
and correspondence with the physical world.

From an input-output point of view, the Volterra
series representation provides a general framework for
representing a large class of non-linear systems. A highly
readable account of this modelling formalism is given in
Rugh (1981), whose last chapter provides a summary of
non-linear system identification methods based on this
model representation.
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An alternative model representation for non-linear
system identification involves realizations consisting of
dynamic linear blocks (£) and static non-linear blocks
(N). Interconnection of these blocks in various config-
urations allows identification under different model
structures. The most frequently used structures are the
Hammerstein model (V' — £) (Narendra and Gallman
1966, Stoica 1981, Hunter and Korenberg 1986,
Greblicki 1989, Krzyzak 1989, Eskinat er al. 1991,
Pawlak 1991, Chen and Fassois 1992, Rangan et al.
1995), the Wiener model (£ — N) (Billings and
Fakhovri 1977, Pajunen 1985, Hunter and Korenberg
1986, Billings and Voon 1987, Chen and Fassois 1992,
Greblicki 1999), the sandwich model (£; — N — £, or
N| — L — N,) (Sandor and Williamson 1978, Billings
and Fakhouri 1982, Boyd and Chua 1983, Korenberg
and Hunter 1986, Shi and Sun 1990, Bai 1998,
Vandersteen and Schoukens 1998), and the non-linear
feedback model (£ — N — L) (Wembhoff ez al. 1999), as
well as various combinations of these basic configura-
tions. Some of these techniques assume that one or more
of the subsystems is known, while others develop models
for all subsystems, either iteratively or simultaneously.

A link between the input—output representation and
the realization model structures was established in Boyd
and Chua (1985), where it was shown that a fading
memory non-linear operator can be approximated by a
Volterra series operator which in turn can be realized by
a Wiener model structure with polynomial non-linearity.

Another class of methods for non-linear system iden-
tification is based on neural network functional approx-
imation techniques (Chen et al. 1990, Narendra and
Parthasarathy 1990, Lu and Basar 1998). These tech-
niques are especially suitable for multivariable non-
linearities through the use of radial basis function
approximations. Yet another approach involves non-
stationary stochastic time series methods (Young 2000,
Young et al. 2001). These techniques assume that par-
ameters within a linear model structure vary in time or
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depend on other system measurements. This non-
parametric technique yields information regarding the
form of the non-linearities within the system, such that
identification can be implemented using a parsimonious
parameterization.

In the present paper we develop a novel technique
for non-linear system identification using block-
structured models consisting of Hammerstein, non-
linear feedback, and Hammerstein/non-linear feedback
model structures. One of the key components of our
approach is the use of piecewise linear approximations
for the static non-linear blocks. Piecewise linear approx-
imations have been widely studied in the circuit theory
literature (Kahlert and Chua 1990, 1992) as well as in
non-linear control theory (Sontag 1991, Petit 1985,
Ahmed 1995, Hwang 1995). In addition, these non-
linearities have been used for non-linear system identifi-
cation in Pajunen (1985), Billings and Voon (1987) and
Shi and Sun (1990). In the present paper, we use a
‘point-slope’ representation of the piecewise linear non-
linearity. We note that non-linear feedback models have
been extensively studied in classical absolute stability
theory. See, for example, Narendra and Taylor (1973)
and Haddad and Bernstein (1993, 1994).

It was shown in Bai (1998) that for a specific type of
sandwich model (N — £ — N/,), the non-linear least
squares optimization problem can be replaced by a pair
of standard computational procedures, namely, linear
least squares optimization and fixed rank approximation
in the Frobenius norm. This procedure provides
simultaneous approximations of the linear and non-
linear blocks of the system. The attractiveness of this
procedure lies in the relative computational simplicity
of the technique and its suitability for online im-
plementation.

In this paper the work in Bai (1998) is extended in
the following ways. First, the computational procedure
is motivated by means of a bounding technique that
entails a suboptimal, but computationally tractable,
approximation. Next, the use of piecewise linear approx-
imations is considered. A potential problem associated
with this parameterization arises for non-linear feedback
models. When parameterizing the piecewise linear feed-
back non-linearity it is difficult to guarantee the invert-

_u(k) ] fol9) +\/><\

ibility of the regression matrix that arises in the linear
least squares optimization problem. This difficulty is
overcome by implementing a ‘point-slope’ represen-
tation for this non-linearity. Furthermore, the work
of Bai (1998) is extended by considering non-linear
feedback and Hammerstein/non-linear feedback model
structures.

The contents of the paper are as follows. In §2 we
present the Hammerstein/non-linear feedback model.
In §3 we present the ‘point-slope’ parameterization for
piecewise linear functions. In §4 we develop the piece-
wise linear least squares (PLLS) identification technique
using a Hammerstein model, a non-linear feedback
model and a Hammerstein/non-linear feedback model.
Finally, in §5 we present two numerical examples to
illustrate this technique. Although the PLLS procedure
does not account for the effects of noise a priori, we
consider numerical examples involving noisy data to
illustrate its performance.

1.1. Notation

We define the following notation. 7, is the n xn
identity matrix, 0,,,,, is the n X m zero matrix, 1, is the
ones column vector of length n, ||M||2F L tr(MTM)is the
Frobenius norm of the matrix M, o,,,,(M) is the largest
singular value of M, vec (-) and vec ' (.) are the column
stacking operation and its inverse and q ! is the back-
ward shift operator.

2. Hammerstein/non-linear feedback modelling

Consider the single-input single-output Hammer-
stein/non-linear feedback model shown in Figure 1,
where u(k) is the model input and y(k) is the model out-
put. This model consists of a linear time-invariant (LTI)
block and two static non-linearities f,: R — R and
hy: R — R. One or both non-linearities can be absent
by setting fo(u) = u or hy(y) =0. When hy(y) =0 the
model becomes a Hammerstein model, and when
fo(u) =u the model becomes a non-linear feedback
model. The LTI block is represented by the nth-order
strictly proper transfer function

G(q™) ulk

Ro(-)

Figure 1. Hammerstein/non-linear feedback model.
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Figure 2. Representation of Hammerstein/non-linear feedback model.

B(q")  bq'+-+bq”

Gla ™ = -
@) Alq") l14+aq '+ +aq"

(1)
The model output y(k) is then given by

Blq ")
Alq)

y(k) = [fo(u(k)) = ho((K))] (2)

The representation of G, f, and #h, in the
Hammerstein/non-linear feedback model is non-unique.
Specifically, letting «, 8,v € R, where 3 # 0, it can be
seen that Figure 1 is equivalent to Figure 2 in the
sense that both systems have the same input—output
response. Hence, u(k) and y(k) satisfy

Bq ")
BAq") +aB(q )

X [B(So(u(k)) + ) = (B(ho(¥(K)) + ) — ay(k))]
(3)

which is equivalent to (2). Thus, fy(u), ho(y) and G(q ")
can be replaced by 8( fy(u) + ), B(hy(y) + ) — ay and
G(q ") /(B+ aG(q ")), respectively.

The input gain parameter (3 scales the gain of the LTI
block G(q'). Furthermore, for a given 3, the stability
parameter « determines the stability of the LTI block.
Specifically, in some cases « can be chosen to ensure
stability of the LTI block by examining the root locus
of the denominator polynomial

y(k) =

Aq +%B<q—‘> (4)

The offset parameter ~ affects the offset of the non-
linearities f,(1) and /y( y).

3. Parameterization of piecewise linear functions

Henceforth we approximate f, and 4, by continuous
piecewise linear functions f and /4. To represent these
functions we use the parameterization illustrated in
Figure 3. This parameterization is characterized by the
function value k= f(c¢,) and the slope parameters
Py -5y defined over a partitioning (—o0,¢],
[c1, ¢, ..., [cy,00) of the domain of f. Let ¢; < ¢; <
+++ < ¢, be real numbers, let ¢ =[c; - c,,]T be the
partition of the domain of f, let y, e R, i=1,...,
p+1l, seR, and let re{l,...,p} be the primary
index at which the value k = f(c,) is specified. Then f
is represented by

r

/J'ﬁ(u)(u - cﬁ(u)) - Z /1'/(‘/ - L?/—l) + K,

j=6(u)+1
S(u) <1
fu) = Po) (U — ¢,) + K, r<é(u) <r+1
S(u)—1
/”'(S(u)(u - c(?(u)—l) + Z /”'/(L/ - L?/—l) + K,
j=r+1
o(u) >r+1
(5)
where
1, u<c
S(u) & < i, cia<u<c, i=2,...,p (6)
p+1, ¢, <u
By defining the slope vector
. T
e [ fpe1] € RV (7)
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Figure 3.
f(u) can be written as
Su) = p"n(u) + & (8)
where
Cm),  d(u) <r+1
o = { , o)
mu),  ou)=r+1
and where
771(“) & [01><(6(u)—1) U= Cs) Csu) — Co(u)+1
Cr—1 — Cr 01><(p—0—1—r)]T € RP_H (10)
and
772(“) 2 [01><r Cry1 — € Co(u)—1 — Co(u)-2
U — Cs(y)—1 01><(p—r—0—1)]T € RP_H (11)

By a slight modification of these definitions we can
restrict the domain of f to be compact. The specific
choice of index parameter r and partitions ¢, ¢, ...,c,
will typically depend on the application considered.
Further discussion of this point appears in § 5.

)

4. Piecewise linear least squares identification

This section presents the piecewise linear least
squares (PLLS) identification method. For clarity, the
case of the Hammerstein model is considered first and
then the method is extended to non-linear feedback and
Hammerstein/non-linear feedback.

4.1. Hammerstein model identification

Consider the Hammerstein model with /y(y) = 0 in
(2). The output y(k), using the piecewise linear approx-
imation f of fj, is then given by

y(k) = G(q~")f (u(k)) (12)
which has the time series representation
y(k)y = (1= A(q)y(k) + Bla~")f (u(k)) (13)

Parameterization of the piecewise linear function f.

Next define
at[q a,]" e R"
(14)
b4 [b b,]" e R"
and expand (13) as
y(k) = —ayy(k = 1) =+ —a,y(k —n)
+ b1 f(u(k = 1))+ +b,f(ulk —n))  (15)
Substituting (8) into (15) yields
y(k) = 0" (k) (16)
where
a
0L |vec(ub")| e RO (17)
k1Th
and
o(k) & (=) (k) ¢y(k) 1]" e R™WFIT - (18)
where
¢y(k) = [y(k—1) yk—n)]" e R" (19)

and

0" (uk = m)]" € RO
(20)

(bn(k) 2 [77T(u(k - 1))

Next consider input—output measurements u(k) and
y(k) for k=0,...,/, where [ > n, and form the least
squares cost

J(0) =Y — 6], (21)
where

y(l) ]TG Rl_”'H

Y £ [y(n) (22)
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and
@' (n)
24|
¢ (1)
_ [_Q)y (pn 11—n+1] c R(l—n+l)><(n+n(p+l)+l) (23)
where
[ 6y (n)]
(DV N . c R(l—n+l)><n
Ly (1) |
o (24)
by (n)
(Dn N . c R(l—n+l)><n(p+l)
Ly (1) ]

We note that the model output (16) is not linear in b,
1 and k. Although non-linear least squares techniques

can be used to minimize J(#), we proceed by bounding
J(6). First, let 5 € R"»*V and rewrite (21) as

J(e) = || Y — @0+ ¢7]93 - @7]93“2
=Y+ gDya - (pneB — &l 1317
+ ¢7]93 - ¢7]V€C (/”'bT)HZ

=Y — @0+ @, (65 — vec (ub"))[, (29

where
a
62 |05 e R+ Dntl (26)
efi
and
0,2 klrh (27)

By invoking the triangle inequality, we obtain
J(0) < Y — @8], + || @, (65 — vec (ub"))|),
< 1Y — 0], + omax(@,)[105 — vee (ub")]),
= ||Y — D0, + O (D)l vec (05) — "Il (28)

Therefore

J(e) < JLS(H) + 01nax(¢7])']3(/”'a ba 93) (29)

where
Jis(0) & [|Y — 9], (30)
and
Ts(p,b,05) & [[vec™ " (05) — ub" || (31)

where vec™!(6) € RP D",

We proceed by sequentially minimizing AJLs(é) and
Jg(u,b,05). To do this, we first determine § that mini-

mizes the linear least squares cost J g(#). Writing

7]
6= |63 (32)
i
we then extract 5 from 5 and minimize Jg(u,b,
03) = |[vec” ' (f3) — ub" ||z with respect to y and b to
obtain an optimal rank 1 approximation of vec ' (85).
We note that both of these optimization problems
are standard, and they are solvable by computationally
tractable procedures. 3
Assuming that (@T®) ™" exists, J;g(6) is minimized
by
6= (o"d) oy (33)

and thus the minimum value of J; (6) is given by
Jis0) = YT(I) s — 0(070) '0T)Y  (34)

In practice § is computed using a QR factorization
(Ljung 1999, p. 318) to ensure numerical robustness.

Next, by extracting 5 from (32), J5(u, b, 0) is mini-
mized by (Stewart and Sun 1990, p. 208)

ﬂET = O'max(VeC_l(éB))ul‘;IF (35)

where o;, i=1,...,min{(p+1),n} are the singular
values of vec™'(f3), u, is the first left singular vector
of vec!(f5), and v, is the first right singular vector of
vec '(65). The minimum value of Jg(u,b,fg) is thus
given by

min {(p+1)n}
o7 (36)
i=2
It follows from (35) that 4 and [1 are given by

. A .1

H= ﬁamax(vec 1(93))ula b= Evl (37)
for an arbitrary input gain parameter 8. Finally, a is
given by direct extraction from (32), and £ is given by

O
1T

(38)

,l%:

PLLS identification with a Hammerstein model is
summarized as follows:

(1) Collect input—output measurements u(k) and
y(k), k=0,...,/, where [ > n.

(2) Form the regression matrix @ in (23) and the
output vector Y in (22).

(3) Obtain @ in (32) by solving the linear least
squares problem given by (33).

(4) Extract éB from 4.



1812 T. H. Van Pelt and D. S. Bernstein

(5) Compute the singular value decomposition of
vec () and obtain u;, v, and o, (vec ' (65)).

(6) Set the input gain parameter (3.

(7) Compute the parameter estimates b and [1 using
(37).

(8) Extract the parameter estimate @ from 5

(9) Compute the parameter estimate £ using (38).

4.2. Non-linear feedback model identification

Consider the non-linear feedback model where
Jfo(u) = uin (2). The model output y(k), using the piece-
wise linear approximation / of /, is then given by

y(k) = G(q ) [ulk) = h(y(k))] (39)
which has the time series representation
y(k) = byu(k — 1) + -+ + byu(k — n)
= bih(y(k = 1)) =+ = b,h(y(k — n))
—ayy(k—=1) = —a,y(k —n) (40)

Representing 4 by replacing u, ¢, p, r, 6, j, k, n With y, d,
q, S, t, v, A\, C, respectively, and noting that

lgiC(y) =y —d, (41)
(40) can further be written as

n

yll)y = (bulk —j) = (bp" + a;17,))

j=1
x ((y(k =) — a;d; — Ab)) (42)
Furthermore, (42) can be expressed as in (16), where

vec (vb" + quaT)
64 b
1Y (\b + d.a)

c Rn(q+l)+n+l (43)

and
s(k) & [l (k) gn(k) —1]" e R (44)
where

k=]t e R
(45)

¢c(k) = [¢T(p(k—1))

and

¢u(k) = [u(k —1) uk—m " eR"  (46)

Next consider input—output measurements u(k) and
y(k) for k=0,...,/, where [ > n, and form the least
squares cost in (21), where Y is define as in (22) and

[o(n"]

"L
o()"

_ [_¢< Q)u _11_”+1 ] c R(l—n+l)><n(q+l)+n+l (47)

where
¢ (n)
¢< _ c R(Z—n+l)><n(q+l)
T
/
:%(% (48)
bu (n)
(pu _ . c R(l—n+1)Xn
L pu (D) ]

In a similar manner as was done in §4.1, we proceed
by bounding J(6). First, let 6, € R"“"Y and rewrite (21)
as

J(O) =Y — 0 — D (04 — vec (vb" +1,,,a"))]|

where
%]
é N b c Rn(q+l)+n+l (49)
{QAJ
and
0,2 1T(\b + d.a) (50)

As before, by invoking the triangle inequality we obtain

J(0) < Jis(0) + Omax (D) a(v,a,b,04)  (51)

where J;g(0) is defined in (30) and
Jalv,a,b,04) = |vec™ (04) = (Wb + 1yp1a")[lg (52)

where vec ! (64) € R,
Again we proceed by sequentially minimizing J; 5(6)
and J4(v,a,b,04). To do this, we write
0.
é’: B c Rn(q+l)+n+l (53)
]
and determine @ that minimizes the least squares cost
Jis(0). Then we extract 64 and b from § and minimize
Ja(v,a,b,0,) = |[vec ' (64) — (vb" + 1,41a")||p to ob-
tain an optimal approximation of vec '(f,). Once
again, both of these optimization problems are compu-
tationally tractable. Assuming that (#7®)" exists, the
minimizer of J;g(#) is given in (33). To compute the
minimum of J (v, a, b, 1) we have the following result.

Proposition 1: Let A € R™", r € R" and s € R", and
define V:R" x R" — R by
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V(x,p) & 14— (o + 59Dl (54)
Then, for all o € R,
V(XasVa) = IIT’l’lll’l V(x,»)

[R X[RH?
T T
S T
=1, =41, - —
( n STS> ( m I‘TI‘> (55)
F
where
ssT r
x, =l ——|A——
Xq s A as (56)
and
AT
Vo =S +ar (57)
sts

Proof: First we note that the gradient of V?(x,y) is

rTrxt + rTysT — rTAT]

T.,T

VI2(x,y) =2
st sy + stxrl —sT4

Thus
v Vz(x{wy(v)

T T
T s r
sts) rir

= 0(n1+n)><1
Furthermore, the Hessian of /2 is given by

Trr \ srt ]

VA2 (x,y) =2 [' (58)

rst sTsIm

Since

T
SS

P, — st (sTsE,) st = 1T (I” - T) >0 (59)
sts

V2V? is non-negative definite and it follows from
Bazaraa er al. (1993, p. 91) that V2 is convex. Since
VV3(x,,v,) =0, it follows from Bazaraa er al. (1993,
p. 134) that x,, and y, are global minimizers of V2. Since
minimizing V'? is equivalent to minimizing ¥, x, and y,
are global minimizers of V. Finally, the minimum cost in
(55) is obtained by substituting (56) and (57) into (54).

O

The estimates of @ and © that minimize J 4(v, a, b,6 4)
are given by

U .
q+1
ba) g+ ab (60)

and

N 1q+11;[r+1 —1/4h 5
v = Iq+1 —W vec (HA)m_ aqu (61)

for an arbitrary stability parameter «.. Furthermore, X is
given by
é)x — dslzd

A= :
1T

(62)

PLLS identification with a non-linear feedback
model is summarized as follows:

(1) Collect input—output measurements u(k) and
y(k), k=0,...,1, where [ > n.

(2) Form the regression matrix @ in (47) and the
output vector Y in (22).

(3) Obtain 8 by solving the linear least squares prob-
lem given by (33).

(4) Extract 64 and b from 6.

(5) Set the stability parameter «.

(6) Compute the parameter estimates @, o and A
using (60), (61) and (62).

4.3. Hammerstein/non-linear feedback model
identification
Consider the single-input single-output Hammer-
stein/non-linear feedback model in (2). Representing
f and & as in §§4.1 and 4.2, and noting (41), the time
series can be written as

y(k)y = {bu"n(uk - j)) = (br" + a1 )¢(y(k = )
Jj=1

— a;dg + bj(k — \)} (63)
and (63) can further be expressed as in (16), where

vec (vb" + quaT)
0= vec (ub?)

\‘ J c Rn(q+l)+n(p+l)+l (64)
Li(A = k)b + d,a)

and

¢(k) A [—sz(k) (b;l;(k) 1 ]Te Rn(q+l)+n(p+l)+l
(65)

where ¢, (k) and ¢ (k) are defined in (20) and (45),
respectively.

Next consider input—output measurements u(k) and
y(k) for k=0,...,/, where [ > n, and form the least
squares cost in (21), where Y is defined as in (22) and
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-4 1 1 1 1
0 10 20 30 40

Figure 4. Simulation of the Hammerstein and linear models using the identification input signal (
————, Hammerstein model output (RMS error = 0.54);

[_¢< 457] _ln—l—H ] c R(I—I/H—l)x(n(q+1)+n(p+l)+l)

(66)

where @, and @ are defined as in (24) and (48), respect-
ively.
By combining the bounding steps from §§4.1 and 4.2

J(Q) < JLS (9) + O-max(Q)Q)J.A(V3 a, ba QA)
+ O'max(q)n)JB(/J'a ba 93) (67)

where J; () is defined in (30), Jz(u, b, 05) is defined in
(31), J4(v,a,b,0,) is defined in (52), and where

QA—I
é; \‘QBJ c Rn(q+l)+n(p+l)+l (68)

and
Oy & 1y (X = k)b + da) (69)

60 70 80 90 100

, actual output;
————— , linear model output (RMS error = 0.59)).

To sequentially minimize J;g(0), Jp(u,b,05) and
Ja(v,a,b,0,), we write

c Rq(n+l)+p(n+l)+l (70)

and determine @ that minimizes the least squares cost

Jis(6). Then we extract 6z from @ and determine b
and £ that minimize J(u, b, 65). Finally, we extract 6 4
from 6 and obtain @ and » that minimize J (v, a, b, 4).
Again, these optimization problems are computa-
tionally tractable. Assuming that (®'®)™' exists, the
minimizer of J;g(#) is given by (33), the minimizer of
Jg(u,b,0z) is given by (37) and the minimizer of
Ju(v,a,b,8,) is given by (60) and (61). Furthermore,
by setting A\ = ~ the parameter estimate & is given by

é)\rf — ds IZ&

- 71
T (71)

k=r—

for an arbitrary offset parameter ~.
PLLS identification with a Hammerstein/non-linear
feedback model is summarized as follows:
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Figure 5. Simulation of the Hammerstein and linear models using the validation signal (——, actual output; ————, Hammerstein

model output (RMS error = 0.045); — —

(1) Collect input—output measurements u(k) and
y(k), k=0,...,1, where / > n.

(2) Form the regression matrix @ in (66) and the
output vector Y in (22).

(3) Obtain @ from (70) by solving the linear least
squares problem given by (33).

(4) Extract éB from 4.

(5) Compute tpe singular value decomposition
of Vec_l(OAB) and obtain u;, v, and
Omax (Vec_l (93) ) .

(6) Set the input gain parameter 3.

(7) Compute the parameter estimates b and [ using
(37).

(8) Extract éA from 4.

(9) Set the stability parameter «.

(10) Compute the parameter estimates @, U, using
(60) and (61).
(11) Set the offset parameter ~.

(12) Set A\ = ~ and compute the parameter estimate
% using (71).

, linear model output (RMS error = 1.55)).

5. Numerical examples

In this section we illustrate the PLLS identification
technique through two numerical examples. In each
example, we simulate a non-linear system to obtain
input-output data. We then use this data to identify
the system using PLLS identification. The results are
compared to least squares identification using a linear
model structure. This comparison demonstrates the
degree of non-linearity present in the system. Addi-
tionally, a separate input signal is used to validate the
models. For purposes of examining the individual
blocks within the identified models, the input gain
parameter (3, the stability parameter «, and the offset
parameter v, were chosen to match the identified non-
linearities with the components of the simulated system.

5.1. Example 1

We consider a discrete-time Hammerstein system
containing a deadband, where

~ 0.5992 + 0.5679q "
Glg™") = 1

- 72
1 —1.706q " + 0.8521q 2 (72)
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Figure 6. Average frequency response of linear blocks (—,
of Hammerstein model; — —

and
u—+0.25, u<-025
Jolw) =< 0, —0.25<u<025 (73)
u—0.25, u>0.25

The identification input signal is generated as the reali-
zation of a zero-mean, white noise sequence that is uni-
formly distributed between —1 and 1. Noisy output data
is generated for 1000 samples, where the measurement
noise is a zero-mean white noise Gaussian sequence. The
resulting signal-to-noise ratio (SNR) in terms of stan-
dard deviation is 22.4.

PLLS identification using a Hammerstein model is
performed using u(k) and y(k), k=0,...,/, where
[=1000, n=2, p=10, r =5 and an equally spaced
domain partition

c=[-09 —-0.7 -0.5 0.5 0.7 09]" (74)

For comparison, linear least squares identification is
performed using the same input—output measurements

linear block of actual system; ————, estimate of linear block
, estimate of linear model).

with model order n = 2. In order to estimate the uncer-
tainty in the parameter estimates, 100 Monte Carlo runs
are conducted using different noise realizations.

Figure 4 shows the model outputs for the identifica-
tion input signal of a typical run, and Figure 5 shows the
model outputs for the validation input signal
u(k) = 0.3sin (4.5k). For clarity only the first 100
samples are shown. Examination of Figure 4 reveals
that both the linear model and the Hammerstein
model reasonably fit the identification data. The root
mean squared (RMS) error of the model outputs for
this case is 0.54 for the Hammerstein model and 0.59
for the linear model. For this example a linear model
is capable of fitting the identification data of the
non-linear system. In contrast, when examining the
model outputs for the validation signal, the linear
model performs poorly. The RMS error for this case is
0.045 for the Hammerstein model and 1.55 for the linear
model.

A linear model of order n = 8§ is also identified based
on the identification data. The RMS error of the model
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Figure 7. Average estimate of non-linearity (——, actual non-linearity fo(u); ————, estimate of non-linearity f'(u)).

output for the identification data is 0.52, while the RMS
error for the validation output is 1.78. For this example,
a higher order linear model offers no improvement in
fitting the Hammerstein system.

Figure 6 shows the frequency response of the linear
block G(q ') of the Hammerstein system, the average
frequency response of the linear block in the
Hammerstein model and the average frequency response
of the linear model. Figure 7 shows the non-linearity in
the Hammerstein system and the average non-linearity
in the Hammerstein model.

The mean parameter estimates and the associated
95% confidence interval (plus or minus two
standard deviations) are given below. For the
Hammerstein model the parameter estimates of the
linear block are

Q)
I

—1.6677 £ 0.0080 5o [0.5913i0.2917}
0.8146 £+ 0.0076 | ~ 10.4570 £ 0.6423
(75)

while the estimated parameters of the non-linear block
are

[ 1.0855+1.86837]
0.9359 +£0.6411
0.8384 +£0.7071
1.1005 £ 0.8063
0.1604 = 0.4516

—0.0818 £0.4131
0.1356 £ 0.3524
1.0689 £0.8178
0.9257 +£0.7231
0.8616 +0.7642
0.9705 +£1.9314 |

/= 0.0084+0.0391 (76)

=
I

)

The parameter estimates for the linear model are

. [—1.6746£0.0078 j— 0.3798 £ 0.0228
“T | 08222+0.0074) 103711 £0.0246

(77)

Examination of the parameter estimates of the piece-

wise linear static non-linearity reveals that parameter

bias and uncertainty increases for slope parameter
indices with greater distance from the primary index
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parameter r = 5 at which the value of f is specified. This
is consistent with the form of the parameterization,
where the error in approximating f grows as the error
due to individual slope parameters accumulates for ordi-
nates increasingly farther from r. This observation sug-
gests that r should be chosen to lie in the centre of the
region in the domain of / where the greatest accuracy is
desired.

For additional model accuracy, a bootstrapping
technique can be used by iteratively refining the parti-
tioning ¢ to accommodate the estimated non-linearity.
In this example, the specific partitioning c is chosen to be
equally spaced with p = 10. This allows visual inspection
of the estimated non-linearity to suggest a more parsi-
monious choice of ¢. The identified non-linearity clearly
resembles a deadband with breakpoints in the intervals
[-0.3,—-0.2] and [0.2,0.3]. For comparison purposes, the
more parsimonious parameterization given by n =2,
p =3, r=1, and partitioning ¢ = [-0.25 0.25]" is con-
sidered as well. The resulting RMS error for the model
output from the experimental signal decreases to 0.33,
and the resulting parameter estimate certainty increases.

Simulation of the non-linear feedback and linear models using the identification input signal (
r=0.82); —— — , linear model output (RMS error = 1.73)).

150 160

k

170 180

, actual output;

The parameter estimates of the linear block of the

Hammerstein model are

) —1.6700 + 0.0072 } 5 [0.5903 + 0.0525}

a = =

0.816940.0070 ]’ 0.5760 £+ 0.0549

(78)

while the parameter estimates for the non-linear block

are

1.0236 £ 0.0616

0.0046 £+ 0.0707

1.0135£0.0512

b= , # =—0.0007+0.0214

(79)

The specific choice of partitioning ¢ may affect the
invertibility of the matrix ®'®. For linear model identi-
fication, the invertibility of ®'® is guaranteed by using a
sufficiently exciting input signal. An interpretation of
this condition can be viewed in terms of sufficient fre-
quency content to excite all of the dynamics of the linear
system. When considering PLLS identification the mag-
nitude of the input signal affects the invertibility of this
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Figure 9. Simulation of the non-linear feedback and linear models using the validation signal (——, actual output;
————, non-linear feedback model output (RMS error = 0.39); —— — , linear model output (RMS error = 4.70)).

matrix as well. It is necessary that each partition in ¢
contain at least one element of the input time series u(k)
in order to guarantee the invertibility of &' ®. Typically,
the partition ¢ must be chosen to satisfy this require-
ment. Sufficient conditions on the input signal and par-
titioning in order to guarantee the invertibility of @' is
left for future work.

Next we compared the results of sequentially
minimizing (30) and (31) in the least squares bound to
the results of numerically optimizing (21) using
Newton’s method. Monte Carlo runs were performed
over various signal-to-noise ratios. The cost Jgup
was then computed by using the estimates a, b, I
and £ from sequentially minimizing (30) and (31),
while the cost Jy was computed by using an interior-
reflective Newton method in the Matlab Optimization
Toolbox. The initial parameter vector for the Newton
method was chosen randomly.

The values of Jgyp and Jy were computed using 25
trials at each signal-to-noise ratio for £k =0,...,1000.

Results showed that Jgyp approached Jy as SNR
increased, while for small SNR the difference was mini-
mal. Although Jg\p is @ bound on the true cost, Jy was
larger for some SNRs. These results revealed slow con-
vergence when using Newton’s method which was
further demonstrated by large standard deviations of
Jn as compared to Jgyp-

A more serious drawback of the numerical opti-
mization was that some initial choices of the par-
ameter vector # converged incorrectly. For example,
by choosing # =0 as the initial parameter vector,
the converged parameter vector had only two
non-zero elements resulting in B(q ')=0 and
f(u) =0. Consequently, we choose the initial
parameter vector randomly for each of the runs in this
comparison.

Furthermore, Jgyg Was compared to Jy for the case
of no noise but varying input sequences. In this case,
Jsmp Was always slightly smaller than Jy, which suggests
that sequential minimization of the least squares bound
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Figure 10. Average frequency response of linear blocks (——, actual linear block of system; ————, estimate of linear block of

non-linear feedback model;

yields the global minimum of (21) in the case of no
noise.

5.2. Example 2

We consider a discrete-time system with non-linear
feedback structure, where

14 142q7!
Gl = 0.1498 + 0.142q (80)
1 —1.706q ' +0.8521q 2

and
ho(y)=1—¢” (81)

The identification input—output data is generated as in
Example 1, where a uniformly distributed Gaussian
input sequence is used, and measurement noise over
100 Monte Carlo runs is considered. The resulting sig-
nal-to-noise ratio (std.) is SNR = 30.0.

PLLS identification using a non-linear feedback
model is performed using u(k) and y(k), k=0,...,/,

—+—, estimate of linear model).

where /=1000, n=2, ¢g=17, s=28 and an equally
spaced domain partition

d=[-30 —-275 -25 0.50 0.75 1.00]"

(82)

As in Example 1, linear least squares identification is
performed using the same input—output measurements
with model order n = 2.

The mean parameter estimates and the associated
95% confidence interval are given below. For the non-
linear feedback model the parameter estimates of the
linear block are

. | —1.6406 % 0.0241 b— 0.1499 +0.0084
4= 08072£0.0169 ] ~10.1490 £ 0.0093

(83)

while the estimated parameters of the non-linear block
are
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[ —0.0790 £ 0.0868 ]
—0.0326 £0.3605
—0.0712£0.5029
—0.0682 £ 0.4612
—0.0568 £0.4070
—0.0671 £ 0.4093
—0.0835+£0.4355
—0.2722£0.3942
—1.3227+£0.4676
—1.4768 £0.4627
—0.9392+£0.3653
—0.2420£0.3111
—0.0369 £0.3670
—0.1198 £0.3950
0.2646 = 0.3774
0.4398 +0.5607
1.7733 £0.9522
0.8983 £ 1.4650 |

>
I

The parameter estimates

—1.7181 £ 0.0094]

a =

-25 -2 -15

, A=1.0101+0.0845 (84)

for the linear model are

0.7432 £ 0.0093 |

4 [0.1426i0.0083}
~10.1395 4 0.0094
(85)

-1 -05 0

y

Average estimate of non-linearity (——, actual non-linearity A(y) ; ——— , estimate of non-linearity A( y)).

Figure 8 shows the model outputs for the identifi-
cation input signal of a typical run, and Figure 9 shows
the model outputs for the validation input signal
u(k) = sin (1.5k). For clarity, only 100 samples are
shown. Examination of these figures reveals that the
estimate of the non-linear feedback model fits the data
better than the estimate of the linear model. The root
mean squared (RMS) error of the model outputs for the
case of the identification signal is 0.82 for the non-linear
feedback model and 1.73 for the linear model. The RMS
error of the model outputs for the case of the validation
signals is 0.39 for the non-linear feedback model and
4.70 for the linear model.

Figure 10 shows the frequency response of the linear
block G(q') of the non-linear feedback system, the
average frequency response of the linear block in the
non-linear feedback model and the average frequency
response of the linear model. Figure 11 shows the non-
linearity in the non-linear feedback system and the aver-
age non-linearity in the non-linear feedback model. We
note that although the non-linearity A is not piecewise
linear, the results of the identification approximate k
well. Furthermore, the accuracy of the non-linearity A
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is greater for partition intervals near the primary index
s = 8 as compared to partition intervals farther away.
Once again, the choice of the primary index affects the
distribution of the bias in estimating /.

6. Conclusions

We considered non-linear identification using a
Hammerstein/non-linear feedback model with piecewise
linear static maps. Our method used a point-slope
parameterization that leads to a computationally
tractable optimization problem. This identification
method simultaneously approximated the linear
dynamic and static non-linear blocks, and did not
require prior information about the form of the non-
linearity. Two numerical examples were investigated,
and the effects of noisy output data was considered.
These examples revealed that the PLLS identification
technique produced reasonable models of the system
in question. Future work will involve the application
of this technique to real data.
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