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What i1s a Kalman Filter ?

= Merging models with data to obtain estimates of
states

— Data assimilation

m Stochastically optimal observer

m Model-based filter



Development of the Kalman Filter

m Seminal Paper

— R. E. Kalman, “A New Approach to Filtering and Prediction Problems,”
Journal of Basic Engineering, Vol. 85D, pp. 35—45, 1960.

Born 1930,
Budapest, Hungary

m R. Kalman, J. Guid. Contr. Dynamics, 2003:

— *“the discovery of the Kalman filter came about through a single, gigantic,
persistent mathematical exercise.”

m  Key points:

1. “lI simply defined a stochastic signal source consisting of a linear
system and discrete white noise”

2. “l ... establish[ed] for myself first the obvious relations and then the
precise equivalence between transfer functions and linear vector
differential equations.”

3. “No one imagined that the end result would be that simple.”
* Recursive filter

m Kalman and Bucy, 1961: Continuous-time case



Kalman Filtering Applications

Aerospace Applications

Guidance Tracking

— Patriot missile, GPS, spacecraft

Other Applications

— Biological systems
» Drug concentrations

— Stock trading
— Terrestrial weather
— Space weather

Ozone
concentration data
(measurements)

/| Global field
Y after data assimilation




Data Assimilation
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Linear Stochastic System

m Time-varying linear system
Tk—l—l = Agzy + Brug + Hpdy + wy,

Y = Cpr+ v
X}, € R@ State variable Unknown Stochastic
Yy € Rl Measurement Known Stochastic
wg, € R™+1 [ Unmodeled driver | Unknown Stochastic
Vg € Rk Sensor noise Unknown Stochastic
uy, € RPk Modeled driver Known Deterministic
dy € Rk Unmodeled driver | Unknown Deterministic

= The dimension of the state can be time varying
— Ay is not necessarily square !!



Data Assimilation

m Filtering

— Use measurements Y05 Y1 - - - » Yk to determine the optimal
estimate x;, of Tp

= Rigid body
Position and velocity estimates e Position and velocity estimates
using position measurements using velocity measurements

Position is not
observable
through velocity




Filtering

— Mass-Spring-Damper (MKC) system

Estimates of position and velocity

using velocity measurements
— gstimabte
:

Position

Position is observable s+ 4+ 4 Estimates of position
through velocity improve due to observability

, I | | 1 1 1 1 1 1
0 10 20 30 40 a0 =] 70 a0 a0 100
time in seconds



Optimal Estimator

® 7, = estimate of z
m Cost function: Ji = E[(Lgeg+1) ' (Lpegr1)] = tr(Pry1My)

P2 Elere)], Mp=L]lL,

JAN —~
— ek:xk—xk

— &[] is the expected value operator

= Obtain optimal estimate Zx+1 of zx+1 that minimizes
Jr using measurements Y; = {yo, ..., yx}

m The|optimal/minimum variance estimate of Zx+1 is
Tpt1 = Elwpy1|Yi]
— Optimal for arbitrary dynamics and statistics




Optimal Estimator

= Assumptions
Deterministic drivers are known (di = O)

wg and vi, are zero mean white|Gaussian|processes with
covariances @, and R, respectively

Initial state g is

Gaussian

with known mean *g and

known variance var(zq) = £[(zg — 7o) (zo — To) ]

wy. and v are uncorrelated (for convenience)

m Guarantees
—~ JAN —~
Innovation Yk — Yk — Yk

—

Yr = Estimated measurement
Yo, - - - » Yk are mutually independent (white)
Tp+1 and g are jointly Gaussian



Kalman Filter

= Due to the independence of the innovation sequence

Elxr+1|Ye] = Elzrr1|Ye] = Elxr+1|Tk] + Elzrt1|Yio1] — Flzryal

® Sincexiy1and g, are jointly Gaussian

Elrpr1|Te] = Elrpr1]+Elxp+170 1CE[TTT D Lok
m Using linear dynamics

Elrpr1|Yi_1] = E[Arxr + Bruk + wi|Yi_1] = ArZr + Brus,
Elrpr1T,) 1 = ApPpCY

ElGrT,) | = CpPLC)) + Ry



Kalman Filter

m Estimator dynamics (One-step estimator)

Tpt1 = ApZr + Brup + Ki(yr — )

Ky = ApPpC) (CLP.CY + Ry) ™t

data assimilation

= The optimal filter gain depends on the error covariance P,

m The error covariance is propagated by

Pryq1 =
H__/

{‘kPkAkT-I-ij—AkPkC;I(CkPkC;;r-l-Rk)_lePkAkT

I

Uncertainty measure

Open-loop dynamics

—

Uncertainty reduction due to filtering

- Set Py = 5[6068_] = var(zg) = 5[(330—50)(%0—50)1_]

— Riccati difference equation



Data Assimilation

m Two-step optimal estimator
— Equivalent to the one-step filter

T da . I
Thia = AkCE‘k + Brug Forecast (physics) update
da _ . f f - Data assimilation update
= xp+ Kp(yr — yp) P
f o f
. = Cizy
_  pfT fAT ~1
Kiy = PG, (CpP,Cp + Ry)
da _ pf f~T f~T -1 i SR .
Pe = P, — P.C, (CyP.,C, + Ry;) "CyP, - Dataassimilation covariance update
Pf 41 = A PR AT + Qy « Forecast covariance update
data assimilation error covariance ‘P]Sa 2 g[ega ega T data assimilation error
forecast error covariance Plz =5 [82 et )] forecast error

—> Data assimilation step

(’ Forecast step




Kalman Filter Properties

m Optimal estimate ;. of T

— Does not depend on the error weighting ;.
« Kalman filter provides optimal estimates of all states

\ \
1 g — 21 4] N Globally Pareto optimal

KF

|2 — Zo k|l

m Recursive update of the filter
— At every step only the most recent measurement is used

= The optimal estimate ;. of xf is unbiased
— g[CEk — Ek] =0



Kalman Filter Properties

Under white Gaussian wg, Vi and zg, the optimal

estimator for a linear system is| linear

The filter gain ;. and error covariance P
— | Do not depend|on xy, Tk, Yk, wg and vy

— Dependonlyon A, Cp, Qn, R

The filter gains K, . . . , K}, can be determined

offline

Next: Enforce a linear structure but relax assumptions

on wy., v and g




Fixed-Structure Estimator

m Assumptions
— Wk, v and xTg can belnon-Gaussian

— w;, and v, are uncorrelated (for convenience)

m Objective : Obtain the linear minimum variance
estimate of g



Linear Fixed-Structure Estimators

= One-step estimator

Tp41

Uk

(cost function)  J&
Py

1>l

m Two-step estimator

f‘
Lr41

<
&
Al

(cost function)  Jk

ArZy, + Brur + Ki(yr — Uk)

CrZy

El(Lrent1) ' (Lrert1)] = tr(Ppy1My)
5[6;43;_]

Az + Buuy,

CUZ + K (yi — y/t;)

Cr!,

EN(Lrer®) T (Lrep?)] = tr(P8* My,)

m Determine Kj; to minimize J;.



|_Inear Estimator Error Covariances

= One-step estimator
Jp = tr(Prq1 M)

Piy1 = (Ar — KpCr) Po(Ax — KiCi) ' + Qi + KiRp K,

m Two-step estimator
Jr = tr(P% M)

Pla = (I — KyCp)PI(I — K1 ,Cp) T + KRy K]

Pf

k1 — AdeaA;— + Qk

m Set g—l‘% — (O to obtain the optimal filter gain K.



Optimal Linear Estimator

m One-step optimal linear estimator
Piy1 = AP Al — AyBC (CuPC + Ry) 1CLPL AT 4 Qi

—1
Ky, = AyPCl (CLPCT + Ry,)

m Two-step optimal linear estimator

P = (I — KyCy) Pf
P]I+1 — AkPEaA;— —|— Qk

Ky, = PLCT (CLPICT +Ry)

m The one-step and two-step linear minimum variance filters are
equivalent

m Provides optimal linear minimum variance estimates for
non-Gaussian| wy., v and xg




LTI Case

B N =n, AkZA, Ck:C, QRZQ, Rk:R

m Kalman filter
‘Pk_|_1 = APkAT — APkCT<CPkCT —+ R)_ICPkAT + Q

Kj, = ARCT (CPCT +R)
— The optimal filter gain K, is time varying
m If (A, Q) is stabilizable and (A, ) is detectable then
im P, =P, Iim K, =K

k— o0 k— o0

= P satisfies the discrete algebraic Riccati equation

P = APAT — APCT(CPCT 4+ R)"1CPA™ +Q
K =APCT(CPCT +R)?



LTI Case

m Steady-state

error dynamics

€rk+1 — (A — KC)ek —|— Wi —|— Kkvk

m A — K(C Is asymptotically stable

m |Stochastically optimal LTI observer

Rigid body
example

Position is unbounded

i

P

Estimate position and
velocity using
position measurements

nnnnnnnnnnnn

llex!| is bounded

m Error €i is bounded even if £ Is not bounded



2D- Heat Conduction Example

m Equation of motion
oT 92T i 92T T = T(x,y,t) = Temperature
Ox2 Oy2

- =
ot o = Thermal diffusivity
Ty (k)
/4 I\
\
Ty (k)< > Tr(k)
y
C p A
X T (k)

m Discretize PDE using finite-volume method

o, = [T1.1(k) Ty 2(k) -+ Tnm(k)]T
xk_|_1 = A:Ck —I— Buk
Boundary conditions ux = [Tr.(k) Tr(k) Ty (k) Tg(k)] T



Truth Model

= Initial temperature distribution is distributed randomly with mean

500 K
= Unknown heat sources/sinks are placed at points indicated by

m Temperature measurements are obtained at points indicated by ©

»Grid size = 20 x 20
»Dimension of state vector . = 400
»Boundary conditions are known

» Sinusoidal
- Uniform over each side

1 j i i ] 1 i i ] 1 1 i i ] 1 1 i i
o1 2 3 4 5 B 7 8 9 10 1 12 13 14 15 16 17 18 19 20
Xcells




Truth Model — Temperature

Y cells

i

Hcells

Hcels

t=0s =25 s

10
Hcells

t=75s

10
Heells

t=50 s




Truth Model Measurements

m Temperature measured by sensors

10 11 12 13 14 16 16 17 18 19 A0
Heells

& &6 7 @8 8

1000 . . : , 1000
aoo aont
v 800f
£ sy
o T
8 700} 8 700}
D ol
E =
F 600} ~ B00F
500 ] 500
1 1 1 1 400 1 1 1 1
0% 20 40 60 30 100 0 20 40 60 80 100

timeins timeins



Data Assimilation Performance

Truth model
r ——————————
I |
Unmodeled drivers I |
> . ) | Global temperature field
: Simulation —
o '
I o e e e e — 1 Sensor
measurement
- - = -=-=-=-=-=-==-7= v T T
I I
Modeled drivers | ; . - |
o , Simulation : N
| (with data) ; > >
: > : o/ \
| l !
' Data Assimilation l '
+ Compare
1 errors
=TT T T v

| Simulation
(without data)

\4

e



Data Assimilation Results

m  Temperature distribution is not steady due to unmodeled drivers and
time-varying boundary condition

m  Error covariance and filter gain reach steady state

m  Sum of the squares of error in temperature estimates between truth
model (modeled drivers = known boundary conditions)

log10 scale log10 scale
; 20

475

s | ¥k - heat source/sink

@ - measurement
location

2 4 E g 0 12 14 16 18
neells

Heells

|| Truth — Simulation without data || || Truth — Data assimilation ||



Data Assimilation Results

m Compare temperature profile determined by the KF with the
truth model across cross sections

150
: —*— Mo data assimilation
n - KF
11l
.\
- 3 log10 scale
pi
i
L (S
100 et
L do0m0 @ I i
= I n
T i h
= o
g Fi
5 /| it f\
L 1500 = RN A f‘\
] us Tw oy
= S / r
| ! . \ L ]
$ 1 L !f \“.f -
1000 ! J b bl b L
/ t A/
e | £ A
- N/ 1
y ol g i : R
2 4 B g 10 12 14 16 18 20 2 4 5 3 o 12 m i 5 i
Aeells  cord

Temperature distribution of the plate at t=50 s Absolute value of the error in temperature profile

along X=6 at t=50 s



Extensions of the Basic Kalman Filter

1) Local data injection

2) Wk and VE correlation

3) Unknown statistics of random variables wg., v and xg(skip)

4)  Unknown deterministic input d.

5)  Known nonlinear dynamics

6) Unknown Aj and C,

7)  High-dimensional systems

8) Physical Constraints (skip)
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Local Data Injection
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Optimal Partial State Estimation

= Motivation
— Kalman filter uses|full data injection

— Data might be effective in a subregion only

— Updating all the states in a parallel multi-processor
architecture is difficult

2D grid

measurements

desired state estimates

Inject data into this region




KF with Spatially Local Output Injection

One -step estimator

Tp41 = ApZk + Bruy ‘|'Fk:Kk:(yk: — ), [ = ? }
— Two-step estimator 0
3724—1 = Akﬂ?k + Bjug — Forecast update
2a — xk + FkKk(yk — yk) —> Data assimilation update

— Inject data from all measurements into state estimates in the range
of I'y. (I has full rank)

m The one-step and two-step optimal estimators are nhot|equivalent




Optimal Linear Estimator

m Propagate a modified error covariance
_ One-Step case additional term

Pey1 = AP Al — AcPCY RITCLPAL Qk\ WklAkPka 1CkPIcAT7TkL
K, = (I ML) My AP CLRD T e eemm 77
oy = In—my, mp = (Y Ty)™'0Y, Ry, = G P.C] + Ry
— TWO—Step case
P, = APFA+Qx
Ky = (ITMIDITMPC (GROT + R’)™
P? = (I—-LK.C)P(I—KC)"T + MK R K T

= The optimal estimates depend on the error weighting L.

SLKF(I'1, L1) L1) SLKF(Fz \\Lz)

\\ SLKEF is not globally Pareto optimal

lz1k — Z1kll

v
KF SLKF(I'3, L3)

o — T2 il



2D-Heat Conduction Example

m Compare SLKF and KF performance
— 2D Heat Conduction Example

20 10910 scale a0 = = : 10910 scale
175 i Izg
I a7
16
465 455
14 {6
_.8 E B
12 ]
3 2.3 s a
£ 10 L ¢ g
o
B 45 o
® 0
G 4 . 0.8.0
4 g L
2 4 g g 10 12 14 16 18 E 4 & 8 1a 12 14 16 18
Heells Roells
Kalman filter SLKF
Data is injected Data is injected

into all the cells into cells indicated by [




2D-Heat Conduction Example

m Compare temperature profile determined by the SLKF with the
truth model across cross sections

150

=#= = No data assimilation
=% KF
—8— 5LKF

2500

100

I 42000

P 1500

| Ervor in Temsperature | in K

50y

1000

2 4 b g 10 12 14 16 15 20
Heells

Temperature distribution of the plate at t=50 s Absolute value of the error in temperature profile
along X=6 at t=50 s
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Correlated Process and
Measurement Noise
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Cross Correlation

m When wg and vg are correlated, let

) -

Qi Sk
Sy Ry

— Sk is the cross correlation matrix

m Filter equations

Th41
Yk
Ky,
Pry1

ArZr + Brug + Ki(yr — )
C’kxk
(ALP,C,Y ‘|"Sk)(CkPka; + Rk) !

ApPpAr + Q= (A PGy "y Skxckpkck + Ri) '(Ap POy + SkDT

e

Uncertainty reduction due to filtering

— Reduces uncertainty even if C;, = O, i.e. g = vy



Cross Correlation Example

= LTlexample: n =2, w, € R2, v, € R, 55 € R2x1

m Set 5= OéSO

— « variesfrom-1to1l

m Compare final cost Joo = limy_ o trP;

_ Examplel

| IE>I<ampI‘e2‘ -

|
. . | , . , .
04 Dz__0 02 04 OB 08 1
83

- Correlation helps
- Correlation hurts

Example 3
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Unknown Noise Covariances
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Unknown Noise Covariances

True noise covariances (Q and R are unknown
= Assume weuse () and R
Error dynamics

erpt1 = (A— KpO)ey, + wy, — Koy,
Ry, = AP,C (0P T HR)
Piy1 = ABAT — ABCT(CPCT HR) 1OPAT

The estimates are not the optimal estimates
P is[notlthe error covariance (pseudo error covariance)

m Actual error covariance satisfies

Pry1 = (A—RkC)Pk(A_KkC)T+Q+KkRK];r

If (A, Q) IS stabilizable, the filter converges to an asymptotically
stable observer



Incorrect Noise Covariances

= If Q#Q, R#R then Py < Py

Optimal error Actual error
covariance covariance

m LTI system example
- @=gqol, R=rol

= Actual cost (Joo)= liMy_ o trP;

_QR=ql, R=R_

a7.55
T o
5745
a7 25
5754+ 1
oF B2
57EIE -
a7 523
5753+
57525 ¢ *]Opt,oo_
Jo
Jopt,co
Erga | 57 521
57515 I : I I I I ! I I A7 R2 L L 1 i 1 1 1 1
’ 5 10 15 20 25 a0 35 40 45 a0 0.1 0. 03 0.4 0a Q& o7 0a na 1

qo0 q 0 T



Incorrect Noise Covariances

m Pseudo cost @ 2 imy_, o trB;

=R QR=Q, R=rI

300 —— ; ; ; ) : ; ; ; o8

O
I
K
o
oy

2801

200 -

180

100

1 l 1 1 1 1 1 1 1 B
D — 0.5 0B 07 0.8
a 10 15 20 25 o] 30 35 40 45 a0 ,r,o -

s fQ <@ and R < R then P, < pk (Heffes and Nishimura)
— —

Actual error Pseudo error
covariance covariance

— Provides an upper bound for the worst case performance
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Unknown Initial Condition
Statistics
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Incorrect Initial Estimate

= Assume mean xg of the random variable xg is unknown
= Assume we use xg F Ig
= Mean-error dynamics : e = £[e]

k
1] (A - K;C)
=0

Ry, = AP,C (CPCT + R>_1

e = €0

- — —_—

[ Poy1= APAT — ABCT(CPCT + R)\CPAT +Q, Py =wvar(zo))

Pseudo error covariance known

= True error covariance satisfies| P, = E[ege, | — exe,

m Estimate 7 of x; will be biased, i.e. e, = 0

= Ifthe filter is stable lim;_, . e, = 0O



Incorrect Initial Estimate

(ex)i

|
Z| e
-MZ

N
[
[

m Monte-Carlo Simulation (Sample size N=10000) | e; =
m Compare e
- Tg = X Versus zg # Tg

LTI example Periodic LTV example

_nit ~ —
I €] — Zo # To
k 00aE . —_
sl — I = g

0.06 -

004 -

noz2r-

0

‘k 4; 5 5 4 4 g k 1TD 12 14

= Inthe LTl case - A — K;.C' is asymptotically stable : e, — O even
when zg #= xg



Incorrect Initial State Covariance

Assume var(zg) is the true variance of xg and unknown
Assume we use the incorrect initial covariance

m Error dynamics

ept1 = (A — KpC)ey, + wy, — Ky,

K}, = AP,C (CP,CT + R)

-~

' Pk_|_1 — APkA — APkCT(CPkCT -+ R)_lc’f)kAT + Q,

PSE‘UdO error covarlance

O Estlmate xk 7. 0f z1 is

Not optlmal
m If the filter is stable

—1

unbiased

Actual error covariance

Ilmk_wOPk_ Ilmk_wo\qu_P

\

—’

— the estimates will converge to the optimal estimates

Py # var(xo)
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Unmodeled Drivers

4
~

e e E—e—— =
— _— .

- ~

unmodeled drivers (dg)

_—e——— —_— =

zero-mean stochastic disturbance

known input

(modeled drivers) ”

System

output

noise

measurement

m Unmodeled driver can be deterministic or stochastic

>



Standard Kalman Filter

m Estimator dynamics
er+1 = (A — KCley, + Hydy + wi, — Kyvy,

unknown
. —~ ~ -1
Ry, = ApPyC (Cu P, + Ry)
Byy1 = AP Al — ALBCT (CuBCY 4 Ry) 1CLP AT + Qi

— Estimates are not optimal

— Estimates are biased due to |dy

— Py is not the actual error covariance

Pseudo error covariance



Problem Formulation

m System

Tp4+1 = Agxp + Brug + Hidg + wy
yr = Crzp+ v

= Aka Bka Ckv Hk:

are known

m Signals ug, v, are measured

m Signal d;, € RP is unknown and arbitrary

m Obtain unbiased estimates of states zr € R"
m Estimate the unknown signal d; € R?



Unbiasedness

m Two-step filter

292 = zl 4+ K (y, — Cpl)
ApE$2 + By,

~f
L1

= Unbiased if and only if (kitanidis 1987)
Ee] = Elay, — 289 = 0
~
(I - KCp)Hp_1 =0
Ce A
= Minimize tr(P{®) = tr (£ |ef?(ef®) T])
— Subject to constraint (I — K;,C,)H;,,_1 =0

— Need rank(CrHy_1) = p



Unbiased Minimum-variance Filter

Define
Vi
Fy,

CrHj_1 Ry,
T
PLCy 1Ty,

CyPLCY + Ry,

T 51 1T sl
Vi 1 B p 1 Ve+1) ™ Vi R

> e
> e

Optimal filter gain

Ky = Hp_ 11,1+ Fkﬁlzl([ — Vil 1)

Covariance update

P2 = KyRLK) + (I — K3,Cy)PL(I — KpCp) T
Pl 4 = A PRAT + @

Reduces to Kalman filter when H, = 0O

Unbiased estimate d;, of d;. obtained as

> _f
dy, = H}iLk—l—l(yk—l—l — Cr41Tp4 1)



Estimation with unknown Inputs

m Mass spring damper

C
ﬂ Tk
k
& m
[ T1 k+1 ] _ T1k + tsT2k n 0
T2 k41 T+ ts(—%x%k — ST ) 1

Unknown force
E1s£imate of position using velocity measurements

Actual state
===LInbiased minimum-variance filter [

= ==Kalman filter

Fosition

time (5ecs)



Unknown Feedback Signal

Unmodeled Drivers static or dynamic
A
\ F j--
N : unmeasured
=~ L —————_  State Toise
( functlon of states ) I
—— — )
zero-mean stochastic disturbance output measurement
> System ”
known input
(modeled drlvers)

= Unmodeled drivers can be feedback signals

m Estimates of states and unknown signal are still
unbiased !!



Example

m Discretized Van der Pol Oscillator

T1k+1 | xl,kz-l- tsTo k
T2 41 xo f + tS[(i — 27 )Tk — 1k + ug]
J
unknown nonmarityw dj.
Yp = T

— ts is the sample interval

- H, = [ C1) and the linear part of the dynamics is known

— d = ts(1 — w%k)aﬁz,k is the unknown (unmodeled) signal



Example

State estimates

Estimate d}, of unmodeled signal dj,

—Actual state
""""" State estimate
=== 0pen-loop model state

— Actual state
""""" State estimate
== =0pen-loop model state

08

08

04

02

02

04

08

08

— Actual unmodeled term
""""" Estimated unmaodeled term

time

time

30
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Estimators for Nonlinear Systems

m System dynamics
p+1 = [(@p up k) + wy
yr = h(zg, k) + v

m Estimator dynamics
— One-step Tr+1

nonlinear dynamics innovation

U, = h(Z, k)

f d
— Two-step thpr = J@ un k)
nonlinear dynamics
f f
zf? = ), + Ki(yr — yi)
innoQéUon

yl = h(zh, k)



Nonlinear Filter Theory

One-step and two-step estimators not jequivalent

T may not be Gaussian even if Wk, Uk and L0 are Gaussian

For continuous-time systems, the probability density function of x
Is governed by the Fokker-Planck partial differential equation

1 92
%p(fca t|$o, tO) — j%[az(xa t)p(xa t|£l?o, tO)]_%[m(xa t)p<m7 t|$o, tO)]

— Scalar case

- p()= probability density function of

— o(-)and m(-) depend on the nonlinear function f(-)
— Difficult to propagate actual covariance P,



Nonlinear Filter Theory

m Optimal filters for nonlinear systems are usually
Infinite dimensional

— Finite dimensional optimal filters exist for a limited class of
nonlinear systems (Daum)

m Ad hoc idea : Use classical linear Kalman filter gain
expression

—1
Ky, = APl (CrPCT + Ry)

m Py is a pseudo error covariance



Estimation with Pseudo Covariance

m Extended Kalman Filter (XKF)

m State-Dependent Riccati Equation filter (SDRE)

m Particle filters (Monte Carlo Technique)
— Unscented Kalman filter
— Simplex Kalman filter
— Ensemble Kalman Filter



Extended Kalman Filter

Jacobian

m One-step estimator dynamics
Piy1 = ArPA] — Ay PCl (CLPC) 4 Ry) 1CpPL Al 4 Qi

-1
Ky, = AP C (CuPrCyl + Ry)
Tr+1 = f( @k, up, k) + Ki(yr — i)

U = h(ZTg, k)

m P is the|pseudo error covariance
— P is not the actual covariance of the error




XKF Properties

= Filter gain K}, depends on the state estimate zy,
— Filter gains cannot be evaluated offline !

= Estimate z, of x;, may be biased even if zg = zg
m Stabllity of the filter cannot be guaranteed

m We consider the use of XKF for
— Satellite orbit estimation
— Data assimilation in one-dimensional hydrodynamic flow



Satellite Orbit Estimation

m Problem: Track geosynchronous satellite with 4
observing satellites in low-Earth orbit

m Use Sampled-Data Extended Kalman Filter
— Few sensors (range-only)
— Time-sparse measurements

= Evaluate tradeoffs
— Acquisition time, estimation accuracy
versus
— Measurement sample rate




Satellite Equations of Motion

m Orbiting Spacecraft Equations of Motion

F= i@, r 2 ) = X2+ Y2+ 22
m Measurement Model

— Range data from [ satellites at time t = kts

hi(X,Y,Z, X1,Y1, Z1)
: + v,

yr = h(X (kts), Y (kts), Z(kts)) = :
h(X,Y,Z X,,Y,, Z;)

hi(X,Y, Z, X3, Y, Z) = (X = X)2 4+ (Y = Y2 + (Z — Z;)2

— Earth Blockage

« Measurement is unavailable when line-of-sight between ;tNobserving
satellite and target is blocked by the Earth



Sampled-Data XKF

= Measurements available every ts seconds

— Forecast Step (No data available): t € [kts, (k + 1)ts]

z(t) = f(2(1), T(kts) = 2(k+)

P(t)=A@®)PE)+ Pt)A®) + Q, P(kts) = P(k+)

A(t) = f1(2(t))
— Data-Update Step

Ky = P(k—)C (C,P(k—)Cl+R)™L, Cp & W(Z(k—))

Pseudo error covariance

z(k+) = z(k—) + Kp(yx — di)
P(k+) = (I — KiCp)P(k—)

1 PO
P(t) /< \
P(k+) (open loop)

Forecast step

-

: /»Data update step

Is

(k

1)ts



Target Acquisition
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1l .
/~ ’ Do |
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cx] qmr ! | M f || / mrl'ﬂllr iﬂ‘h.
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—3t x
initial position estimate
e ¥4 ol . .
4+ X *
o 200 00 600 800 1000 1200
. . . . . time: in sec
2 -1 0 1 2 3 4 5
km x 10

eInitial True Anomaly Error: 110°
«Sample Interval: 1s

Meas. Standard Deviation: 0.1km

«Sample Intervals: 1s, 10s, 50s, 100s
*Meas. Standard Deviation: 0.1km



Eccentricity Estimation

/\""“”t

g W B
|I
«Sample Interval = 1s «Sample Interval = 10s
*Meas. Standard Deviation: 0.01km *Meas. Standard Deviation: 0.01km
eTarget performs a 1s burn at sTarget performs a 1s burn at

t=100s and t=200s t=100s and t=200s



Inclination Estimation

04

04r

03F

02r

[IRA

true inclination

01r

inclination in rad
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estimated inclination

0.8
1]

All observing satellites in equatorial

orbit

sTarget performs a 1s burn at

1
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1
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t=100s and t=200s
sLack of observability

1
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*Change inclination of two observing
satellites (i = 0.1rad, i = -0.2rad)

«Sample Interval = 1s

sSuccessfully track inclination change
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02r
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ldeal Hydrodynamic Equations

m Consider inviscid adiabatic flow along a 1-D channel
— Flow is governed by Euler’'s equation and continuity equation

In conservative form

W4v.F=0

m [J is the vector of conserved quantities

U:{Q ov &

® F isthe flux dyad

[9XY
F=| ov*+p
| v(€ + p)

}T

LB e

o

density
velocity
energy

pressure
specific heat ratio

1 2 P
_/l_) —_—
1@ +7_1



Finite Volume Model

m Discretize space into cells
— Grid size depends on the required resolution
— Number of cells can vary with time
— 1-D grid

Ulil(k) =value of U at the center of the 7%

cell at time step k
i—1 1 i+1

cells

m Use second-order Rusanov scheme to determine flow variables
in each discretized cell

UlI(k + 1) = UB(k) = £IFRL (k) — Ty (R)]

Rus

= Y is the second-order Rusanov flux
— determined using ylitnl n=—-2 -1, ...,2
— depend on the slope limiter (minmod, MC)
- }—i satisfy the CFL stability condition



Discrete-Time Dynamic Model

m State contains values of all conserved quantities in all

cells
o= [ @WE)HT @BE)T - @PE)T ]

= High dimensional, highly nonlinear dynamics
41 = f(zg, ug) + wy

— f(-) depends on the order and scheme used in the finite
volume MHD flow simulation

= Involves modeled and unmodeled drivers
— uk represents known boundary conditions

— wy represents uncertainty in boundary conditions and
modeling errors



XKEF for 1-D HD Flow

= Nondifferentiable nonlinearities are present in the finite
volume dynamics
— For example : abs, sgn, min and max functions
— Jacobian not exist due nondifferentiable nonlinearities
— Differentiable approximations can be constructed
« For example : |z| = atan(z)zx
— Alternatively, numerical approximations of the Jacobians can
be used




State-Dependent Riccati Equation

m Express nonlinear dynamics as a frozen-time
pseudo-linear difference equation

Trp+1 = A(xg)xr + Bz, uk, wi)

m Set Ay = A(Zx) inthe covariance update and filter
gain expression
— The parameterization A(x) is not unique
— Example :

T1p+1 | _ T1 kT2 k
) f— x f—
[ ] Fen) [QH B

Tk 0 X1k 0 1k 1k
T — ? , T = ’ )
Tek) [ 0 x%k +1 ] [ T2 k ] fa) [ T1 T2k 1 T2k

m |Does not require the Jacobian !




State-Dependent Riccati Equation

m Performance depends on the parameterization A(x)
— Van der Pol Oscillator example
— Use measurements of velocity to estimate position

Position estimates

10 T

18

g J
4t i
b

VWYV
2t 4
at B
il N
3 4

L L L L L L ! L L
50 100 150 200 250 300 350 400 450 500 -10 L - L L L L L L L
time in seconds i} &0 100 150 200 280 300 350 400 450 500
time in seconds

1 h B 1 h
A(il}) = s 1+ tsb(l o 5131)2 :| A(l') - |: —ts(l + ba:lxg) 14 tsd :|

= estimate

—— = actual

m Under certain conditions, can guaranteeklim [z, — 2] = O
— Assumes a deterministic setting (AsymptotTé>O observer)
— These conditions are conservative

m Open problem : Finding optimal parameterizations



XKF versus SDRE-KF

XKF

SDRE-KF

The Jacobian of a particular nonlinear
system is unique

Parameterization of a particular nonlinear
system is not unique. Various
parameterizations have to be determined
and their performance evaluated.

Jacobian may have to be determined
numerically due to the presence of
nondifferentiable nonlinearities.
Computationally intensive

Evaluating a parameterization is
computationally less intensive compared to
obtaining the Jacobian numerically

Knowledge of the dynamics is not
necessary to obtain a numerical
approximation of the Jacobian.

Knowledge of the exact dynamics is
necessary to determine a parameterization




Particle Filter

m Run ensemble of estimators in parallel

m Compute ensemble estimates at every step
— Motivation: The statistics of the ensemble members approximate that

of the true state

m The “optimal” estimate is the average of the ensemble estimates
m Performs better than the XKF in certain applications
— XKEF retains only the first two terms in the Taylor series approximation

of the error covariance
Particle filters retain higher order terms

10*

Attitude Errors (Deg)
3 3 3

4
o|
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/’“"ﬂ\“. j»-"” s,
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~~¢_ filter

R

o
o
ra

o, !
W \;'l'.“v'-\.{\‘i
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o
b

i
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Error in attitude estimates

Spacecraft attitude estimation
(Crassidis and Markley, 2003)



Unscented Kalman Filter

= Let 7, = mean(zy), P,._= var(xzy)

m Choose ensemble members :T:;,‘C so that

vari(i};) = pk
. ~ ensemble size=2n 4 1
meani(a;k) = T

(unscented transformation)

m  Propagate the ensemble members through the nonlinearity

m  Use the ensemble members to estimate the mean ik_|_1 and variance pk—|—1
of T+1

Zpg1 = mean |£(3,) + Ky (yy, — h(3})]
Py = var | f(&}) + Kip(yp — h(E})|




Ensemble Kalman Filter

® Run ensemble of multiple estimators in parallel
— Inject random disturbance into the ensembles (Monte Carlo)

m |nitialize estimators with random initial conditions

|w]]g- Q%AFAHK
> Model i
|w;% . T = mean(Z})
Lk 72 P, = var(zl)
> Model K
—>| Mean
q
w ~4
| k X
qu
.| Model k




Ensemble Kalman Filter

m  Use estimates from the ensemble to approximate the error covariance
at every time step

— f — f — —f 1 f.
Aﬂfz—[a:kl—azz xkq—xz}, xf—gzgzlw;;
f—[ f1 - fq - —f _ 1\ i
Aykz—[ykl—y}; ykq—yH» Yr = ¢ 2i=1Yk

PO ~ Bl = A (Ay) T, | CuPiCf + R ~ By |= 5 Ay (Ay)T

— No error covariance update using the Riccati equation !
— Number of operations =((gn?)
— 7 is the dimension of the system
— @ is the number of ensembles
m Data assimilation step
da; fi 7 fi
T =xy Kk(@Jk - y;;)
i~ — pf pf y—1
Ky = nyk(Pyyk)

= The n x n error covariance P, is never evaluated
—~ Only the correlation Pf, and P, are evaluated



Ensemble Kalman Filter

= Computationally equivalent to running a collection of
nonlinear simulations in parallel

— Size of ensemble is critical !
e Statistics of wg and vy must be accurately captured

m Extensive application to terrestrial weather prediction



Simulation : 1D- Hydrodynamics

m Grid size =N = 50 cells

1 23 4 5 6 7 8 910 20 25 30 40 41 42 4344 4546 47 48 49 50

of | | lefle]llellle[ ] | |o

ghost cells ghost cells

. - Disturbance enters these cells
@ - Measurements are available from these cells

m Dimension of state vector X — 3N

= Measurements of density, velocity and pressure (corrupted by
sensor noise) are available at some of the cells

m Boundary conditions are determined by the flow variables in the
ghost cells

m Compare performance of different data assimilation techniques



Initial Condition

m Density, velocity and pressure distribution of the “truth” model

and the estimatorat ¢t = 0O
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e
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Flow Conditions

m Subsonic flow

= Boundary conditions

— Left
» Constant density and pressure
» Sinusoidally varying velocity
— Right
* Floating boundary conditions
m Disturbance enter the cells indicated by Bl

4.50

Density p

35k

s —sr—or T
Cell #-%



Simulation : 1D- HD

m Grid size =50

m  Measurement available at cells 10, 20, and 30

m  Compare estimate of energy at cell 40

Energy E

Truth model
----- Mo data assimilation
14 | XKF
— SDRE filter
Ensermble KF 150 ensembles
135 1 1 L 1 1 1 1
u] 10 20 30 40 50 B0 70 =] 90 100

tirme

Transient is due to the difference in the initial conditions between the “truth”
model and the estimator

m  XKF, SDRE-KF and EnKF estimates are close



Estimation Performance

m Error in momentum estimates

grid size = 50

0z

20 25 30

T T T T
I ithout data assimilation

35 40 45 50

* - measurement location

D1 T T T T T T T T T T
I =0RE
=% nosl -
28]
0 N . - -
5 10 15 pii] 25 30 3 40 45 50
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01 T T T T T T T T T T
o® 005 -
1
y n . N . o .
5 10 15 20 25 30 35 40 45 50
Cell #
DE T T T T T T T T T T
| I Ensemble KF - ni2 |
cDE D‘] -
=]
0
5 1 15 2 o5 3 % 40 45 &0

Cell #



Estimation Performance

[ |
[ |
[ |
Increases
20
100

Surn of square of error-gk ”ek”2

Size of the grid /N varies from 10 cells to 1000 cells
Ensemble size 4 of EnKF varies from N/10to 2N
Compare the mean-square-error of the state estimates as the grid size

==€-= EnkF- n/10 ensembles
-=-EF- EnKF- n/4 ensembles
—=&= EnkF- n/2 ensembles
==+== EnkF- n ensembles
==¥== EnkF- nx2 ensembles
—t—_XKE

—+— SDRE

100 200 300

400 500 500 700
Mumber of cells - (n=number of cellsx3)

&ao

a00

1000

Subsonic flow



Computational Performance

m  Computational time
XKF, SDRE-KF and EnKF

4451

Iugm(cnmputational time)

==€r- EnkF- nf10 ensembles
==EF= EnkF- n/4 ensembles
=== EnkF- n/2 ensembles
==+== EnkF- n ensembles
==¥-= EnkF- nx2 ensembles
—r— XKF

—+— 50RE

1
0 100

200 300

400 500 600 700
Mumber of cells { n=number of cells x 3)

goo 900 1000




Computational Performance

m  Accuracy versus Computational time trade-off

- grid size=500
A Mo data assimilaticn
. XKF
#* SDRE
(ﬁ) O EnKF = n/10 ensembles
O  EnKF - n4 ensembles
200 & EnKF - /2 ensembles
+  EnKF - n ensembles
X EnKF - nx2 ensembles
5 150
=
= .
=
g - Pareto optimal
&
i+
E
& 100
1
@ +
% L]
0

1
0 2000 4000 G000 5000 10000 12000 14000 16000
computational time in s
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Model Mismatch

m Assumewe use A and C instead of A and C
m Error dynamics

,,,,,,,,

— The estimates may be|biased|even if 5 = Zg
— Py is a pseudo error covariance




Estimating Plant Parameters

m Assume certain plant parameters are unknown
— Mass-spring-damper system
— Measurement of velocity is available

T1 k+1
T2 k41

m |dea: Estimate position and |mass




Estimating Plant Parameters

= Augment the unknown parameter to the state variable

T1 k+1 xlk,k + tS:BQ,k:
Topt1 | = | T2k T lslmmrmie — orok + il
R L o N LT

= View the unknown parameter as a state

m Use nonlinear estimation technigues to estimate the
unknown plant parameter and unmeasured states



Estimating Plant Parameters

m Compare estimates of position
- | | Estimate of mass
— KF with the correct mass i< inconsistent

— KF with incorrect mass estimate .
— XKF (obtain estimates of the mass) -

1 '
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\ 1
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~ e
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w SS -7
am TN~el_____--
o
& 4
5
o
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E ]
ko)
Ll
ngk KF with incorect mass i T
KF with correct mass
#KF (mass is estimated) 32 : s i : s i : f i
Y1 w w0 & @ 0 e @ 1o 0 200 400 GO0 8O0 1000 1200 1400 1600 1800 2000

time in seconds time in seconds

Error in position estimates Estimate of the mass using XKF



Adaptive Estimation

Asymptotic adaptive observers
— Noise free conditions
— Design is easy for single output systems

EXxpress the system in the observable canonical form

Estimate the unknown system parameters using direct
or indirect methods

Use the estimates of the parameters in the standard
Luenberger observer structure to estimate the state
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High Dimension
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Computational Complexity

= Riccati update of the covariance is computationally
expensive
— O(n3) operation
— n is the dimension of the state variable
— n > 1le6 for weather prediction applications

m Technigques for reducing the computational burden
— Banded covariance
— Reduced order models
— Square-root Kalman filtering



Banded Covariance

Banded dynamics

— Occurs in systems where the future value of a particular state
depends on the current value of only its nearest neighbor states

 Finite volume discretizations
Stable linear time-invariant system
- Poy1 = APAT 4+ Q
- lim P, = P exists
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Structure of A Magnitude of entries of P
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Covariance of Banded Dynamics

m Magnitude of the entries of the error covariance progressively
decreases as we move away from the diagonal

m The rate of decrement depends on the width of the dynamics
(number of nearest neighbors involved)

27

|[Hi o PllF < 1=5040¢

RSS of entries i units away from the diagonal

|Hio Pllp =
o = max; ||A"||F
ofs = |IQlIF

5 <1



Banded Covariance Approximation

m Neglect correlation between distant cells during data assimilation

m After the Riccati update, retain only the entries of the pseudo error
covariance that are within a specified distance from the diagonal

P, = H o P, (Retain only specific entries of the covariance)

Piy1 = APy Al — AP Cl (CuPC)l 4 Ry)TChPLAl + Qu

Typical structure of Hy

— Since A, and P, are banded diagonal, computational burden of
evaluating AkpkAkT is reduced

= Positive definiteness of the pseudo error covariance P, is not
guaranteed

— Retaining large number of entries helps to ensure positive definiteness



Simulation : 1D-Hydrodynamics

m Comparison of error in estimates as the grid size increases

— Neglect correlation between cells that are farther than distance W
apart

— Covariance update : O(n3) — O(w?n)

grid size=250 . . . o __grid size=500

MSE
MSE

o w=40 w=50 No approx

grid size=1000

o - Error covariance
is not positive semidefinite

MSE

MSE with SDRE-KF
(No approximation)

MSE with SDRE-KF
- (Banded covariance approximation)



Simulation : 1D- Hydrodynamics

m  Compare the time taken for data assimilation

4.8

4+

3.5+

3_

25+

log10({computational time)

2

1.9+

—#— S5DRE-KF
—&— SDRE-KF with banded approximation

1

1 1 1 1
0 200 400 600 800 1000
grid size = number of cells

m Banded covariance approximation reduces the computational time
of the SDRE-KF by a factor of 2 (as dimension becomes very large)

— No noticeable change in the performance



Simulation : 1D- Hydrodynamics

m Accuracy versus Computational time

MSE
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State Constraints

m Constraints on states of certain physical systems
naturally arise
— Certain states are always positive
« Concentration of chemicals
» Density
« Kinetic energy

m Do the state estimates also satisfy the same
constraints ?



State Constraints

m 1D Hydrodynamics example
— Density estimates maybe negative !!
— Results in filter instability

03 T
— Actual density
Density estimate (XKF)
025
02

I I I I
05 1 1.4 2 25 3



Estimation with Constraints

m Equality constraints

Trp+1 = AT+ Brug + wg
Y = Cpxp+ vy
1 = Hpzyg

m View the constraint as a measurement (Porill, 1988)
— Estimates the states using the Kalman filter
— Kalman filter can handle noise-free measurements

Tp+1 = Aprg + Brug + wy

= Ll 13

-




Estimation with Constraints

= Inequality constraints
— Recast estimation as an optimal control problem

— Use nonlinear programming technigues to solve the optimization
problem

m Reduce computational burden by using a moving horizon
approach (Rao, Rawlings, Mayne, 2003)
— Ignore old measurements

m Computationally expensive compared to the XKF



Summary

m Kalman filter

— Provides optimal estimates of the state of a linear time-varying
system with stochastic inputs

m Extensions (Open problems)
— Optimal estimators for nonlinear systems
— Reducing the computational burden for high dimensional systems

— Accounting for uncertainty in
» Noise statistics
* Dynamics



