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This paper extends the continuous inertia-free control law for spacecraft attitude tracking derived in prior work to

the case of three axisymmetric reaction wheels. The wheels are assumed to be mounted in a known and linearly

independent, but not necessarily orthogonal, configurationwith an arbitrary and unknownorientation relative to the

unknown spacecraft principal axes. Simulation results for slew and spin maneuvers are presented with torque and

momentum saturation.

I. Introduction

I N SPACECRAFTapplications, it is often expensive to determine
the mass properties with a high degree of accuracy. To alleviate

this requirement, the control algorithms given in [1–3] are inertia free
in the sense that they require no prior modeling of the mass
distribution. The control algorithms in [2,3] incorporate internal
states that can be viewed as estimates of themoments and products of
inertia; however, these estimates need not converge to the true values
and in fact do not converge to the true values except under sufficiently
persistent motion.
The results of [3] are based on rotation matrices [4] as an

alternative to the quaternions as used in [2,5,6]. Quaternions provide
a double cover of the rotation groupSO(3) and, thus,when used as the
basis of a continuous control algorithm, cause unwinding that is
unnecessary rotation away from and then back to the desired physical
attitude [7]. To avoid unwinding while using quaternions, it is thus
necessary to resort to discontinuous control algorithms, which intro-
duce the possibility of chatter due to noise as well as mathematical
complications [8–10]. On the other hand, rotation matrices allow for
continuous control laws but introduce multiple equilibria. Because
the spurious equilibria of the closed-loop system are saddle points,
the attitude of the spacecraft converges almost globally (but not
globally) to the desired equilibrium. Although the derivation of the
inertia-free controller in [3] and the present paper is based on rotation
matrices, the relevant attitude error given by the S parameter [see
Eq. (42)] can be computed from any attitude parameterization, such
as quaternions or modified Rodrigues parameters, and thus, the
continuous inertia-free controllers presented in [3] are not confined to
rotation matrices.
The inertia-free control laws in [1–3] assume that three-axis input

torques can be specified without onboard momentum storage, which
implies implementation in terms of thrusters. However, attitude
control laws are typically implemented with wheels, and thus, the
onboard stored momentum varies with time. To account for this
effect, the contribution of this paper is the derivation of an inertia-free
control law based on reaction-wheel actuation. Like the inertia-free
control laws in [1–3], the tuning of this control law requires no

knowledge of the mass properties of the spacecraft, and this paper
specifies the assumptions and modeling information concerning the
reaction wheels and their placement relative to the bus.
The paper is organized as follows. In Sec. II, coordinate-free

equations of motion for the spacecraft are derived, in which, unlike
[11], the present paper does not assume that the wheels are aligned
with the principal axes of the spacecraft bus nor does it assume
that the wheels are balanced with respect to the bus in order to
preserve the location of its center of mass; in fact, the reaction wheels
may be mounted at any location and in any linearly independent
configuration. In Sec. III, the control objectives are formulated, and in
Sec. IV, the controller is developed. Simulation results are reported in
Sec.V, inwhich the robustness to variations in the spacecraft inertia is
demonstrated and controller performance is examined under both
torque and momentum saturation. Finally, concluding remarks are
made in Sec. VI.

II. Spacecraft Model with Reaction Wheels

This section derives the equations of motion for a spacecraft with
reaction wheels, while highlighting the underlying assumptions on
wheel geometry, inertia, and attachment to the bus. Throughout the
paper, the vector rq∕p denotes the position of point q relative to point
p, the vector vq∕p∕X � r

X•

q∕p denotes the velocity of point q relative to
point p with respect to frame FX, and the vector ωY∕X denotes the
angular velocity of frame FY relative to frame FX. Note that �·�
denotes a coordinate-free (unresolved) vector. All frames are
orthogonal and right handed.
Definition 1:LetFX be a frame, letB be a collection of rigid bodies

B1; : : : ;Bl, and let p be a point. Then, the angular momentum of B
relative to p with respect to FX is defined by

HB∕p∕X ≜
Xl
i�1
HBi∕p∕X (1)

where, for i � 1; : : : ; l, the angular momentum HBi∕p∕X of Bi
relative to p with respect to FX is defined by

HBi∕p∕X ≜
Z
Bi
rdm∕p × vdm∕p∕X dm (2)

The following properties of angular momentum are standard [12].
Lemma 1: LetB be a rigid body, letFX andFY be frames, and let p

be a point. Then,

HB∕p∕X � IB∕pωY∕X �HB∕p∕Y (3)

where the positive-definite coordinate-free inertia tensor IB∕p is
defined by
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IB∕p ≜
Z
B
jrdm∕pj2U − rdm∕pr 0dm∕p dm (4)

and where U denotes the second-order identity tensor.
Lemma 2:LetB be a rigid body, letFX andFY be frames, letFY be

a body-fixed frame, and let p be a point that is fixed in B. Then,

HB∕p∕Y � 0 (5)

and

HB∕p∕X � IB∕pωY∕X (6)

Lemma 3: Let FX be a frame, let p be a point, let B be a rigid body
with mass mB, and let c be the center of mass of B. Then,

HB∕p∕X � HB∕c∕X � rc∕p ×mBvc∕p∕X (7)

Consider a spacecraft sc actuated by three axisymmetric wheels w1,
w2,w3 attached to a rigid bus b in a known and linearly independent,
but not necessarily orthogonal, configuration. Although the
spacecraft is not a rigid body, the axial symmetry of the wheels
implies that the center of mass c of the spacecraft is fixed in both the
bus and the spacecraft. Because the inertia properties of the bus are
assumed to be unknown, the principal axes of the bus are unknown,
and thus, the wheel configuration has an arbitrary and unknown
orientation relative to the principal axes of the bus. Each wheel is
mounted so that it rotates about one of its own principal axes passing
through its own center of mass. It is not assumed that the axis of
rotation of each wheel passes through the center of mass of the bus,
nor is it assumed that the wheels are balanced with respect to the bus
in order to preserve the location of its center of mass. Thus, the center
of mass of the spacecraft and the center of mass of the bus may be
distinct points, both of which are unknown.
Assume a bus-fixed frameFB; threewheel-fixed framesFW1

,FW2
,

FW3
, for which the x axes are alignedwith the rotation axes ofw1,w2,

w3, respectively; and an Earth-centered inertial frame FE. The
angularmomentumof the spacecraft relative to its center ofmasswith
respect to the inertial frame is given by
Definition 1:

Hsc∕c∕E �Hb∕c∕E �
X3
i�1
Hwi∕c∕E (8)

where the angular momentum Hb∕c∕E of the bus relative to c with
respect to FE is given by
Lemma 2:

Hb∕c∕E � Ib∕cωB∕E (9)

where Ib∕c is the positive-definite inertia tensor of the bus relative to
the center of mass of the spacecraft, and ωB∕E is the angular velocity
ofFB with respect toFE. The angular momentumHwi∕c∕E of wheel i
relative to the center of mass of the spacecraft with respect to the
inertial frame is given by
Lemma 1:

Hwi∕c∕E � Iwi∕cωB∕E �Hwi∕c∕B

Lemma 3:

� Iwi∕cωB∕E �Hwi∕ci∕B � rci∕c ×mwi
vci∕c∕B

Lemma 2:

� Iwi∕cωB∕E � Iwi∕ciωWi∕B (10)

where Iwi∕c is the inertia tensor of wheel i relative to the center of
mass of the spacecraft, Iwi∕ci is the inertia tensor of wheel i relative to
the center of mass ci of the ith wheel, and ωWi∕B is the angular
velocity of wheel i relative to the bus. Thus, Eq. (8) is given by

Hsc∕c∕E �
�
Ib∕c �

X3
i�1

Iwi∕c

�
ωB∕E �

X3
i�1

Iwi∕ciωWi∕B (11)

Resolving ωWi∕B in FWi
yields

ωWi∕BjWi
� ψ ie1 (12)

where e1 � � 1 0 0 �T and ψ i is the angular rate relative to FB of
the ith wheel about the x axis ofFWi

. BecauseFWi
is alignedwith the

principal axes of wheel i, it follows that

Iwi∕ci jWi
� diag�αi; βi; βi� (13)

Note that ωWi∕B is an eigenvector of Iwi∕ci with eigenvalue αi; that
is, Iwi∕ciωWi∕B � αiωWi∕B.

A. Spacecraft Equations of Motion

The equations of motion for a spacecraft with reaction wheels as
described before are now derived. It follows from Newton’s second
law for rotation that

Msc∕c�H
E•

sc∕c∕E�
�
Ib∕c�

X3
i�1

Iwi∕c

�
ωB∕E

z������������������}|������������������{E•

�
X3
i�1

Iwi∕ciωWi∕B

z����������}|����������{E•

�
�
Ib∕c�

X3
i�1

Iwi∕c

�
ωB∕E

z������������������}|������������������{B•

�ωB∕E×
�
Ib∕c�

X3
i�1

Iwi∕c

�
ωB∕E

�
X3
i�1

Iwi∕ciωWi∕B

z������������}|������������{B•

�ωB∕E×
X3
i�1

Iwi∕ciωWi∕B

�
�
Ib∕c�

X3
i�1

Iwi∕c

�
ω
B•

B∕E�
X3
i�1

αiω
B•

Wi∕B

�ωB∕E×
��

Ib∕c�
X3
i�1

Iwi∕c

�
ωB∕E�

X3
i�1

αiωWi∕B

�
(14)

To resolve Eq. (14) in FB, the following notation is used:

Jb ≜ Ib∕cjB; Jwi ≜ Iwi∕cjB; Jw ≜
X3
i�1

Iwi∕c

����
B

;

Jsc ≜ Jb � Jw; ω ≜ ωB∕EjB; _ω ≜ ω
B•

B∕EjB; νi ≜ ωWi∕BjB;

_νi ≜ ω
B•

Wi∕BjB; τdist ≜Msc∕cjB

The vector τdist represents the disturbance torques, that is, all external
torques applied to the spacecraft aside from control torques.
Disturbance torques may be due to gravity gradients, solar pressure,
atmospheric drag, or the ambient magnetic field.
As in Eq. (12), the angular acceleration _νi of each wheel has one

degree of freedom. In FWi
,

ω
B•

Wi∕BjWi
� ω

Wi•

Wi∕BjWi
� _ψ ie1 (15)

Thus,

_νi � ω
B•

Wi∕BjB � OB∕Wi
ω
B•

Wi∕BjWi
� OB∕Wi

_ψ ie1 (16)
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where the proper orthogonal matrixOB∕Wi
∈ R3×3 is the orientation

matrix that transforms components of a vector resolved in FWi
into

the components of the same vector resolved in FB.
With the preceding notation, resolving Eq. (14) in FB yields

τdist � �Jb� Jw� _ω�
X3
i�1

αi _νi�ω×
�
�Jb� Jw�ω�

X3
i�1

αiνi

�

� Jsc _ω�
X3
i�1

αiOB∕W1
_ψ ie1�ω×

�
Jscω�

X3
i�1

αiOB∕W1
ψ ie1

�
� Jsc _ω� Jα _ν�ω× �Jscω� Jαν� (17)

where

Jα ≜ � α1OB∕W1
e1 α2OB∕W2

e1 α3OB∕W3
e1 � (18)

ν ≜ �ψ1 ψ2 ψ3 �T , and _ν ≜ � _ψ1 _ψ2 _ψ3 �T . Rearranging
Eq. (17) and choosing the control input u to be _ν yields the
equations ofmotion for a spacecraft with reactionwheels, which have
the form

Jsc _ω � �Jscω� Jαν� × ω − Jαu� τdist (19)

_ν � u (20)

In practice, a servo loop is closed around each reaction wheel in order
to produce the desired wheel angular accelerations given in Eq. (20).
Instead of commanding wheel angular accelerations by imple-

menting servo loops, motor torque commands can be used. To
determine the relationship between the desired angular acceleration
and the required motor torque, the dynamic equations for each wheel
must be derived. It follows that

Mwi∕ci � H
E•

wi∕ci∕E

� Iwi∕ciωWi∕E
z������}|������{E

� Iwi∕ci ω
W•

Wi∕E � ωWi∕E × Iwi∕ciωWi∕E

� Iwi∕ci�ω
B•

B∕E � ω
B•

Wi∕B − ωWi∕B × ωB∕E�
� �ωB∕E �ωWi∕B� × Iwi∕ci�ωB∕E � ωWi∕B� (21)

Resolving Eq. (21) in FB and projecting it along each motor axis
yields

τmotor;i � eTi �Jwi∕ci� _ω� _νi − νi × ω� � �ω� νi� × Jwi∕ci�ω� νi��
(22)

where Jwi∕ci ≜ Iwi∕ci jB. Although Eq. (22) can be used for torque
control, the measurements of ω, _ω, νi, and _νi needed to implement it
demonstrate why reaction wheels are typically angular-acceleration
commanded and feedback controlled rather than torque commanded.

B. Specialization: Principal-Axis Alignment

As in [11], the equations of motion (19) and (20) are now
specialized by assuming that the principal axes of the bus are aligned
with the rotational axes of the wheels; that the wheels are mass
balanced relative to the center of mass of the bus so that the center of
mass of the spacecraft coincides with the center of mass of the bus;
and, finally, that the moments of inertia β1, β2, β3 of the wheels
are lumped into the bus inertia Jb � diag�Jb1 ; Jb2 ; Jb3�, where
Jb1 ≜ Jb1 � β2 � β3, Jb2 ≜ Jb2 � β1 � β3 and Jb3 ≜ Jb3 � β1�
β2. In this configuration,

OB∕W1
e1 �

"
1

0

0

#
; OB∕W2

e1 �
"
0

1

0

#
; OB∕W3

e1 �
"
0

0

1

#

(23)

Therefore, Jα � Jw � diag�α1; α2; α3�. Rewriting the equations of
motion (19) and (20) as

Jb _ω � ��Jb � Jα�ω� Jαν� × ω� u� τdist (24)

−u � Jα� _ω� _ν� (25)

and simplifying yields

Jb1 _ω1 � �Jb2 − Jb3 �ω2ω3 � α2ω3�ω2 � ν2�
− α3ω2�ω3 � ν3� � u1 � τdist1 (26)

Jb2 _ω2 � �Jb3 − Jb1 �ω3ω1 � α3ω1�ω3 � ν3�
− α1ω3�ω1 � ν1� � u2 � τdist2 (27)

Jb3 _ω3 � �Jb1 − Jb2 �ω1ω2 � α1ω2�ω1 � ν1�
− α2ω1�ω2 � ν2� � u3 � τdist3

(28)

−u1 � α1� _ω1 � _ν1� (29)

−u2 � α2� _ω2 � _ν2� (30)

−u3 � α3� _ω3 � _ν3� (31)

which are Eqs. (7.59) and (7.60) of [11].

III. Spacecraft Model, Assumptions,
and Control Objectives

For the control laws (44) and (53) given next, the assumptions
presented in Sec. II.B are not invoked. The kinematics of the
spacecraft are given by Poisson’s equation

_R � Rω× (32)

which complements Eqs. (19) and (20). In Eq. (32), ω× denotes the
skew-symmetric matrix of ω, and R ≜ OE∕B ∈ R3×3. Both rate
(inertial) and attitude (noninertial) measurements are assumed to be
available.
Compared to the case of thrusters treated in [3], reaction-wheel

actuation complicates the dynamic equations due to the term Jαν in
Eq. (19), as well as the integrators (20) augmented to the system. The
kinematic relation (32) remains unchanged. The torque inputs
applied to each reaction wheel are constrained by current limitations
on the electric motors and amplifiers as well as angular-velocity
constraints on the wheels. These constraints are addressed indirectly
in Sec. V.
The objective of the attitude control problem is to determine

control inputs such that the spacecraft attitude given by R follows a
commanded attitude trajectory given by a possibly time-varying C1

rotation matrix Rd�t�. For t ≥ 0, Rd�t� is given by

_Rd�t� � Rd�t�ωd�t�× (33)

Rd�0� � Rd0 (34)

WEISS ETAL. 1427

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IC
H

IG
A

N
 o

n 
Se

pt
em

be
r 

28
, 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.5
83

63
 



where ωd is the desired, possibly time-varying angular velocity. The
error between R�t� and Rd�t� is given in terms of the attitude-error
rotation matrix

~R ≜ RT
dR (35)

which satisfies the differential equation

_~R � ~R ~ω× (36)

where the angular velocity error ~ω is defined by

~ω ≜ ω − ~RTωd (37)

Rewrite Eq. (19) in terms of ~ω as

Jsc _~ω � �Jsc� ~ω� ~RTωd� � Jαν� × � ~ω� ~RTωd�
� Jsc� ~ω × ~RTωd − ~RT _ωd� − Jαu� τdist (38)

A. Attitude Error

A scalar measure of attitude error is given by the eigenaxis attitude
error, which is the rotation angle θ�t� about the eigenaxis needed to
rotate the spacecraft from its attitude R�t� to the desired attitude
Rd�t�. This angle is given by [13]

θ�t� � cos−1
�
1

2
�tr ~R�t� − 1�

�
(39)

B. Spacecraft Inertia

Because the control laws in this paper require no inertia modeling,
examples that span a range of possible inertia matrices are
considered. The inertia of a rigid body is determined by its principal
moments of inertia, that is, the diagonal entries of the inertia tensor
resolved in a principal body-fixed frame, in which case the inertia
matrix is a diagonal matrix. If the inertia tensor is resolved in a
nonprincipal body-fixed frame, then the diagonal entries are the
moments of inertia and the offdiagonal entries are the products of
inertia. The offdiagonal entries of the inertia matrix are thus a
consequence of an unknown rotation between a principal body-fixed
frame and the chosen body-fixed frame.
Figure 1 shows the triangular region of feasible principal moments

of inertia of a rigid body. There are five cases that are highlighted for
the principal moments of inertia λ1 ≥ λ2 ≥ λ3 > 0, where λ1, λ2, and
λ3 satisfy the triangle inequality λ1 < λ2 � λ3. Letm denote the mass
of the rigid body. The point λ1 � λ2 � λ3 corresponds to a sphere of

radius r �
�����
5λ1
2m

q
, a cube whose sides have length l �

�����
6λ1
m

q
, and a

cylinder of length l and radius r; in which l∕r �
���
3
p

and r �
�����
2λ1
m

q
.

The point λ1 � λ2 � 2λ3 corresponds to a cylinder of length l and

radius r, in which l∕r � 3 and r �
�����
2λ1
m

q
. The point λ1 � 6

5
λ2 � 2λ3,

located at the centroid of the triangular region, corresponds to a solid

rectangular body with sides l1 �
�����
8λ1
m

q
> l2 �

�����
4λ1
m

q
> l3 �

�����
2λ1
m

q
.

The remaining cases in Fig. 1 are nonphysical, limiting cases. The

point λ1 � 2λ2 � 2λ3 corresponds to a thin disk of radius r �
�����
2λ1
m

q
and length l � 0. The point λ1 � λ2 and λ3 � 0 corresponds to a thin

cylinder of radius r � 0 and length l �
�������
12λ1
m

q
. Finally, each point

along the line segment λ1 � λ2 � λ3, in which λ2 > λ3, corresponds
to a thin rectangular plate with sides of length l1 ��������

12λ2
m

q
> l2 �

�������
12λ3
m

q
.

For all simulations of the inertia-free control laws, the principal
axes are viewed as the nominal body-fixed axes, and thus, the
nominal inertiamatrix is a diagonalmatrixwhose diagonal entries are

the principal moments of inertia. To demonstrate robustness, the
principal moments as well as the orientation of the body-fixed frame
relative to the principal axes are varied. For convenience, λ1 is
normalized to 10 kg · m2, and the inertia matrices J1, J2, J3, J4, and
J5 are chosen to correspond to the points noted in Fig. 1. These
matrices, which correspond to the sphere, cylinder with l∕r � 3;
centroid, thin disk, and thin cylinder, respectively, are defined as

J1 � diag�10; 10; 10�; J2 � diag�10; 10; 5�;
J3 � diag�10; 25∕3; 5�; J4 � diag�10; 5; 5�;

J5 � diag�10; 10; 0.1�
(40)

The inertia matrix J3 corresponding to the centroid of the inertia
region serves as the nominal inertia matrix, whereas the inertia
matrices J1, J2, J4, and J5 are used as perturbations to demonstrate
robustness of the control laws. A perturbation J�λ� of Ji in the
direction of Jj thus has the form

J�λ� � �1 − λ�Ji � λJj (41)

where λ ∈ �0; 1�. Finally, in order to facilitate numerical integration of
Euler’s equation, note that J5 is chosen to be a nonsingular
approximation of the limiting inertia of a thin cylinder.

IV. Controller Design

Let I denote the identity matrix, for which the dimensions are
determined by context, and letMij denote the i, j entry of the matrix
M: The following result is given in [3].
Lemma 1:LetA ∈ R3×3 be a diagonal positive-definitematrix, and

let R ∈ R3×3 be a rotation matrix. Then the following state-
ments hold:
1) For all i; j � 1; 2; 3, Rij ∈ �−1; 1�.
2) tr�A − AR� ≥ 0.
3) tr�A − AR� � 0 if and only if R � I.
For convenience note that, if R is a rotation matrix and x, y ∈ R3,

then

�Rx�× � Rx×RT

Fig. 1 Feasible region of the principal moments of inertia λ1, λ2, and λ3
of a rigid body satisfying 0 < λ3 ≤ λ2 ≤ λ1, where λ1 < λ2 � λ3. The
shaded region shows all feasible values of λ2 and λ3 in terms of the largest
principal moment of inertia λ1. The open dots and dashed line segment
indicate nonphysical, limiting cases.
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and therefore,

R�x × y� � �Rx� × Ry

Next, introduce the notation

Jscω � L�ω�γ

where γ ∈ R6 is defined by

γ ≜ � J11 J22 J33 J23 J13 J12 �T

and

L�ω� ≜

2
4ω1 0 0 0 ω3 ω2

0 ω2 0 ω3 0 ω1

0 0 ω3 ω2 ω1 0

3
5

Next, let Ĵsc ∈ R3×3 denote an estimate of Jsc, and define the
inertia-estimation error:

~Jsc ≜ Jsc − Ĵsc

Letting γ̂, ~γ ∈ R6 represent Ĵsc, ~Jsc, respectively, it follows that

~γ � γ − γ̂

Likewise, let τ̂dist ∈ R3 denote an estimate of τdist, and define the
disturbance-estimation error:

~τdist ≜ τdist − τ̂dist

The assumptions uponwhich the following development is based are
now stated.
Assumption 1: Jsc is constant but unknown.
Assumption 2: Jα defined by Eq. (18) is constant, nonsingular, and

known. That is, the spacecraft has three linearly independent,
axisymmetric wheels with knownmoments of inertia about their spin
axes and known configuration relative to the bus.
The controllers presented in [3] are now extended to the case of

reaction-wheel actuation.

A. Control Law for Slew Maneuvers

When no disturbances are present, the inertia-free control law
given by Eq. (38) of [3] achieves almost global stabilization of a
constant desired attitude Rd, that is, a slew maneuver that brings the
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Fig. 2 Slew maneuver using the control law (44) with no disturbance.
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spacecraft to rest. The initial conditions of the slewmaneuver may be
arbitrary; that is, the spacecraft may have nonzero initial velocity.
Given a1, a2, a3 ∈ R, define the vector measure of attitude error:

S ≜
X3
i�1

ai� ~RTei� × ei (42)

where, for i � 1; 2; 3, ei denotes the ith column of the 3 × 3 identity
matrix. When attitude measurements are given in terms of an
alternative representation, such as quaternions, the corresponding
attitude-error ~R defined by Eq. (35) can be computed, and thus,
Eq. (42) can be evaluated and used by the controller given in
Theorem 2 next. Consequently, S can be computed from any attitude
parameterization.
Theorem 1: Let Kp be a positive number and let A �

diag�a1; a2; a3� be a diagonal positive-definite matrix. Then, the
function

V�ω; ~R� ≜ 1

2
ωTJscω�Kptr�A − A ~R� (43)

is positive definite; that is, V is nonnegative, and V � 0 if and only if
ω � 0 and ~R � I.

Proof: It follows from statement 2 of Lemma 1 that tr�A − A ~R�
is nonnegative. Hence, V is nonnegative. Now, suppose that
V � 0. Then, ω � 0, and it follows from statement 3 of Lemma 1
that ~R � I:
Theorem 2: Let Kp be a positive number, let Kv ∈ R3×3 be a

positive-definite matrix, let A � diag�a1; a2; a3� be a diagonal
positive-definite matrix with distinct diagonal entries, let Rd be
constant, define S as in Eq. (42), and define V as in Theorem 1.
Consider the control law

u � J−1α �KpS�Kvω� (44)

Then,

_V�ω; ~R� � −ωTKvω (45)

is negative semidefinite. Furthermore, the closed-loop system
consisting of Eqs. (19), (20), (36), and (44) is almost globally
asymptotically stable [14], and for all initial conditions not in an
embedded submanifold of R3 × SO�3� × R6 × R3 (see [3]), ω → 0
and ~R→ I as t→ ∞.
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d) Angular accelerations of the reaction wheels

Fig. 3 Slew maneuver using the control law (44) with no disturbance. The acceleration of the reaction wheels is saturated at 4 rad∕s2.
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Proof: Noting that

d

dt
tr�A − A ~R� � −trA _~R

� −trA� ~Rω× − ω×
d
~R�

� −
X3
i�1

aie
T
i � ~Rω× − ω×

d
~R�ei

� −
X3
i�1

aie
T
i
~R�ω× − ~RTω×

d
~R�ei

� −
X3
i�1

aie
T
i
~R�ω − ~RTωd�×ei

�
X3
i�1

aie
T
i
~Re×i ~ω

�
�
−
X3
i�1

aiei × ~RTei

�T
~ω

�
�X3
i�1

ai� ~RTei� × ei
�T

~ω

� ~ωTS

then

_V�ω; ~R� � ωTJsc _ω� Kpω
TS

� ωT��Jscω� Jαν� × ω − Jαu� � Kpω
TS

� ωT�−KpS − Kvω� � Kpω
TS

� −ωTKvω

The proof of the final statement follows from invariant set arguments
that are similar to those used in [3].
Note that −Jα is substituted for the input matrix B used in the

inertia-free control law (38) of [3], but otherwise, the controller
requires no modification for the case of reaction-wheel actuation in
order to achieve almost global stabilization of a constant desired
attitude Rd.

B. Control Law for Attitude Tracking

A control law that tracks a desired attitude trajectory in the
presence of disturbances is given by Eq. (21) of [3]. This controller is
based on an additional assumption.
Assumption 3: Each component of τdist is a linear combination of

constant and harmonic signals, for which the frequencies are known
but for which the amplitudes and phases are unknown.
Assumption 3 implies that τdist can be modeled as the output of the

autonomous system

_d � Add (46)
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Fig. 4 Slew maneuver using the control law (44) with no disturbance. The acceleration of the reaction wheels is saturated at 2 rad∕s2.
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τdist � Cdd (47)

where d is the disturbance state, Ad ∈ Rnd×nd and Cd ∈ R3×nd are
known matrices, and the eigenvalues of Ad are nonrepeated on the
imaginary axis. In this model, d�0� is unknown, which is equivalent
to the assumption that the amplitude and phase of each harmonic
component of the disturbance is unknown. The eigenvalues ofAd are
chosen to represent all frequency components that may be present in
the disturbance signal, in which the zero eigenvalue corresponds to a
constant disturbance. By providing infinite gain at the disturbance
frequencies, the controller asymptotically rejects the harmonic
disturbances. In particular, an integral controller provides infinite
gain at zero frequency in order to reject constant disturbances. In the
case of orbit-dependent disturbances, the frequencies can be
estimated from the orbital parameters. Likewise, in the case of
disturbances originating from onboard devices, the spectral content
of the disturbances may be known. In other cases, it may be possible
to estimate the spectrum of the disturbances through signal
processing. Assumption 3 implies that Ad can be chosen to be skew
symmetric, which is henceforth done. Let d̂ ∈ Rnd denote an estimate
of d, and define the disturbance-state estimation error:

~d ≜ d − d̂

The attitude tracking controller in the presence of disturbances given
in [3] is modified next for reaction-wheel actuators.
Theorem 3: Let Kp be a positive number, let K1 ∈ R3×3, let

Q ∈ R6×6 and D ∈ Rnd×nd be positive-definite matrices, let A �
diag�a1; a2; a3� be a diagonal positive-definite matrix, and define S
as in Eq. (42). Then, the function

V� ~ω; ~R; ~γ; ~d� ≜ 1

2
� ~ω� K1S�TJsc� ~ω� K1S� � Kptr�A − A ~R�

� 1

2
~γTQ~γ � 1

2
~dTD ~d (48)

is positive definite; that is, V is nonnegative, and V � 0 if and only if
~ω � 0, ~R � I, ~γ � 0, and ~d � 0.
Proof: It follows from statement 2 of Lemma 1 that tr�A − A ~R� is

nonnegative. Hence, V is nonnegative. Now, suppose that V � 0.
Then, ~ω� K1S � 0, ~γ � 0, and ~d � 0, and it follows from
statement 3 of Lemma 1 that ~R � I, and thus, S � 0.
Therefore, ~ω � 0.
The following result concerns attitude trackingwithout knowledge

of the spacecraft inertia. This control law does not regulate the speed
of the wheels. Consequently, the function V defined by Eq. (48),
which is used as a Lyapunov function in the proof of Theorem 4 next,
is not a positive-definite function of the angular rates of the wheels
relative to the bus.
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d) Angular accelerations of the reaction wheels

Fig. 5 Slew maneuver using the control law (44) with no disturbance. The maximum rotation rate of each wheel is saturated at 25 rad∕s.
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Theorem 4: Let Kp be a positive number, let Kv ∈ R3×3,
K1 ∈ R3×3,Q ∈ R6×6, andD ∈ Rnd×nd be positive-definitematrices,
assume that AT

dD�DAd is negative semidefinite, let
A � diag�a1; a2; a3� be a diagonal positive-definite matrix with
distinct diagonal entries, defineS andV as in Theorem3, and let γ̂ and
d̂ satisfy

_̂γ � Q−1�LT�ω�ω× � LT�K1
_S� ~ω × ω − ~RT _ωd��� ~ω� K1S� (49)

where

_S �
X3
i�1

ai�� ~RTei� × ~ω� × ei (50)

and

_̂
d � Add̂�D−1CT

d� ~ω� K1S� (51)

τ̂dist � Cdd̂ (52)

so that τ̂dist is the disturbance-torque estimate. Consider the control
law

u � −J−1α �v1 � v2 � v3� (53)

where

v1 ≜ −�Ĵscω� Jαν� × ω − Ĵsc�K1
_S� ~ω × ω − ~RT _ωd� (54)

v2 ≜ −τ̂dist (55)

and

v3 ≜ −Kv� ~ω� K1S� − KpS (56)

Then,

_V� ~ω; ~R; ~γ; ~d� � −� ~ω� K1S�TKv� ~ω�K1S� − KpS
TK1S

� 1

2
~dT�AT

dD�DAd� ~d (57)

is negative semidefinite. Furthermore, the closed-loop system
consisting of Eqs. (20), (36), (38), and (53) is almost globally
asymptotically stable, and for all initial conditions not in an
embedded submanifold of R3 × SO�3� × R6 × R3 (see [3]), ~ω → 0
and ~R→ I as t→ ∞.
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d) Angular accelerations of the reaction wheels

Fig. 6 Slew maneuver using the control law (44) with no disturbance. The maximum rotation rate of each wheel is saturated at 20 rad∕s.
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Proof:

_V� ~ω; ~R; ~γ; ~d�� � ~ω�K1S�T�Jsc _~ω�JscK1
_S�−KptrA _~R− ~γTQ _̂γ

� ~dTD
_~d�� ~ω�K1S�T��Jscω�Jαν�×ω

�Jsc� ~ω×ω− ~RT _ωd�−Jαu� τdist�JscK1
_S�

�Kp ~ωTS− ~γTQ _̂γ� ~dTD
_~d

�� ~ω�K1S�T��Jscω�Jαν�×ω

�Jsc�K1
_S� ~ω×ω− ~RT _ωd�

�v1�v2�v3� τdist��Kp ~ωTS− ~γTQ _̂γ� ~dTD
_~d

�� ~ω�K1S�T�� ~Jscω�×ω� ~Jsc�K1
_S� ~ω×ω− ~RT _ωd��

�� ~ω�K1S�T ~τdist− � ~ω�K1S�TKv� ~ω�K1S�

−Kp� ~ω�K1S�TS�Kp ~ω
TS− ~γTQ _̂γ� ~dTD

_~d

�� ~ω�K1S�T�L�ω�~γ×ω�L�K1
_S� ~ω×ω− ~RT _ωd�~γ�

− � ~ω�K1S�TKv� ~ω�K1S�−KpS
TK1S− ~γTQ _̂γ

� ~dTCT
d� ~ω�K1S�� ~dTD�Ad ~d−D−1CT

d� ~ω�K1S��

�−� ~ω�K1S�TKv� ~ω�K1S�−KpS
TK1S− ~γTQ _̂γ

�� ~ω�K1S�T�−ω×L�ω��L�K1
_S� ~ω×ω− ~RT _ωd��~γ

�1

2
~dT�AT

dD�DAd� ~d

�−� ~ω�K1S�TKv� ~ω�K1S�−KpS
TK1S

� ~γT�−Q _̂γ��LT�ω�ω×�LT�K1
_S� ~ω×ω

− ~RT _ωd��� ~ω�K1S���
1

2
~dT�AT

dD�DAd� ~d

�−� ~ω�K1S�TKv� ~ω�K1S�−KpS
TK1S

�1

2
~dT�AT

dD�DAd� ~d

The closed-loop spacecraft attitude dynamics Eq. (38) and the control
law Eqs. (53–56) can be expressed as

J _~ω � �L�ω�~γ�×ω� L� ~ω × ~RTωd − RT _ωd�~γ − L�K1
_S�γ̂

� ~zd − Kv� ~ω� K1S� − KpS (58)

From Lemmas 3 and 4 of [3], the closed-loop system consisting
of Eqs. (49–52) and (58) has four disjoint equilibrium
manifolds. These equilibrium manifolds in R3 × SO�3� × R6 × R3

are given by

Ei � f� ~ω; ~R; ~γ; ~d� ∈ R3 × SO�3� × R6

× R3∶ ~R � Ri; ~ω ≡ 0; �~γ; ~d� ∈ Qig
(59)

where, for all i ∈ f0; 1; 2; 3g, Qi is the closed subset of R6 × R3

defined by

Qi ≜ f�~γ; ~d� ∈ R6 × R3∶�L�RT
i ωd�~γ�×�RT

i ωd�

� L�RT
i ωd�~γ � Cd ~d � 0; _~γ � 0;

_~d � Ad ~dg

Furthermore, the equilibrium manifold � ~ω; ~R; �~γ; ~d�� � �0; I;Q0�
of the closed-loop system given by Eqs. (49–52) and (58) is
locally asymptotically stable, and the remaining equilibrium
manifolds given by �0;Ri;Qi� for i ∈ f1; 2; 3g are unstable.
Finally, the set of all initial conditions converging to these
equilibrium manifolds forms a lower-dimensional submanifold
of R3 × SO�3� × R6 × R3.

V. Examples

Simulations are now provided to illustrate the inertia-free control
laws (44) and (53). To simulate slew and spin maneuvers, the
following spacecraft parameters are assumed. The bus inertia matrix
Jb is nominally given by J3, which corresponds to the centroid of
the inertia region shown in Fig. 1 with the body-fixed frame assumed
to be a principal body-fixed frame. The quantity Jb is unknown to
the controller. The axes of rotation of the reaction wheels are aligned
with the spacecraft body-fixed frame unit vectors, and the
wheel inertias are given by Jw1

� diag�α1; β1; β1� kg · m2, Jw2
�

diag�β2; α2; β2� kg · m2, and Jw3
� diag�β3; β3; α3� kg · m2, where

α1 � α2 � α3 � 0.5 and β1 � β2 � β3 � 0.375. The values of βi
are unknown to the controller.
Let Kp be given by

Kp �
γ

trA
(60)
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Fig. 7 Settling time as a function of λ for various combinations (41) of inertiamatrices resolved in principal frames.Convergence is achieved for a) control

law (44) and b) control law (53). Each controller is implemented in all cases with a single tuning. In all cases, the bus inertia J3 is unknown.
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and, as in [3], let Kv � Kv�ω� be given by

Kv � η

2
664

1
1�jω1j 0 0

0 1
1�jω2j 0

0 0 1
1�jω3j

3
775 (61)

Alternative choices of Kv are given in [15].

A. Slew Maneuver Using Control Law (44) with No Disturbance

Controller (44) is used for an aggressive slew maneuver, in which
the objective is to bring the spacecraft from the initial attitude
R0 � I3 and initial angular velocity

ω�0� � � 1 −1 0.5 �T rad∕s

to rest (ωd � 0) at the desired final orientation Rd �
diag�1;−1;−1�, which represents a rotation of 180 deg about the x
axis. The reaction wheels are initially not spinning relative to the
spacecraft; that is,

v�0� � � 0 0 0 �T rad∕s

No disturbance is present, and the parameters γ � η � 5 are used in
Eqs. (60) and (61).
Figures 2a–2d show, respectively, the attitude error, angular-

velocity components, angular rates of the wheels, and the control
inputs, which are the angular accelerations of the wheels. The
spacecraft attitude and angular-velocity components reach the
commanded values in about 100 s. The angular rates of the wheels
approach constant values that are consistent with the initial, nonzero
angular momentum.
In practice, reaction wheels have a maximum instantaneous

acceleration. Angular-acceleration saturation is enforced in Figs. 3
and 4, in which convergence is slower than in Fig. 2, although
stability is maintained.
Additionally, reaction wheels have a maximum rotational

rate. Figure 5 shows the effect of wheel-rate saturation at 25 rad∕s,
corresponding to about 240 rpm. The reaction-wheel rates
are saturated for up to 25 s, although this does not impact the
control objective. Figure 6 shows plots for wheel-rate saturation
at 20 rad∕s or about 190 rpm. Although this constraint on the
rotation rate is too stringent to obtain zero steady-state error for the
desired maneuver, the performance of the controller degrades

gracefully by achieving zero spacecraft angular velocity at an offset
attitude.
To evaluate performance for slew maneuvers, define the settling-

time metric

k0 ≜ min
k>100
fk∶ for all i ∈ f1; : : : ; 100g; θ��k − i�Ts� < 0.05 radg

(62)

where k is the simulation step, Ts is the integration step size, and
θ�kTs� is the eigenaxis attitude error (39) at the kth simulation step.
The metric k0 is thus the minimum time such that the eigenaxis
attitude error is less than 0.05 rad during the 100 most recent
simulation steps.
To illustrate the inertia-free property of the control laws (44) and

(53), the inertia of the spacecraft is varied using

Jb�λ� � �1 − λ�J3 � λJi (63)

where λ ∈ �0; 1� and i � 1; 4; 5. Figure 7 shows how the settling time
depends on λ.
Next, the robustness to misalignment of the reaction wheels

relative to the principal axes is investigated. Here, the inertia matrix
is rotated by an angle ϕ about one of the axes of frame Fb. For a
rotation about the x axis of Fb, the inertia of the spacecraft is varied
using

Jb�ϕ� � O1�ϕ�J3OT
1 �ϕ� (64)

where the proper orthogonal matrixO1�ϕ� rotates vectors about the x
axis by the angle ϕ. Similar relations exist for rotations about the y
and z axes. Figure 8 shows how a thruster misalignment angle ϕ
affects the settling time, in which ϕ is varied from −180
to �180 deg.

B. Slew Maneuver Using Control Law (53) Under Constant

Disturbance

The unknown constant disturbance torque τdist � �0.7 − 0.30�T is
now considered. Note that the controller (53) is used in place of the
controller (44), which lacks an integrator, and thus has a constant
steady-state error bias due to the persistent disturbance. The
parameters of the controller (53) are chosen to be K1 � I3,
A � diag�1; 2; 3�, γ � η � 1, D � I3, and Q � I6.
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achieved for a) control law (44) and b) control law (53).
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Figures 9a–9f show, respectively, the attitude error, angular velocity
components, angular rates of the wheels, angular momentum,
disturbance-estimate errors, and inertia-estimate errors. The spacecraft
attitude and angular velocity components reach the commanded
values in about 80 s. Figure 9c indicates that the reaction-wheel
rotational speed grows unbounded. Figure 9d shows that the total
angular momentum of the spacecraft increases, which is consistent

with the constant disturbance torque acting on the spacecraft. In
practice, the spacecraft needs a method to dump the stored angular
momentum so that the reaction wheel rates do not grow unbounded.
Figure 10 repeats themaneuverwithmaximumwheel saturation at

100 rad∕s, corresponding to roughly 1000 rpm. The controller
brings the spacecraft to the desired orientation in about 60 s at which
time one of the angular rates of the reaction wheels reaches
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c) Angular rates of the reaction wheels. The spin
rate grows unbounded due to the constant disturbance
torque
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its center of mass with respect to the inertial frame
resolved in the inertial frame. The total angular mo-
mentum is not conserved due to the constant distur-
bance torque in the bus-fixed frame
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Fig. 9 Slew maneuver using the control law (53) under a disturbance that is constant with respect to the bus-fixed frame.
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100 rad∕s, disturbance and inertia estimates diverge, and the system
is destabilized.

C. Spin Maneuver Using Control Law (53)

Consider a spin maneuver with the spacecraft initially at rest
and R�0� � I3. The desired attitude is determined by Rd�0� � I3,
and the commanded constant angular velocity is ωd �
�0.5 − 0.5 − 0.3�T rad∕s.

Assume no disturbance. Figures 11a–11f show, respectively, the
attitude errors, angular-velocity components, angular rates of the
wheels, the control inputs, which are the angular accelerations of the
wheels, angular momentum, and inertia-estimate errors. For this
maneuver, the spin command consists of a specified time history of
rotation about a specified body axis aligned in a specified inertial
direction. The controller achieves the commanded spin within
about 100 s.
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c) Angular rates of the reaction wheels. The spin rate grows 
until reaching the saturation limit of 100 rad/s
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Fig. 10 Slewmaneuver using the control law (53) under a disturbance that is constant with respect to the bus-fixed frame. Themaximum rotation rate of
each wheel is saturated at 100 rad∕s.
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VI. Conclusions

Almost global stabilizability (that is, Lyapunov stability with
almost global convergence) of spacecraft tracking is feasible without
inertia information andwith continuous feedback using three linearly
independent reaction wheels, for which the axes of rotation are not
necessarily aligned with the principal axes of the spacecraft bus, do
not necessarily pass through the spacecraft’s center of mass and are

not necessarily mass balanced in order to preserve the location of the
spacecraft’s center of mass. In addition, asymptotic rejection of
harmonic disturbances (including constant disturbances as a special
case) is possible with knowledge of the disturbance spectrum but
without knowledge of either the amplitude or phase.
Under these assumptions, the adaptive control laws presented in

this paper provide an alternative to previous controllers that 1) require
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b) Spacecraft angular-velocity components
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c) Angular rates of the reaction wheels
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d) Angular accelerations of the reaction wheels
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e) Angular momentum of the spacecraft relative to its center of 
mass with respect to the inertial frame resolved in the inertial 
frame
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Fig. 11 Spin maneuver using the control law (53).
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exact or approximate inertia information or 2) are based on attitude
parameterizations such as quaternions that require discontinuous
control laws or fail to be physically consistent (that is, specify
different control torques for the same physical orientation). A future
extension will address spacecraft actuation using control moment
gyroscopes.
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