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What is a Kalman Filter ?

Merging models with data to obtain estimates of 
states
– Data assimilation      

Stochastically optimal observer

Model-based filter



Development of the Kalman Filter
Seminal Paper

– R. E.  Kalman, “A New Approach to Filtering and Prediction Problems,”
Journal of Basic Engineering, Vol. 85D, pp. 35—45, 1960.

R. Kalman, J. Guid. Contr. Dynamics, 2003:  
– “the discovery of the Kalman filter came about through a single, gigantic, 

persistent mathematical exercise.”

Key points:
1. “I simply defined a stochastic signal source consisting of a linear  

system and discrete white noise”
2. “I … establish[ed] for myself first the obvious relations and then the  

precise equivalence between transfer functions and linear vector 
differential equations.”

3. “No one imagined that the end result would be that simple.”
• Recursive filter

Kalman and Bucy, 1961:  Continuous-time case

Born 1930,
Budapest, Hungary



Kalman Filtering Applications
Aerospace Applications

– Patriot missile, GPS, spacecraft

Other Applications
– Biological systems

• Drug concentrations
– Stock trading
– Terrestrial weather 
– Space weather

Ozone 
concentration data
(measurements)

Global field
after data assimilation

Guidance Tracking
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Linear Stochastic System

Time-varying linear system   

The dimension of the state can be time varying
– is not necessarily square !!

State variable Unknown Stochastic

Measurement Known Stochastic

Unmodeled driver Unknown Stochastic

Sensor noise Unknown Stochastic

Modeled driver Known Deterministic

Unmodeled driver Unknown Deterministic



Data Assimilation

Filtering
– Use  measurements                            to determine the optimal 

estimate       of 

Rigid body 

Position and velocity estimates
using position measurements

Position is not 
observable
through velocity

Position and velocity estimates
using velocity measurements



Filtering

– Mass-Spring-Damper (MKC) system

Estimates of position and velocity 
using velocity measurements

Estimates of position
improve due to observability

Position is observable
through velocity 



Optimal Estimator

= estimate of 
Cost function:  

–
– is the expected value operator                      

Obtain optimal estimate         of         that minimizes       
.    using measurements                  

The optimal minimum variance estimate of          is

– Optimal for arbitrary dynamics and statistics



Optimal Estimator
Assumptions
– Deterministic drivers are known (            )

– and      are zero mean white Gaussian processes with 
covariances and      , respectively

– Initial state      is Gaussian with known mean      and 
known variance

– and       are uncorrelated (for convenience)

Guarantees
– Innovation 
– = Estimated measurement
– are mutually independent (white)
– and       are jointly Gaussian



Kalman Filter

Due to the independence of the innovation sequence

Since         and      are jointly Gaussian

Using linear dynamics  



Kalman Filter

Estimator dynamics (One-step estimator)

The optimal filter gain depends on the error covariance
The error covariance is propagated by

– Set    
– Riccati difference equation

data assimilation

Uncertainty measure Uncertainty reduction due to filtering Open-loop dynamics



Data Assimilation
Two-step optimal estimator 
– Equivalent to the one-step filter

• Forecast (physics) update

• Data assimilation update

• Data assimilation covariance update

• Forecast covariance update

Data assimilation step
Forecast step

data assimilation error covariance

forecast error covariance

data assimilation error

forecast error



Kalman Filter Properties

Optimal estimate       of       
– Does not depend on the error weighting 

• Kalman filter provides optimal estimates of all states      

Recursive update of the filter 
– At every step only the most recent measurement is used

The optimal estimate      of       is unbiased
–

Other estimators

KF

Globally Pareto optimal



Kalman Filter Properties

Under white Gaussian             and     , the optimal 
estimator for a linear system is linear

The filter gain       and error covariance
– Do not depend on                             and 

– Depend only on

The filter gains                       can be determined offline

Next: Enforce a linear structure but relax assumptions 
on               and 



Fixed-Structure Estimator

Assumptions
– and       can be non-Gaussian

– and      are uncorrelated (for convenience)

Objective : Obtain the linear minimum variance 
estimate of 



Linear Fixed-Structure Estimators

One-step estimator  

Two-step estimator

Determine        to minimize  

(cost function)

(cost function)



Linear Estimator Error Covariances

One-step estimator

Two-step estimator

Set                     to obtain the optimal filter gain



Optimal Linear Estimator

One-step optimal linear estimator

Two-step optimal linear estimator

The one-step and two-step linear minimum variance filters are 
equivalent

Provides optimal linear minimum variance estimates for 
non-Gaussian               and 



LTI Case

Kalman filter

– The optimal filter gain       is time varying

If            is stabilizable and            is detectable then

satisfies the discrete algebraic Riccati equation



LTI Case

Steady-state error dynamics

is asymptotically stable
Stochastically optimal LTI observer

Error       is bounded even if       is not bounded

Rigid body
example

Position is unbounded

Estimate position and 
velocity using 

position measurements

is bounded



2D- Heat Conduction Example
Equation of motion

Discretize PDE using finite-volume method

= Temperature
= Thermal diffusivity

x

y

Boundary conditions



Truth Model
Initial temperature distribution is distributed randomly with mean 
500 K
Unknown heat sources/sinks are placed at points indicated by 
Temperature measurements are obtained at points indicated by

Grid size = 20 x 20
Dimension of state vector      = 400
Boundary conditions are known

• Sinusoidal 
• Uniform over each side



Truth Model – Temperature

t=0 s t=25 s t=50 s

t=75 s t=100 s



Truth Model Measurements
Temperature measured by sensors



Data Assimilation Performance

Simulation

Compare
errors

Unmodeled drivers

Modeled drivers

Global temperature field

Sensor
measurement

Simulation
(with data)

Simulation
(without data)

Truth model

-

Data Assimilation

-

-



Data Assimilation Results
Temperature distribution is not steady due to unmodeled drivers and 
time-varying boundary condition
Error covariance and filter gain reach steady state
Sum of the squares of error in temperature estimates between truth 
model (modeled drivers = known boundary conditions)

|| Truth – Simulation without data || || Truth – Data assimilation ||

log10 scale log10 scale

- heat source/sink

- measurement
location



Data Assimilation Results

Compare temperature profile determined by the KF with the 
truth model across cross sections

Absolute value of the error in temperature profile 
along X=6 at t=50 s

Temperature distribution of the plate at t=50 s

log10 scale log10 scale



Extensions of the Basic Kalman Filter
1) Local data injection

2) and      correlation

3) Unknown statistics of random variables                and       (skip)

4) Unknown deterministic input    

5) Known nonlinear dynamics

6) Unknown       and

7) High-dimensional systems

8) Physical Constraints (skip)



Local Data Injection



Optimal Partial State Estimation

Motivation
– Kalman filter uses full data injection
– Data might be effective in a subregion only
– Updating all the states in a parallel multi-processor 

architecture is difficult

measurements

desired state estimates

2D grid

inject data into this region



KF with Spatially Local Output Injection
Estimate only states in the range of 
– Minimize 

Update specific state estimates
– One-step estimator

– Two-step estimator

– Inject data from all measurements into state estimates in the range 
of        (       has full rank)

The one-step and two-step optimal estimators are not equivalent

Data assimilation update

Forecast update



Optimal Linear Estimator

Propagate a modified error covariance
– One-step case

– Two-step case

The optimal estimates depend on the error weighting

additional term

KF

SLKF is not globally Pareto optimal

SLKF

SLKF

SLKF



2D-Heat Conduction Example

Compare SLKF and KF performance
– 2D Heat Conduction Example

Kalman filter

log10 scale

SLKF

Data is injected
into cells indicated by      

log10 scale

Data is injected
into all the cells



2D-Heat Conduction Example

Compare temperature profile determined by the SLKF with the 
truth model across cross sections

Absolute value of the error in temperature profile 
along X=6 at t=50 s

Temperature distribution of the plate at t=50 s



Correlated Process and 
Measurement Noise



Cross Correlation

When        and       are correlated, let

– is the cross correlation matrix

Filter equations

– Reduces uncertainty even if               , i.e.   

Uncertainty reduction due to filtering 



Cross Correlation Example
LTI example : 

Set 
– varies from -1 to 1

Compare final cost
Example 1 Example 2 Example 3

- Correlation helps
- Correlation hurts 



Unknown Noise Covariances



Unknown Noise Covariances

True noise covariances and      are unknown
Assume we use       and
Error dynamics 

The estimates are not the optimal estimates
is not the error covariance (pseudo error covariance)

Actual error covariance satisfies

If               is stabilizable, the filter converges to an asymptotically 
stable observer



Incorrect Noise Covariances

If                             then

LTI system example
–

Actual cost

Optimal error 
covariance

Actual error 
covariance



Incorrect Noise Covariances

Pseudo cost

If              and               then                   (Heffes and Nishimura)

– Provides an upper bound for the worst case performance

Actual error 
covariance

Pseudo error 
covariance



Unknown Initial Condition 
Statistics



Incorrect Initial Estimate

Assume mean       of the random variable       is unknown
Assume we use       
Mean-error dynamics : 

True error covariance satisfies

Estimate       of        will be biased, i.e.              

If the filter is stable  

Pseudo error covariance known



Incorrect Initial Estimate

Monte-Carlo Simulation (Sample size     = 10000)
Compare       
– versus      

In the LTI case - is asymptotically stable :                even 
when

LTI example Periodic LTV example



Incorrect Initial State Covariance

Assume                 is the true variance of        and unknown
Assume we use the incorrect initial covariance  
Error dynamics 

Estimate       of       is unbiased

If the filter is stable

– the estimates will converge to the optimal estimates

Pseudo error covariance

Not optimal

Actual error covariance



Unmodeled Drivers



Unmodeled Drivers

output

noise

measurementSystem
known input

(modeled drivers)

zero-mean stochastic disturbance

unmodeled drivers (     )

Unmodeled driver can be deterministic or stochastic



Standard Kalman Filter

Estimator dynamics 

– Estimates are not optimal

– Estimates are biased due to

– is not the actual error covariance

unknown

Pseudo error covariance



Problem Formulation

System

are known

Signals             are measured

Signal              is unknown and arbitrary

Obtain unbiased estimates of states             
Estimate the unknown signal



Unbiasedness

Two-step filter

Unbiased if and only if (Kitanidis 1987)

Minimize

– Subject to constraint

– Need



Unbiased Minimum-variance Filter

Define

Optimal filter gain

Covariance update

Reduces to Kalman filter when

Unbiased estimate      of       obtained as



Estimation with unknown inputs
Mass spring damper

Unknown force
Estimate of position using velocity measurements



Unknown Feedback Signal

Unmodeled drivers can be feedback signals

Estimates of states and unknown signal are still 
unbiased !!

output

noise

measurementSystem
known input

(modeled drivers)

zero-mean stochastic disturbance

function of states

unmeasured 
state

static or dynamicUnmodeled Drivers



Example

Discretized Van der Pol Oscillator

– is the sample interval

– and the linear part of the dynamics is known

– is the unknown (unmodeled) signal

unknown nonlinearity



Example

State estimates Estimate      of unmodeled signal      



Nonlinear Systems



Estimators for Nonlinear Systems
System dynamics

Estimator dynamics 
– One-step

– Two-step



Nonlinear Filter Theory
One-step and two-step estimators not equivalent

may not be Gaussian even if               and       are Gaussian 

For continuous-time systems, the probability density function of     
is governed by the Fokker-Planck partial differential equation

– Scalar case
– = probability density function of 
– and           depend on the nonlinear function
– Difficult to propagate actual covariance



Nonlinear Filter Theory
Optimal filters for nonlinear systems are usually 
infinite dimensional
– Finite dimensional optimal filters exist for a limited class of 

nonlinear systems (Daum)

Ad hoc idea : Use classical linear Kalman filter gain 
expression

is a pseudo error covariance



Estimation with Pseudo Covariance
Extended Kalman Filter (XKF)

State-Dependent Riccati Equation filter (SDRE)

Particle filters (Monte Carlo Technique)
– Unscented Kalman filter
– Simplex Kalman filter
– Ensemble Kalman Filter



Extended Kalman Filter 
Set

One-step estimator dynamics

is the pseudo error covariance
– is not the actual covariance of the error

Jacobian



XKF Properties 
Filter gain       depends on the state estimate 
– Filter gains cannot be evaluated offline !

Estimate      of       may be biased even if

Stability of the filter cannot be guaranteed

We consider the use of XKF for 
– Satellite orbit estimation
– Data assimilation in one-dimensional hydrodynamic flow



Satellite Orbit Estimation
Problem: Track geosynchronous satellite with 4 
observing satellites in low-Earth orbit

Use Sampled-Data Extended Kalman Filter
– Few sensors (range-only)
– Time-sparse measurements

Evaluate tradeoffs
– Acquisition time, estimation accuracy

versus
– Measurement sample rate



Satellite Equations of Motion
Orbiting Spacecraft Equations of Motion

Measurement Model
– Range data from    satellites at time

– Earth Blockage
• Measurement is unavailable when line-of-sight between      observing 

satellite and target is blocked by the Earth



Sampled-Data XKF
Measurements available every     seconds
– Forecast Step (No data available):

– Data-Update Step

Pseudo error covariance

Forecast step
(open loop)

Data update step



Target Acquisition

•Initial True Anomaly Error: 110°
•Sample Interval: 1s
•Meas. Standard Deviation: 0.1km

•Sample Intervals: 1s, 10s, 50s, 100s
•Meas. Standard Deviation: 0.1km



Eccentricity Estimation

•Sample Interval = 10s
•Meas. Standard Deviation: 0.01km
•Target performs a 1s burn at
t=100s and t=200s

•Sample Interval = 1s
•Meas. Standard Deviation: 0.01km
•Target performs a 1s burn at
t=100s and t=200s



Inclination Estimation

•All observing satellites in equatorial
orbit
•Target performs a 1s burn at
t=100s and t=200s

•Lack of observability

•Change inclination of two observing 
satellites (i = 0.1rad, i = -0.2rad)

•Sample Interval = 1s
•Successfully track inclination change



Ideal Hydrodynamic Equations

Consider inviscid adiabatic flow along a  1-D channel
– Flow is governed by Euler’s equation and continuity equation 

in conservative form

is the vector of conserved quantities

is the flux dyad

density
velocity
energy
pressure
specific heat ratio



Finite Volume Model

Discretize space into cells
– Grid size depends on the required resolution
– Number of cells can vary with time
– 1-D grid

• value of      at  the center of the        cell at time step 

Use second-order Rusanov scheme to determine flow variables 
in each discretized cell

is the second-order Rusanov flux
– determined using  
– depend on the slope limiter (minmod, MC)
– satisfy the CFL stability condition

cells



Discrete-Time Dynamic Model

State contains values of all conserved quantities in all 
cells

High dimensional, highly nonlinear dynamics

– depends on the order and scheme used in the finite 
volume MHD flow simulation

Involves modeled and unmodeled drivers
– represents known boundary conditions
– represents uncertainty in boundary conditions and 

modeling errors



XKF for 1-D HD Flow 
Nondifferentiable nonlinearities are present in the finite 
volume dynamics
– For example : abs, sgn, min and max functions
– Jacobian not exist due nondifferentiable nonlinearities 
– Differentiable approximations can be constructed

• For example : 
– Alternatively, numerical approximations of the Jacobians can 

be used



State-Dependent Riccati Equation
Express nonlinear dynamics as a frozen-time 
pseudo-linear difference equation

Set                      in the covariance update and filter 
gain expression
– The parameterization           is not unique
– Example :

Does not require the Jacobian !



State-Dependent Riccati Equation
Performance depends on the parameterization

– Van der Pol Oscillator example
– Use measurements of velocity to estimate position

Under certain conditions, can guarantee
– Assumes a deterministic setting (Asymptotic observer)
– These conditions are conservative

Open problem : Finding optimal parameterizations

= estimate

= actual

Position estimates



XKF versus SDRE-KF

XKF SDRE-KF

The Jacobian of a particular nonlinear 
system is unique

Parameterization of a particular nonlinear 
system is not unique. Various 

parameterizations have to be determined 
and their performance evaluated.

Jacobian may have to be determined 
numerically due to the presence of 

nondifferentiable nonlinearities. 
Computationally intensive

Evaluating a parameterization is 
computationally less intensive compared to 

obtaining the Jacobian numerically

Knowledge of the dynamics is not 
necessary to obtain a numerical 
approximation of the Jacobian.

Knowledge of the exact dynamics is 
necessary to determine a parameterization



Particle Filter 
Run ensemble of estimators in parallel
Compute ensemble estimates at every step

– Motivation: The statistics of the ensemble members approximate that 
of the true state

The “optimal” estimate is the average of the ensemble estimates 
Performs better than the XKF in certain applications

– XKF retains only the first two terms in the Taylor series approximation 
of the error covariance

– Particle filters retain higher order terms

Spacecraft attitude estimation
(Crassidis and Markley, 2003)

Error in attitude estimates

XKF

Unscented 
filter



Unscented Kalman Filter 
Let 

Choose ensemble members       so that

Propagate the ensemble members through the nonlinearity

Use the ensemble members to estimate the mean            and variance    
of  

ensemble size =

(unscented transformation)



Ensemble Kalman Filter 
Run ensemble of multiple estimators in parallel
– Inject random disturbance into the ensembles (Monte Carlo)

Initialize estimators with random initial conditions

Model

Model

Model

Evaluate 
PkCTstatistically

-
Evaluate Kk using 

the KF gain
expression

Mean



Ensemble Kalman Filter 
Use estimates from the ensemble to approximate the error covariance 
at every time step

– No error covariance update using the Riccati equation !
– Number of operations  = 
– is the dimension of the system
– is the number of ensembles

Data assimilation step

The            error covariance          is never evaluated 
– Only the correlation          and           are evaluated



Ensemble Kalman Filter 

Computationally equivalent to running a collection of 
nonlinear simulations in parallel
– Size of ensemble is critical !

• Statistics of        and       must be accurately captured

Extensive application to terrestrial weather prediction



Simulation : 1D- Hydrodynamics

Grid size = cells

Dimension of state vector
Measurements of  density, velocity and pressure (corrupted by 
sensor noise) are available at some of the cells

Boundary conditions are determined by the flow variables in the 
ghost cells

Compare performance of different data assimilation techniques

ghost cellsghost cells

- Disturbance enters these cells

1 2 3 4 5 6 7 8 9 10 40 41 42 43 44 45 46 47 48 49 5020 3025

- Measurements are available from these cells



Initial Condition
Density, velocity and pressure distribution of the “truth” model 
and the estimator at 



Flow Conditions
Subsonic flow
Boundary conditions

– Left 
• Constant density and pressure
• Sinusoidally varying velocity

– Right
• Floating boundary conditions

Disturbance enter the cells indicated by



Simulation : 1D- HD
Grid size = 50
Measurement available at cells 10, 20, and 30
Compare estimate of energy at cell 40

Transient is due to the difference in the initial conditions between the “truth”
model and the estimator

XKF, SDRE-KF and EnKF estimates are close

XKF

150 ensembles



Estimation Performance
Error in momentum estimates

* - measurement location

grid size = 50

XKF



Estimation Performance

Subsonic flow

XKF

Size of the grid      varies from 10 cells to 1000 cells
Ensemble size     of EnKF varies from             to 
Compare the mean-square-error of the state estimates as the grid size 
increases



Computational Performance

XKF

Computational time 
– XKF, SDRE-KF and EnKF



Computational Performance
Accuracy versus Computational time trade-off

- Pareto optimal

grid size=500

XKF



Unknown Dynamics



Model Mismatch

Assume we use      and       instead of      and 
Error dynamics 

– The estimates may be biased even if
– is a pseudo error covariance



Estimating Plant Parameters

Assume certain plant parameters are unknown
– Mass-spring-damper system
– Measurement of velocity is available

– Mass       is unknown

Kalman filter requires knowledge of system dynamics

Idea: Estimate position and mass



Estimating Plant Parameters

Augment the unknown parameter to the state variable
–

View the unknown parameter as a state

Use nonlinear estimation techniques to estimate the 
unknown plant parameter and unmeasured states



Estimating Plant Parameters

Compare estimates of position
– KF with the correct mass
– KF with incorrect mass estimate
– XKF (obtain estimates of the mass) 

Estimate of the mass using XKFError in position estimates

Estimate of mass 
is inconsistent



Adaptive Estimation

Asymptotic adaptive observers
– Noise free conditions
– Design is easy for single output systems

Express the system in the observable canonical form

Estimate the unknown system parameters using direct 
or indirect methods

Use the estimates of the parameters in the standard 
Luenberger observer structure to estimate the state



High Dimension



Computational Complexity

Riccati update of the covariance is computationally 
expensive
– operation
– is the dimension of the state variable
– for weather prediction applications 

Techniques for reducing the computational burden
– Banded covariance
– Reduced order models
– Square-root Kalman filtering



Banded Covariance
Banded dynamics
– Occurs in systems where the future value of a particular state 

depends on the current value of only its nearest neighbor states
• Finite volume discretizations

Stable linear time-invariant system
–
– exists

Structure of Magnitude of entries of 
(banded dynamics)



Covariance of Banded Dynamics
Magnitude of the entries of the error covariance progressively 
decreases as we move away from the diagonal

The rate of decrement depends on the width of the dynamics 
(number of nearest neighbors involved)

=   RSS of entries i units away from the diagonal

=   

=  

=   



Banded Covariance Approximation
Neglect correlation between distant cells during data assimilation

After the Riccati update, retain only the entries of the pseudo error 
covariance that are within a specified distance from the diagonal

– Since       and       are banded diagonal, computational burden of 
evaluating                 is reduced

Positive definiteness of the pseudo error covariance       is not 
guaranteed

– Retaining large number of entries helps to ensure positive definiteness

(Retain only specific entries of the covariance)

Typical structure of 



Simulation : 1D-Hydrodynamics
Comparison of error in estimates as the grid size increases

– Neglect correlation between cells that are farther than distance
apart

– Covariance update : 
grid size=250 grid size=500

Error covariance 
is not positive semidefinite

MSE with SDRE-KF
(No approximation)

MSE with SDRE-KF
(Banded covariance approximation)

grid size=1000



Simulation : 1D- Hydrodynamics
Compare the time taken for data assimilation

Banded covariance approximation reduces the computational time 
of the SDRE-KF by a factor of 2 (as dimension becomes very large)

– No noticeable change in the performance



Simulation : 1D- Hydrodynamics
Accuracy versus Computational time

grid size=500

- Pareto optimal

XKF



Physical Constraints



State Constraints

Constraints on states of certain physical systems 
naturally arise
– Certain states are always positive

• Concentration of chemicals 
• Density
• Kinetic energy

Do the state estimates also satisfy the same 
constraints ? 



State Constraints

1D Hydrodynamics example
– Density estimates maybe negative !!
– Results in filter instability



Estimation with Constraints

Equality constraints

View the constraint as a measurement (Porill,1988)

– Estimates the states using the Kalman filter
– Kalman filter can handle noise-free measurements



Estimation with Constraints

Inequality constraints
– Recast estimation as an optimal control problem

– Use nonlinear programming techniques to solve the optimization 
problem

Reduce computational burden by using a moving horizon 
approach (Rao, Rawlings, Mayne, 2003)
– Ignore old measurements

Computationally expensive compared to the XKF



Summary

Kalman filter
– Provides optimal estimates of the state of a linear time-varying 

system with stochastic inputs

Extensions (Open problems)
– Optimal estimators for nonlinear systems
– Reducing the computational burden for high dimensional systems
– Accounting for uncertainty in

• Noise statistics
• Dynamics


