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ABSTRACT
Noncausal finite impulse response (FIR) models are used for closed-loop identification of unstable
multi-input, multi-output plants. These models are shown to approximate the Laurent series inside
the annulus between the asymptotically stable pole of the largest modulus and the unstable pole of
the smallestmodulus. By delaying themeasured output relative to themeasured input, the identified
FIR model is a noncausal approximation of the unstable plant. We present examples to compare the
accuracy of the identified model obtained using least squares, instrumental variables methods, and
prediction error methods for both infinite impulse response (IIR) and noncausal FIR models under
arbitrary noise that is fed back into the loop. Finally, we reconstruct an IIR model of the system from
its stable and unstable parts using the eigensystem realisation algorithm.

1. Introduction

Identification of a plant operating inside a closed loop
is motivated by the need to monitor plant changes with-
out opening the loop (Gustavsson, Ljung, & Söderström,
1977; Hjalmarsson, Gevers, & de Bruyne, 1996; Lan-
dau, 2001). This need is unavoidable when the con-
trolled plant is open-loop unstable, in which case open-
ing the loop for identification is prohibited. Even for
plants that are asymptotically stable, opening the loop
for identification may not be feasible due to operational
constraints. In these cases, identification must rely on
sensor–actuator data obtained under normal operating
conditions, although in some cases it may be possible to
inject additional signals to enhance persistency and signal
amplitude relative to noise levels.

In addition to the fact that closed-loop identification
constrains the feasible inputs, output noise and process
noise inside the feedback loop are correlatedwith the con-
trol input. Although knowledge of this correlation may
enhance the accuracy of system identification, this infor-
mation is usually not available in practice, and decorrela-
tion techniques are needed (Söderström & Stoica, 2002,
1981; Stoica, Söderström, & Friedlander, 1985). In Ljung
(2002) and Forssell and Ljung (1999), an infinite impulse
response (IIR) model is used with prediction error meth-
ods (PEM) to identify unstable systems in closed loop.
Assuming that the output noise and process noise are
uncorrelated with the command signal, applying PEM
with either the true system order or an overestimated sys-
tem order guarantees that the estimated transfer function
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converges to the true transfer function as the number of
samples used for identification tends to infinity (Ljung,
2002). However, for a finite data set, overestimating the
system order can yield poor transfer function estimates.

If the plant order is unknown, then an initial overesti-
mate of the order can be used with PEM, and a refined
estimate can be obtained from Ho–Kalman realisation
theory (Ho & Kalman, 1966) and its implementation in
terms of the singular value decomposition of the Han-
kel matrix (Juang, 1993). Although this approach, which
requires estimates of the Markov (impulse response)
parameters, is sensitive to noise, heuristics can be used to
improve its accuracy (Hjalmarsson,Welsh, & Rojas, 2012;
Markovsky, 2012; Recht, Fazel, & Parrilo, 2010; Smith,
2014; Usevich & Markovsky, 2012).

PEM identification minimises the difference between
the predicted output and the measured output, which
yields an estimate of the transfer function. If the predic-
tor is unstable, which is the case when output-error and
Box–Jenkins model structures are used to identify unsta-
ble systems in closed loop (Forssell & Ljung, 2000b), the
prediction error may be large, which leads to erroneous
transfer function estimates. This issue can be mitigated
by using modified output-error and Box–Jenkins models
as in Forssell and Ljung (2000b), where the predictor is
constrained to be stable. However, this constraint com-
plicates the search algorithm (Forssell & Ljung, 2000b).

An alternative approach to PEM identification of
unstable plants is discussed in Hjalmarsson and Forssell
(1999), where an output-error model structure is consid-
ered. In this case, the predictor is decomposed into stable
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and unstable parts, which correspond to causal and non-
causal filters, respectively. A model is noncausal if com-
puting the output at time k requires inputs at a future time
k + i, where i � 1. Since output-error models are a spe-
cial type of IIR models, this approach requires an esti-
mate of the order of the system. However, as discussed
above, if the estimated order is incorrect, then the transfer
function estimates may have poor accuracy. In addition,
identifying the noncausal part of themodel requires time-
reversing the signal and thus is confined to offline iden-
tification. Moreover, the approaches used in Hjalmars-
son and Forssell (1999) and Forssell and Ljung (2000b)
require a priori knowledge of whether the system is sta-
ble or unstable.

Noncausal filtering is also used in Forssell and Ljung
(2000a) in a two-step projection method to identify sys-
tems in closed loop with nonlinear feedback. A non-
causal finite impulse response (FIR) model is first used
with linear least mean squares optimisation to identify
the causal closed-loop system from the command sig-
nal to the control input. Then, the identified model is
used with the command signal to compute the predicted
control input, which is then compared with the output
of the closed-loop system to identify the plant using an
IIR model. The role of the noncausal FIR model in Fors-
sell and Ljung (2000a) is restricted to approximating the
Wiener smoother, which relates the command signal to
the control input.

Instrumental variables can also be used to identify
unstable systems in closed loop, where the instruments
consist of samples of either the command signal or a pre-
filtered version of the command signal (Gilson&Van den
Hof, 2005; Söderström & Stoica, 2002). Subspace meth-
ods can also be used to identify linear systems in closed
loop (Ljung & McKelvey, 1996; Verhaegen, 1993).

The usefulness of Markov parameters for estimating
the order of an IIR system suggests consideration of an
FIR model structure, whose numerator coefficients are
its Markov parameters and all of whose poles are zero.
Although physical systems are rarely FIR, an FIR model
can approximate an asymptotically stable, IIR system
(Cerone, Piga, & Regruto, 2013; Chai, Zhang, Zhang, &
Mosca, 2005; Yamamoto, Anderson, Nagahara, & Koy-
anagi, 2003). An advantage of FIR models for system
identification is that the Markov parameters of an FIR
model are given explicitly, and thus can be used directly
in Ho–Kalman realisation to estimate the system order
and construct an IIR model. Most importantly, the FIR
model structure is nonparametric in the sense that it is
independent of the system poles and zeros, and thus no
prior estimate of the plant order is needed.

Noncausal FIR controllers are used for tracking prob-
lems where the command signal is known in advance.

In particular, a noncausal FIR feedforward controller is
obtained by truncating the Laurent series of the unstable
inverse of a nonminimum-phase plant; the resulting
controller provides approximate plant inversion without
unstable pole-zero cancellation (Gross, Tomizuka, &
Messner, 1994; Hunt, Meyer, & Su, 1996; Rigney, Pao,
& Lawrence, 2009; Tomizuka, 1987; Widrow & Walach,
1996).

A noncausal FIRmodel that approximates the Laurent
series of an unstable plant involves both positive and neg-
ative powers of the Z-transform variable z. The negative
powers approximate the asymptotically stable part of the
plant outside of a disk (that is, inside a punctured plane),
whereas the positive powers approximate the unstable
part of the plant inside a disk. Inside the common region,
which is an annulus, the Laurent series represents a non-
causal model, as evidenced by the positive powers of z.

To identify an unstable plant operating inside a stabil-
ising feedback loop, the measured output can be delayed
relative to themeasured input to obtain an FIRmodel that
is a noncausal approximation of the unstable plant. The
transfer function of this noncausal FIR model approx-
imates the Laurent series of the plant inside the maxi-
mal annulus of analyticity lying between the smallest disk
containing the asymptotically stable poles and the small-
est punctured plane containing the unstable poles.

Although advantages of noncausal filters were
observed in Hjalmarsson and Forssell (1999) and Forssell
and Ljung (1999), a full justification is lacking. One of
the contributions of the present paper is thus to use
the Laurent expansion of a rational transfer function to
justify the use of these models in system identification.
The contribution of the present paper is thus a detailed
treatment of closed-loop identification of unstable plants
using noncausal FIR models. This work presents analysis
and proofs that connect the Laurent series of a transfer
function and an associated noncausal FIR model. These
results are needed to establish a rigorous connection
between the estimated noncausal FIR model and the
impulse response of the system. Unlike the noncausal
output-error models identified in Hjalmarsson and
Forssell (1999), noncausal FIR models can be identified
online. Moreover, unlike the approaches of Hjalmarsson
and Forssell (1999) and Forssell and Ljung (2000b), non-
causal FIR models do not require knowledge of whether
the system is stable or unstable.

The theoretical basis for this work is given by Theorem
4.1, which provides necessary and sufficient conditions
under which the coefficients of the Laurent series are
square summable. In addition, Theorem 4.1 shows that
there is exactly one maximal annulus corresponding to
which the coefficients of the Laurent series are bounded.
This fact suggests that the objective of identifying G by
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estimating the coefficients of a Laurent series of G is
meaningful only for the Laurent series corresponding
to this special annulus, since otherwise the uniden-
tified (that is, truncated) coefficients are unbounded.
For unstable plants, the Markov parameters, which are
the coefficients of the Laurent series in the maximal
punctured plane, are unbounded. For unstable plants,
however, the Laurent series in the special annulus has
(unlike the Laurent series in the punctured plane) terms
involving positive powers of z, which represent a non-
causal model. The coefficients of the negative powers of z
are Markov parameters of the asymptotically stable part
of the transfer function.

These results refine and extend (Aljanaideh, Coffer,
& Bernstein, 2013) to the case of MIMO systems. Fur-
thermore, unlike identification based on least squares in
Aljanaideh et al. (2013), the present paper applies pre-
diction error methods and instrumental variables meth-
ods to closed-loop identification of unstable systems
with IIR and noncausal FIR models. Finally, we extend
(Aljanaideh et al., 2013) by demonstrating consistency of
the estimated FIR coefficients under noise added to the
input and output signals of the plant inside the loop.

The analysis in this paper is carried out within the con-
text of idealised finite-dimensional rational transfer func-
tions, where the goal is to assess the accuracy of identifi-
cation of unstable plants operating inside a closed loop
using noncausal FIR models. In practice, however, real-
istic plants do not conform to mathematical models, and
concepts such as system order, transfer function, and the
like are convenient but fictitious constructions used to
approximate reality. Moreover, for the purpose of con-
troller design, an appropriate notion of model order may
be different from the ‘true’ order, and may hinge on the
dominant modes of the system as well as uncertainty of
the identified model. These issues are, however, outside
the scope of this paper.

The contents of the paper are as follows. In Section 2,
we present definitions and results needed for the rest of
the paper. Section 3 provides analysis of the Laurent series
of a rational function. Section 4 shows the necessary
and sufficient conditions for boundedness of the Lau-
rent series coefficients. Section 5 shows the identification
architecture using least squares, instrumental variables,
and prediction errormethods.We show numerical exam-
ples in Section 6. Section 7 discusses how to reconstruct
the system from its noncausal FIR model. We give con-
clusions and suggestions for future research in Section 8.

2. Preliminaries

For ρ > 0, let D(ρ)
�= {z ∈ C : |z| < ρ} be the open disk

in the complex plane centred at the origin with radius ρ.

Also, for ρ � 0, let P(ρ)
�= {z ∈ C : |z| > ρ} be the open

punctured plane centred at the origin with inner radius
ρ. Moreover, for 0 � ρ1 < ρ2, let A(ρ1, ρ2)

�= {z ∈ C :
ρ1 < |z| < ρ2} = P(ρ1) ∩ D(ρ2) be the open annulus in
the complex plane centred at the origin with inner radius
ρ1 and outer radius ρ2.

Recall (Gamelin, 2001, p. 168) that if the rational func-
tion g(z) is analytic in the open annulus A(ρ1, ρ2), then
g(z) has a unique, absolutely convergent Laurent series in
A(ρ1, ρ2) of the form

g(z) =
∞∑

i=−∞
hizi. (1)

If ρ2 = �, then g is analytic in the punctured plane P(ρ1)

and, if g is proper, then, for all i > 0, hi = 0 in (1). If ρ1 =
0 and g has no pole at zero, then g is analytic in the disk
D(ρ2) and, for all i < 0, hi = 0 in (1). In this case, (1)
is a power series that converges absolutely in D(ρ2) and
diverges at every point in P(ρ2) (Gamelin, 2001, p. 138).

Definition 2.1: Let 0 � ρ1 < ρ2 and let g be a rational
function. If ρ1 > 0, then the open annulus A(ρ1, ρ2) is
maximalwith respect to g if g is analytic inA(ρ1, ρ2) and,
for all ϵ1 � [0, ρ1) and ϵ2 � 0, not both zero, g is not ana-
lytic inA(ρ1 − ε1, ρ2 + ε2). If ρ1 = 0, then the open disk
D(ρ2) is maximal with respect to g if g is analytic inD(ρ2)

and, for all ϵ> 0, g is not analytic in D(ρ2 + ε).

For convenience, the termmaximal open annulus may
also refer to an open disk or an open punctured plane.

Consider the system

x(k + 1) = Ax(k) + Bu(k), (2)
y(k) = Cx(k) + Du(k), (3)

where A ∈ R
n×n, B ∈ R

n×m, C ∈ R
l×n, D ∈ R

l×m.
Assume that (A, B) is controllable and (A, C) is observ-
able. Let G be the l × m transfer matrix corresponding to
(A, B, C, D). The ith Markov parameter Hi of G, which is
given by

Hi
�=

{
D, i = 0,
CAi−1B, i ≥ 1, (4)

is independent of the realisation (2), (3) of G. Let ρ(A)
denote the spectral radius of A.

Proposition 2.1: {Hi}∞i=0 are the coefficients of the Laurent
series of G in P(ρ(A)), that is, for all z ∈ P(ρ(A)),

G(z) =
∞∑
i=0

Hiz−i. (5)
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Next, we define the reflected transfer matrix Gref to be
the transfer matrix obtained by replacing z inG(z) by z−1,
that is, Gref (z) = G(z−1).
Proposition 2.2: Assume that A is nonsingular. Then, Gref
is proper, and (A−1, −A−1B, CA−1, D − CA−1B) is a min-
imal realisation of Gref .
Definition 2.2: The spectral radius ρ(G) of G is the spec-
tral radius of A.
Definition 2.3: Assume that A is nonsingular. Then, the
inner spectral radius ρinner (A) of A is defined as

ρinner(A)
�= 1

ρ(A−1)
.

Furthermore, the inner spectral radius ρinner(G) ofG is the
inner spectral radius of A.
Proposition2.3: Assume that zero is not a pole ofG. Then,

ρinner(Gref ) = 1
ρ(G)

, ρ(Gref ) = 1
ρinner(G)

. (6)

Definition 2.4: G is strongly unstable if it has no poles in
the closed unit disk.
Proposition 2.4: G is strongly unstable if and only if Gref
is asymptotically stable.

3. Analysis of the Laurent series

Throughout this section, let G be a proper l × m ratio-
nal function with minimal realisation (A, B, C, D). If A is
nonsingular, then theMarkov parameters ofGref are given
by

H̃i
�=

{
D −CA−1B, i = 0,
−CA−i−1B, i ≥ 1. (7)

Therefore, if A is nonsingular, then Propositions 2.1 and
2.3 imply that the Laurent series of Gref in P(ρ(Gref )) =
P(ρ(A−1)) = P(1/ρ(A)) is given by

Gref (z) =
∞∑
i=0

H̃iz−i. (8)

The following result shows that (7) provides the coef-
ficients of the power series for G in the maximal disk.
Proposition3.1: Assume that zero is not a pole ofG. Then,
for all z ∈ D(ρinner(G)),

G(z) =
∞∑
i=0

H̃izi, (9)

where H̃i are the Markov parameters of Gref given by (7).

Proof: Replacing z ∈ P(ρ(Gref )) = P(1/ρinner(G)) in
(8) by z−1 ∈ D(ρinner(G)) and using the fact that, for all
z ∈ P(ρ(Gref )),Gref (1/z) = G(z) yields (9). �

Using partial fractions, G can be represented as

G = Gs + Gu + D, (10)

where the strictly proper transfer functionsGs andGu are
asymptotically stable and strongly unstable, respectively.
Defining ρs

�= ρ(Gs), Proposition 2.1 implies that Gs is
analytic in P(ρs) with the Laurent series

Gs(z) =
∞∑
i=1

Hsi z
−i, (11)

where, for all i� 0,Hsi is the ith Markov parameter ofGs.
Next, note that zero is not a pole of Gu. Hence, defining
ρu

�= ρinner(Gu), Gu is analytic in D(ρu) with the power
series

Gu(z) =
∞∑
i=0

Hu−i z
i, (12)

where, by Proposition 3.1, Hu−i is the ith Markov param-
eter of Gu, ref. Rewriting (12) as

Gu(z) =
0∑

i=−∞
Hui z

−i, (13)

it follows from (10), (11), and (13) thatG is analytic in the
annulus A(ρs, ρu) with the Laurent series

G(z) =
∞∑

i=−∞
Liz−i, (14)

where

Li
�=

⎧⎨
⎩
Hui, i < 0,
Hu0 + D, i = 0,
Hsi, i > 0.

(15)

Note that the Laurent series of G in A(ρs, ρu) given by
(14) is different from the Laurent series of G in P(ρ(G))

given by (5). Furthermore, both D = G(�) and Hu0 =
Gu,ref (∞) may be nonzero.

Assume that G has no poles on the unit circle. Let d
and r be positive integers, and define the FIR truncations
Gs, r and Gu, d of Gs(z) and Gu(z−1), respectively, by

Gs,r(z)
�=

r∑
i=1

Hsi z
−i, Gu,d(z−1)

�=
d∑
i=0

Hu−i z
−i, (16)
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where Hsi and Hu−i are defined by (15). Note that

Gs,r(z) =
r∑

i=1

Liz−i, Gu,d(z) =
d∑
i=0

L−izi =
0∑

i=−d

Liz−i.

(17)

Now, define the improper rational function Gr, d(z) by

Gr,d
�= Gs,r + Gu,d + D, (18)

where Gs, r(z) and Gu, d(z) are the causal and noncausal
components of Gr, d, respectively. Hence, for all z � 0,

Gr,d(z) =
r∑

i=−d

Liz−i. (19)

4. Necessary and sufficient conditions for
boundedness of the Laurent series coefficients

Throughout this section, letG be an l×m proper rational
function. Let || · ||F denote the Frobenius norm.

For asymptotically stable and strongly unstable trans-
fer functions, the following result, which is used in the
proof of Theorem 4.1, concerns boundedness of the coef-
ficients of the Laurent series of a rational function.
Lemma 4.1: The following statements hold:

(i) Assume that zero is not a pole of G. If the coefficients
(7) of the power series (9) of G in D(ρinner(G)) are
bounded, then ρinner (G) � 1.

(ii) If the coefficients (4) of the Laurent series (5) of G in
P(ρ(G)) are bounded, then ρ(G) � 1.

Proof:

(i) It follows from Gamelin (2001, p. 142) that the
radius of convergence of the power series (9) of G
in D(ρinner(G)) is given by ρinner = 1

lim supi→∞ |H̃i|1/i .

Define the positive numberM �= supi |H̃i|. Then,

ρinner(G) = 1
lim supi→∞ |H̃i|1/i

≥ 1
limi→∞ M1/i = 1.

(ii) Assume that zero is not a pole of Gref. Proposition
3.1 implies that the power series of Gref in
D(ρinner(Gref )) is given by (9), where the coeffi-
cients of the power series ofGref inD(ρinner(Gref ))

are the Markov parameters of (Gref)ref = G, which
are given by (4). It follows from Gamelin (2001, p.
142) that the radius of convergence of the power
series ofGref inD(ρinner(Gref )) is given by ρinner =

1
lim supi→∞ |Hi|1/i . Define the positive number M �=

supi |Hi|. Then,
1

ρ(G)
= ρinner(Gref ) = 1

lim supi→∞ |Hi|1/i

≥ 1
limi→∞ M1/i = 1.

Now assume that Gref has m poles at zero. Then,
Gref can be written as

Gref (z) = 1
zm

Gref,0(z), (20)

where Gref, 0 has no poles at zero. Note that the
factor 1

zm shifts the indices of the power series
coefficients of (20), but otherwise leaves them
unchanged. Applying the above argument for
Gref, 0 thus yields ρ(G) � 1. �

The following result shows that there is a unique max-
imal annulus for which the coefficients of the Laurent
series of G are bounded.
Theorem 4.1: Let ρ2 > ρ1 � 0, and assume that
A(ρ1, ρ2) ismaximal with respect toG. Then, the following
statements are equivalent:

(i) The coefficients of the Laurent series of G in
A(ρ1, ρ2) are square summable.

(ii) The coefficients of the Laurent series of G in
A(ρ1, ρ2) converge to zero.

(iii) The coefficients of the Laurent series of G in
A(ρ1, ρ2) are bounded.

(iv) ρ1 < 1 < ρ2.

Proof: (i) implies (ii) and (ii) implies (iii) are immedi-
ate. To show that (iii) implies (iv), assume that the coeffi-
cients of the Laurent series ofG inA(ρ1, ρ2) are bounded.
Decompose G as G = Gi + Go + D, where all of the poles
of Gi are contained in D(ρ1) and all of the poles of Go are
contained in P(ρ2). Suppose ρ1 < ρ2 < 1 and A(ρ1, ρ2)

is maximal. Then, ρ inner(Go) < 1, and thus (i) of Lemma
4.1 implies that the coefficients of the Laurent series of
Go, and thus the coefficients of the Laurent series ofG, are
unbounded.Now suppose that 1<ρ1 <ρ2 andA(ρ1, ρ2)

is maximal. Then, ρ(Gi) > 1, and thus (ii) of Lemma 4.1
implies that the coefficients of the Laurent series of Gi,
and thus G, are unbounded. Therefore, ρ1 < 1 < ρ2.

To show that (iv) implies (i) assume that ρ1 < 1 <

ρ2 and consider the Laurent series of G in A(ρ1, ρ2)

given by (14), where {Li}∞i=−∞ is given by (15). Then,

f : [0, ∞) → C defined by f (θ )
�= G(ejθ ) is continuous

and periodic. By Parseval’s theorem, the coefficients of the
Fourier series of f are square summable. Since, on the unit
circle, the Laurent series of G given by (14) is identical to
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Figure . Discrete-time closed-loop control system, where C is the
controller, G is the plant, v and w are white noise signals, and Gw
is the output noise model. The plant G may be unstable, and the
closed-loop system is assumed to be internally stable.

the Fourier series of f, it follows that {Li}∞i=−∞ is square
summable. �

Theorem 4.1 applies to rational functions that have no
poles on the unit circle. If this is not the case, let ρs <

α < 1 be such that G has no poles on the circle |z| = α.
Consider the decomposition

G = Gi,α + Go,α + D, (21)

where all poles of Gi, α are contained in D(α), all poles of
Go, α are contained in P(α), and D = G(�). Using (14),
we have

Gα(z) �= G(αz) =
∞∑

i=−∞
Li(αz)−i =

∞∑
i=−∞

α−iLiz−i

=
∞∑

i=−∞
Lα,iz−i, (22)

where, for all i,

Lα,i
�= α−iLi. (23)

Let ρs < α < 1, and assume that G has no poles on the
circle |z| = α. Therefore, Gα has no poles on the unit cir-
cle. Theorem 4.1 can now be applied to Gα in A(

ρs
α
,

ρu
α

)

and (23) can be used to compute the coefficients of the
Laurent series of G in A(ρs, ρu).

5. Noncausal closed-loop identification

Consider the closed-loop system in Figure 1 consisting
of the MIMO, discrete-time transfer function G of order
n and the discrete-time controller C. We assume that
the closed-loop system is internally asymptotically stable,
although no assumptions are made about the stability of
G except that G has no poles on the unit circle. However,
this restriction can be avoided by using (22).

Using the Laurent series (14) of G in A(ρs, ρu), the
output of G can be written as

y0(k) =
k∑

j=−∞
Lju(k − j), (24)

where u(k) = 0 for all k < 0. Note that the terms corre-
sponding to j < 0 represent the noncausal component of
the model. Thus, for all k � 0, (24) can be represented as

y0(k) = y0,r,d(k) + er,d(k), (25)

where the noncausal FIRmodel output y0, r, d(k) is defined
as

y0,r,d(k)
�=

min{r,k}∑
j=−d

L ju(k − j), (26)

and the output error at time k is defined by

er,d(k)
�= y0(k) − y0,r,d(k), (27)

which is the difference between the true output and the
noncausal FIR model output at time k. Using (24) and
(26) it follows that, for all k � 0,

lim
r,d→∞

y0,r,d(k) =
k∑

j=−∞
Lju(k − j) = y0(k). (28)

Therefore, for all k � 0,

lim
r,d→∞

er,d(k) = y0(k) − lim
r,d→∞

y0,r,d(k) = 0. (29)

It follows from (26) that computing the output at time
k requires the inputs u(k − r), …, u(k + d). That is, to
identify a noncausal FIR model, we delay the measured
output data by d steps and then perform identification
between the input and delayed output, as we show next.

Let c, v, and w0 be realis ations of the zero-mean sta-
tionary white random processes C,V, and W0, respec-
tively, and letw be a realisation of the stationary coloured
random process W . We assume that C,W0, and V are
mutually independent and ergodic, that is, their statistical
properties can be determined from a single, sufficiently
long realisation.

Let u and y denote measurements of the input u0 and
output y0, respectively, that is, for all k � 0,

u(k) = u0(k) + v(k), (30)
y(k) = y0(k) + w(k). (31)
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Note that (25) can be expressed as

y0(k) = θr,dφr,d(k) + er,d(k), (32)

where

θr,d
�= [L−d · · · Lr ], φr,d(k)

�= [u(k + d) · · · u(k − r) ]T.

Moreover, for all k � 0

y(k) = θr,dφr,d(k) + w(k) + er,d(k). (33)

5.1 Noncausal closed-loop identification using least
squares

The least squares (LS) estimate θ̂LS
r,d,�

of θ r, d is given by

θ̂LS
r,d,� = argmin

θ̄r,d

∥∥�y,�− θ̄r,d	µ,�

∥∥
F , (34)

where θ̄r,d ∈ R
l×µm,

�y,�
�= [ y(r) · · · y(� − d) ],

	µ,�
�= [φr,d(r) · · · φr,d(� − d) ],

µ
�= r + d + 1, and � is the number of samples. It follows

from (34) that the least squares estimate θ̂LS
r,d,�

of θ r, d sat-
isfies

�y,�	
T
µ,� = θ̂LS

r,d,�	µ,�	
T
µ,�. (35)

Note that

�y,� = �y0,� + �w,�, �y0,� = θr,d	µ,� + �er,d,�,

	µ,� = 	µ0,� + 	v,�, (36)

where

�y0,�
�= [ y0(r) · · · y0(� − d) ],

�w,�
�= [w(r) · · · w(� − d) ],

	µ0,�
�= [φ0r,d (r) · · · φ0r,d (� − d) ],

φ0r,d (k)
�= [u0(k + d) · · · u0(k − r) ]T,

	v,�
�= [φvr,d (r) · · · φvr,d (� − d) ],

φvr,d (k)
�= [ v(k + d) · · · v(k − r) ]T.

Then, (35) becomes

θr,d	µ,�	
T
µ,� + �w,�	

T
µ,� + �er,d ,�	

T
µ,� = θ̂LS

r,d,�
	µ,�	

T
µ,�,

(37)

where

�er,d,�
�= [ er,d(r) · · · er,d(� − d) ].

Note from Figure 1 that u can be written as

u(k) = Gu,c(z)c(k) + Gu,v (z)v(k) + Gu,w0 (z)w0(k),
(38)

where Gu, c, Gu, v, and Gu,w0 are the asymptotically sta-
ble closed-loop transfer functions from c, v, and w0 to u,
respectively. It follows from (38) that we can write

U (k) = Gu,c(z)C(k) + Gu,v (z)V(k) + Gu,w0 (z)W0(k).
(39)

Since C, V, and W0 are ergodic processes and U is the
output of a linear time-invariance (LTI) system whose
inputs are ergodic, then (39) implies thatU is also ergodic.
Similarly, we can show thatW, Y0, and Y are ergodic.

Dividing (37) by � and taking the limit as � tends to
infinity yields

θr,d lim
�→∞

1
�
	µ,�	

T
µ,� + lim

�→∞
1
�
�w,�	

T
µ,� + lim

�→∞
1
�
�er,d ,�	

T
µ,�

wp1= lim
�→∞

1
�
θ̂LS
r,d,�	µ,�	

T
µ,�, (40)

where lim�→∞ 1
�
	µ,�	

T
µ,�, lim�→∞ 1

�
�w,�	

T
µ,�, and

lim�→∞ 1
�
�er,d,�	

T
µ,� exist due to ergodicity conditions.

Define

Q �= lim
�→∞

1
�
	µ,�	

T
µ,�. (41)

Therefore, (40) can be written as

θr,dQ + lim
�→∞

1
�
�w,�	

T
µ,� + lim

�→∞
1
�
�er,d ,�	

T
µ,�

wp1= lim
�→∞

θ̂LS
r,d,�Q.

(42)

Taking the limit as r and d tend to infinity, (42) becomes

lim
r,d→∞

θr,dQ + lim
r,d→∞

lim
�→∞

1
�
�w,�	

T
µ,�

+ lim
r,d→∞

lim
�→∞

1
�
�er,d,�	

T
µ,�

wp1= lim
r,d→∞

lim
�→∞

θ̂LS
r,d,�Q.

(43)

It follows from (29) that

lim
r,d→∞

lim
�→∞

1
�
�er,d,�	

T
µ,�

wp1= 0l×µm. (44)
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Therefore, (43) becomes

lim
r,d→∞

lim
�→∞

1
�
�w,�	

T
µ,�

wp1=
(

lim
r,d→∞

lim
�→∞

θ̂LS
r,d,� − lim

r,d→∞
θr,d

)
Q.

(45)

Since w and u are realisations of correlated processes,
it follows that limr,d→∞ lim�→∞ 1

�
�w,�	

T
µ,� is not zero.

Therefore, (45) implies that (limr,d→∞ lim�→∞ θ̂LS
r,d,�

−
limr,d→∞ θr,d )Q is not zero, which implies that
limr,d→∞ lim�→∞ θ̂LS

r,d,�
− limr,d→∞ θr,d is not in the

left null space of Q, and thus is not zero. Therefore, θ̂LS
r,d,�

is not a consistent estimator of θ r, d.

5.2 Noncausal closed-loop identification using the
instrumental variablesmethod

The basic instrumental variables (BIV) method (Söder-
ström & Stoica, 2002) is used with an FIR model to iden-
tify the transfer function G shown in Figure 1 by mod-
ifying (35) (Söderström & Stoica, 1983, 2002). A typical
choice of the vector of instrumental variables for closed-
loop identification is to use samples of the command sig-
nal c (Gilson & Van den Hof, 2005). Let φc, r, d(k) denote
the vector of instrumental variables, that is,

φc,r,d(k)
�= [ c(k + d) · · · c(k − r) ]T ∈ R

µm. (46)

We then modify (35) as

�y,�	
T
c,µ,� = θ̂ IV

r,d,�	µ,�	
T
c,µ,�, (47)

where

	c,µ,�
�= [φc,r,d(r) · · · φc,r,d(� − d) ]. (48)

Then, (47) becomes

θr,d	µ0,�	
T
c,µ,� + θr,d	v,�	

T
c,µ,� + �w,�	

T
c,µ,�

+�er,d,�	
T
c,µ,� = θ̂ IV

r,d,�	µ0,�	
T
c,µ,� + θ̂ IV

r,d,�	v,�	
T
c,µ,�.

(49)

Since C,W0, and V are ergodic processes, (49) implies

θr,d lim
�→∞

1
�
	µ0,�	

T
c,µ,� + θr,d lim

�→∞
1
�
	v,�	

T
c,µ,�

+ lim
�→∞

1
�
�w,�	

T
c,µ,� + lim

�→∞
1
�
�er,d,�	

T
c,µ,�

wp1= lim
�→∞

1
�
θ̂ IV
r,d,�	µ0,�	

T
c,µ,� + lim

�→∞
1
�
θ̂ IV
r,d,�	v,�	

T
c,µ,�.

(50)

Using (50), consistency of the estimated Markov
parameters holds if 	c, μ, � satisfies the following
assumptions:
(A1) lim�→∞ 1

�
	µ0,�	

T
c,µ,� is nonsingular.

(A2) lim�→∞ 1
�
�w,�	

T
c,µ,�

wp1= 0l×µm.

(A3) lim�→∞ 1
�
	v,�	

T
c,µ,�

wp1= 0µm×µm.
The vector of instrumental variables is constructed

from the command signal data, which is a realisation
of a stationary white random process and satisfies (A1)
(Gilson & Van den Hof, 2005). Next, note that

lim
�→∞

1
�
�w,�	

T
c,µ,� = lim

�→∞
1
�

[
w(r) · · · w(� − d)

]

×

⎡
⎢⎣
c(r + d) . . . c(0)

... . . .
...

c(�) . . . c(� − r − d)

⎤
⎥⎦

= lim
�→∞

1
�

[
�−d∑
i=r

w(i)c(i + d) · · ·
�−d∑
i=r

w(i)c(r − i)

]

wp1= [
E [W(k)C(k + d)] · · · E [W(k)C(r − k)]

] = 0l×µm,

(51)

where the last equality follows from the assumptions that
W and C are independent processes and C is zero-mean.
Similarly, we can show that

lim
�→∞

1
�
	v,�	

T
c,µ,� = 0µm×µm. (52)

Then, it follows from (51) and (52) that the choice of the
instrumental variables satisfies (A2) and (A3). Moreover,
using (51) and (52), (50) becomes

θr,d

[
lim�→∞ 1

�
	µ0,�	

T
c,µ,�

]
+ lim�→∞ 1

�
�er,d,�	

T
µ,�

wp1= lim
�→∞

θ̂ IV
r,d,�

[
lim

�→∞
1
�
	µ0,�	

T
c,µ,�

]
. (53)

Taking the limit of (53) as r and d tend to infinity and
using (44) and assumption (A1), (53) becomes

lim
r,d→∞

lim
�→∞

θ̂ IV
r,d,�

wp1= lim
r,d→∞

θr,d. (54)

We choose r and d to be sufficiently large such that
lim�→∞ 1

�
�er,d,�	

T
µ,� is negligible.

The extended instrumental variables (XIV) method
generalises the basic instrumental variables method by
prefiltering the sampled data of the instrumental variables
(Gilson&VandenHof, 2005; Söderström&Stoica, 2002).
That is, in (47), we replace 	c, μ, � by

	c̃,µ,�

�= L(z)	c,µ,�, (55)



192 K. F. ALJANAIDEH AND D. S. BERNSTEIN

where L(z) is an asymptotically stable filter. Using the
same argument used above to show consistency for the
basic instrumental variables method, consistency of
the estimatedMarkov parameters of XIVdenoted by θ̂XIV

r,d,�

holds if 	c̃,µ,� satisfies the assumptions

(B1) lim�→∞ 1
�
	µ0,�	

T
c̃,µ,�

is nonsingular.

(B2) lim�→∞ 1
�
�w,�	

T
c̃,µ,�

wp1= 0l×µm.

(B3) lim�→∞ 1
�
	v,�	

T
c̃,µ,�

wp1= 0µm×µm.

5.3 Noncausal closed-loop identification using
prediction errormethods

Let Ĝ�(q) and Ĝw,�(q) be estimates of G(q) and Gw(q),
respectively, obtained with � samples of input and output
data, and assume that Gw(q) and Ĝw,�(q) are square and
nonsingular. Note that y in Figure 1 can be written as

y(k) = G(q)u(k) + Gw(q)w0(k). (56)

Then, the one-step predictor of (56) is defined by Ljung
(1999)

y(k|Ĝ�, Ĝw,�)
�= Ĝ−1

w,�(q)Ĝ�(q)u(k) + (1 − Ĝ−1
w,�(q))y(k).

(57)

Define the prediction error

ε(k|Ĝ�, Ĝw,�)
�= y(k) − y(k|Ĝ�, Ĝw,�). (58)

Using (56) and (57), (58) can be written as

ε(k|Ĝ�, Ĝw,�) = y(k) − Ĝ−1
w,�(q)Ĝ�(q)u(k)

− (1 − Ĝ−1
w,�(q))y(k)

= Ĝ−1
w,�(q)(y(k) − Ĝ�(q)u(k))

= Ĝ−1
w,�(q)((G(q) − Ĝ�(q))u(k)

+Gw(q)w0(k))
= Ĝ−1

w,�(q)((G(q) − Ĝ�(q))u(k)

+ (Gw(q) − Ĝw,�(q))w0(k)) + w0(k).
(59)

Assume that G, Gw, and G−1
w have no poles on the unit

circle. Then G, Gw, and G−1
w are analytic in the maxi-

mal annulus that contains the unit circle with the Laurent
series given by (14) for G and with the Laurent series

Gw(z) =
∞∑

i=−∞
Miz−i, (60)

G−1
w (z) =

∞∑
i=−∞

Niz−i, (61)

for Gw and G−1
w , respectively, in the maximal annulus

that contains the unit circle, where for all i,Mi,Ni ∈ R
l×l .

Define

H(q, θr,d )
�=

r∑
i=−d

Liq−i, H(q, θM,r,d )
�=

r∑
i=−d

Miq−i,

H(q, θN,r,d )
�=

r∑
i=−d

Niq−i, (62)

θr,d
�= [L−d · · · Lr ], θM,r,d

�= [M−d · · · Mr ],

θN,r,d
�= [N−d · · · Nr ], (63)

where θr,d ∈ R
l×µm, and θM,r,d, θN,r,d ∈ R

l×µl . Note
from (26) and (62) that

y0,r,d(k) = H(q, θr,d )u(k). (64)

Therefore, (27) implies that

er,d(k) = y0(k) − H(q, θr,d )u(k)
= G(q)u(k) − H(q, θr,d )u(k). (65)

Moreover, define

ew,r,d(k)
�= w(k) − H(q, θM,r,d )w0(k)
= Gw(q)w0(k) − H(q, θM,r,d )w0(k). (66)

Therefore, (65) and (66) imply, respectively, that

G(q)u(k) = H(q, θr,d )u(k) + er,d(k), (67)

Gw(q)w0(k) = H(q, θM,r,d )w0(k) + ew,r,d(k). (68)

Let

H(q, θ̂r,d,� )
�= Ĝ�(q) =

r∑
i=−d

L̂i,�q−i,

θ̂r,d,�

�= [
L̂−d,� · · · L̂r,�

]
, (69)

H(q, θ̂M,r,d,�)
�= Ĝw,�(q) =

r∑
i=−d

M̂i,�q−i,

θ̂M,r,d,�
�= [

M̂−d,� · · · M̂r,�
]
, (70)

H(q, θ̂N,r,d,�)
�= Ĝ−1

w,�(q) =
r∑

i=−d

N̂i,�q−i,

θ̂N,r,d,�
�= [

N̂−d,� · · · N̂r,�
]
, (71)
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where θ̂r,d,� ∈ R
l×µm and θ̂M,r,d,�, θ̂N,r,d,� ∈ R

l×µl . Then,
using (67)–(71), (59) can be rewritten as

ε(k|θ̂r,d,�, θ̂M,r,d,�, θ̂N,r,d,�)
�= H(q, θ̂N,r,d,�)

× [(H(q, θr,d ) − H(q, θ̂r,d,�))u(k)
+ (H(q, θM,r,d) − H(q, θ̂M,r,d,�))w0(k)
+ er,d(k) + ew,r,d(k)] + w0(k)

= H(q, θ̂N,r,d,�)[TT(q, θ̂r,d,�, θ̂M,r,d,�)ξ (k)
+ er,d(k) + ew,r,d(k)] + w0(k), (72)

where

T (q, θ̂r,d,�, θ̂M,r,d,�)
�=

[
H(q, θr,d ) − H(q, θ̂r,d,�)

H(q, θM,r,d ) − H(q, θ̂M,r,d,�)

]
,

ξ (k) �=
[
u(k)
w0(k)

]
. (73)

Define

θ̂�
�= lim

r,d→∞
θ̂r,d,�, θ̂M,�

�= lim
r,d→∞

θ̂M,r,d,�, θ̂N,�
�= lim

r,d→∞
θ̂N,r,d,�,

(74)
ε(k|θ̂�, θ̂M,�, θ̂N,�)

�= lim
r,d→∞

ε(k|θ̂r,d,�, θ̂M,r,d,�, θ̂N,r,d,�),

(75)
T (q, θ̂ , θ̂M,�)

�= limr,d→∞ T (q, θ̂r,d,�, θ̂M,r,d,�)

=
[

H(q, θ ) − H(q, θ̂�)

H(q, θM) − H(q, θ̂M,�)

]
. (76)

Note from (60) and (62) that

lim
r,d→∞

H(q, θM,r,d ) = Gw(q), (77)

which implies that

lim
r,d→∞

ew,r,d(k) = Gw(q)w0(k) − lim
r,d→∞

H(q, θM,r,d )w0(k) = 0.

(78)

Using (29) and (74)–(78), taking the limit of (72) as r and
d tend to infinity yields

ε(k|θ̂�, θ̂M,�, θ̂N,,�) = H(q, θ̂N,�)TT(q, θ̂�, θ̂M,�)ξ (k) + w0(k).
(79)

Next, define the cost function

V (�, θ̂�, θ̂M,�, θ̂N,�)
�= 1

�

�∑
k=1

‖ε(k|θ̂�, θ̂M,�, θ̂N,�)‖22.

(80)

Define

θ̂
�= lim

�→∞
θ̂�, θ̂M

�= lim
�→∞

θ̂M,�, θ̂N
�= lim

�→∞
θ̂N,�,

(81)

which are independent of the data due to ergodicity.
Define

V̄ (θ̂ , θ̂M, θ̂N )
�= lim

�→∞
V (�, θ̂�, θ̂M,�, θ̂N,�). (82)

Using Parseval’s theorem, (82) becomes

V̄ (θ̂ , θ̂M, θ̂N ) = 1
2π

∫ π

−π

	ε(ω)dω, (83)

where using (79), the spectrum of ϵ is given by

	ε(ω)
�= H(ejω, θ̂N )TT(ejω, θ̂ , θ̂M)	ξ (ω)T (e−jω, θ̂ , θ̂M)

×HT(e−jω, θ̂N ) + λw0, (84)

H(ejω, θ̂N ) and T (ejω, θ̂ , θ̂M) are the discrete-time
Fourier transforms ofH(q, θ̂N ) and T (q, θ̂ , θ̂M), respec-
tively,

	ξ (ω)
�=

[
	u(ω) 	u,w0 (ω)

	w0,u(ω) λw0

]
(85)

is the spectrum of ξ , 	u is the spectrum of u, λw0 is the
variance of w0, and 	u,w0 and 	w0,u are the cross-power
spectra between u and w0.

Note from (76) and (84) that T (ejω, θ̂ , θ̂M) =
T (ejω, θ, θM) is the global minimiser of (84), which
implies that the PEM estimates θ̂PEM

� and θ̂PEM
M,� of θ and

θM, respectively, converge to the true values as � tends to
infinity, that is,

lim
�→∞

θ̂PEM
� = θ, lim

�→∞
θ̂PEM
M,� = θM. (86)

We choose r and d to be sufficiently large such that er, d(k)
and ew, r, d(k) are negligible for all k � 1.

6. Numerical examples

In order to identify a noncausal FIR model of a transfer
function G in the closed-loop system shown in Figure 1,
we apply least squares, instrumental variables methods,
and prediction errormethods using input data and output
data delayed by d steps. A nonzero estimate of the non-
causal component of the identified FIR model indicates
that Gmay have at least one unstable pole; otherwise G is
asymptotically stable.
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We assume that the command signal c in Figure 1 is a
realisation of a stationary white random process C with
Gaussian probability density function N (0, 1). More-
over, we assume that the intermediate signal u is mea-
sured. In the first example in this section, we assume
noise-free data, that is, v(k) = 0 and w(k) = 0 for all
k � 0, and we use least squares to identify a noncausal
FIR model of G. Then, we compare the coefficients of the
identified noncausal FIR model of G to the coefficients
of the Laurent series ofG in the annulus that contains the
unit circle. The second example compares the accuracy of
the identified model obtained using least squares, instru-
mental variables methods, and prediction error methods
for both IIR and noncausal FIRmodels in the presence of
noise.

Example 6.1: Consider the unstable MIMO system

G(z) =
[
G1,1(z) G1,2(z)
G2,1(z) G2,2(z)

]
�= 1

z2 − 2z + 0.35

×
[−z + 6.3 5z − 11.9
4z − 14 −12z + 26

]
, (87)

with the realisation

A =
[
1.5 0.2
2 0.5

]
, B =

[
1 −1

−1 3

]
,

C =
[
1 2
0 −4

]
, D = 02×2. (88)

Consider the LQR controller with Q = 2I2 and
R = I2, where I2 is the 2 × 2 identity matrix,

and thus

K =
[
2.5446 0.4259
1.3095 0.2707

]
. (89)

Let r = d = 25. Figure 2 shows the Laurent series coef-
ficients of G in A(ρs, ρu), where ρs � 0.1938 and ρu �
1.8062. Figure 2 also shows the identified noncausal FIR
model coefficients ofG obtained using least squares. Note
that the Laurent series ofG has both causal and noncausal
components, where the causal components are due to the
asymptotically stable part of G and the noncausal com-
ponents are due to the unstable part of G. Moreover, note
that the coefficients of the Laurent series ofG inA(ρs, ρu)

coincide with the coefficients of the identified noncausal
FIR model of G.

Example 6.2: Consider the seventh-order unstable but
not strongly unstable transfer function

G(z) = (z2 + 0.16)(z − 0.3)(z + 0.3)
(z + 0.7)(z + 0.6)(z2 + 0.25)(z − 1.8)(z − 1.7)(z − 1.6)

(90)

with the realisation

A =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.800 −2.7000 −3.2700 2.1151 1.0013 0.6819 0.5141
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(91)
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Figure . G is theMIMOsystem () and r=d= . The coefficients of the Laurent series ofG are shownbydotmarkers, and the coefficients
of the identified impulse response of G are shown by circle markers. Note that the Laurent series of G has both causal and noncausal
components, where the causal components are due to the asymptotically stable part of G and the noncausal components are due to
the unstable part of G. Moreover, note that the coefficients of the Laurent series of G in A(ρs, ρu), where ρs � . and ρu � .,
coincide with the coefficients of the identified noncausal FIR model of G.
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Figure . Discrete-time closed-loop control system, where A, B, C
are given by (), (), x is the state vector, K is the LQR gain vec-
tor given by (), c is the white, zero-mean, unit-variance com-
mand signal, v is an unknown white noise signal with a signal-to-
noise ratio of , and u and y are themeasured input and output,
respectively. The plant G given by () is unstable, and the closed-
loop system is asymptotically stable.

C = [ 0 0 1 0 0.0700 0 −0.0144 ], D = 0, (92)

stabilised by an LQR controller with weighting matrices
Q = I7 and R = 1, and thus the feedback gain vector is

K = [ 3.5197 −3.1272 −3.0739 2.0825 1.0096 0.7134 0.4997 ].
(93)

We set r = d = 50. Let v in Figure 3 be a realisation
of a zero-mean white Gaussian random process with a
signal-to-noise ratio of 10. Let ĜLS,�, ĜIV,�, and ĜPEM,�

of order nmod be the identified IIR models using LS,
IV, and PEM, respectively, where � samples are used for
identification. To apply IV and PEM, we use the Matlab
functions iv4(data,’na’,nmod,’nb’,nmod) and
pem(data,nmod), respectively. Then we find the Lau-
rent series of ĜLS,�, ĜIV,�, and ĜPEM,� in the annulus that
contains the unit circle and we truncate them as in (19).
To do this, we express eachmodel as the sumof an asymp-
totically stable part GAS and a strongly unstable part GSU.
We then impulse GAS(z) and GSU(z−1) in order to obtain
the Laurent series coefficients of ĜLS,�, ĜIV,�, and ĜPEM,�

in the annulus that contains the unit circle. Then,we com-
pute the error in the estimated Laurent series coefficients
defined by

δ�
�= 1

100

100∑
i=1

||θr,d − θ̂r,d,�,i||2, (94)

where θ̂r,d,�,i is the vector of estimated Laurent series
coefficients of ĜLS,�, ĜIV,�, or ĜPEM,� obtained from the
ith experiment.

Next, we consider a noncausal FIR model with r =
d = 50, and we estimate the vector of Laurent series
coefficients for 100 independent experiments. We com-
pute the error in the estimated Laurent series coefficients
using (94), where θ̂r,d,�,i in (94) is the vector of estimated

Laurent series coefficients obtained from the ith exper-
iment using LS, IV, or PEM. Figure 4 shows δ� for LS,
IV, and PEM with IIR and noncausal FIR models for �

=10,000 samples, where the order nmod of the IIR model
changes between 1 and 20 and the order of the noncausal
FIR model is fixed at r = d = 50. Figure 4 shows that
FIR models give more accurate estimates of the Laurent
series coefficients of G than IIR models for all 1 � nmod
� 20.

In the next section, we show that the estimated
Laurent series coefficients can be used to estimate
the order of the system, which in turn can be used
with PEM or IV to improve the accuracy of an IIR
model.

7. ReconstructingG from its noncausal FIR
model

In order to reconstruct G from an approximate non-
causal FIR model, we reconstruct the asymptotically sta-
ble and unstable parts of G separately using the eigen-
system realisation algorithm (ERA) (Juang, 1993). Then,
we obtain G by adding these two terms together as in
(10). The singular values of the Hankel matrix can be
used to estimate the model orders ns of Gs and nu of
Gu. We begin with initial estimates n̂s ≥ ns and n̂u ≥
nu. For Gs, we set r = 2n̂s − 1 and d = 0, and we
obtain estimates of the Markov parameters of Gs using
least squares, instrumental variables methods, and pre-
diction error methods. On the other hand, for Gu, we
set r = 0 and d = 2n̂u − 1, and we obtain estimates of
the Markov parameters of Gu(z−1) using least squares,
instrumental variables methods, and prediction error
methods. Then, we construct the Markov block–Hankel
matrix

H(Hs)
�=

⎡
⎢⎣

Hs,1 · · · Hs,n̂s
...

. . .
...

Hs,n̂s · · · Hs,2n̂s−1

⎤
⎥⎦ , (95)

where

Hs
�= [

Hs,0 · · · Hs,2n̂s−1
]
, (96)

and H(·) is a linear mapping that constructs a Markov
block–Hankel matrix from the components of the
vector Hs except for Hs, 0. The rank of H(Hs) is
equal to the McMillan degree of Gs. Similarly, for
Gu(z−1), we construct the Markov block–Hankel
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Figure . G(z) given by () is an unstable but not strongly unstable transfer function, r= d= , � =, samples, and v in Figure  is
a realisation of a zero-mean white Gaussian random process with a signal-to-noise ratio of . The plot shows that FIR models give more
accurate estimates of the Laurent series coefficients of G than IIR models for all � nmod � .

matrix

H(Hu)
�=

⎡
⎢⎢⎢⎣

Hu,−1 · · · Hu,−n̂u
...

. . .
...

Hu,−n̂u · · · Hu,−2n̂u+1

⎤
⎥⎥⎥⎦ , (97)

where

Hu
�= [

Hu,0 · · · Hu,−2n̂u+1
]
, (98)

and H(·) constructs a Markov block–Hankel matrix
from the components of the vector Hu except for Hu, 0.
The rank of H(Hu) is equal to the McMillan degree of
Gu(z−1).

We compute the singular values ofH(Hs) andH(Hu)

and look for a large decrease in the singular values. For
noise-free data, a large decrease in the singular values is
evident. However, even with a small amount of noise, the
large decrease in the singular values disappears, and thus
the problem of estimating the model order becomes dif-
ficult (Smith, 2014).

The nuclear-norm minimisation technique given in
Smith (2014) and Recht et al. (2010) provides a heuris-
tic optimisation approach to this problem. Let Ĥs be the

vector of estimated Markov parameters, where

Ĥs
�= [

Ĥs,0 · · · Ĥs,2n̂−1
]
. (99)

In order to estimate the order of Gs, we solve the optimi-
sation problem

minimise
H̄s(γs)

‖H(H̄s(γs))‖N (100)

subject to

‖H̄s(γs) − Ĥs‖F ≤ γs, (101)

where γ s is varied over a range of small positive num-
bers. For each value of γ s, we first solve the optimisa-
tion problem (100), (101), and then we construct the
Markov block–Hankel matrix H(H̄s(γs)) and compute
its singular values. The singular values ofH(H̄s(γs)) that
are robust to the change in γ s provide an estimate of the
McMillan degree of Gs. Finally, we use ERA to construct
an estimate Ĝs(z) of Gs(z).

Similarly, let Ĥu be the vector of estimated Markov
parameters, where

Ĥu
�= [

Ĥu,0 · · · Ĥu,−2n̂+1
]
. (102)
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Figure . Plot of the singular values ofH(H̄(γs)) versus γ s, where n̂s = 10 and Ĥs in () is the vector of estimatedMarkov parameters of
Gs obtained using PEMwith a noncausal FIR model with r= d= , averaged over  independent experiments. Note that four singular
values ofH(H̄(γs)) are robust to the change in γ s, which correctly yields n̂s = 4 as the estimated order of Gs.

In order to estimate the order of Gu, we solve the optimi-
sation problem

minimise
H̄u(γu)

‖H(H̄u(γu))‖N (103)

subject to

‖H̄u(γu) − Ĥu‖F ≤ γu, (104)

where γ u is varied over a range of small positive numbers.
For each value of γ u, we solve the optimisation problem
(103), (104), and then we construct the Markov block–
Hankel matrix H(H̄u(γu)) and compute its singular val-
ues. The singular values ofH(H̄u(γu)) that are robust to
the change in γ u provide an estimate of the McMillan
degree ofGu. Finally, we use ERA to construct an estimate
Ĝu(z−1) ofGu(z−1). The following example illustrates this
method.
Example 7.1: Consider the system (90). We choose c
in Figure 3 to be a realisation of a stationary white ran-
domprocessC withGaussian probability density function
N (0, 1). Let v be a white noise signal with a signal-to-
noise ratio of 20.We set r= d= 25, and � =10,000 points

and identify a noncausal FIR model of G. The estimated
Markov parameters are averaged over 100 experiments.

To choose the model order for Gs(z), we set n̂s = 10
and solve the optimisation problem (100), (101) for values
of γ s ranging from 10−10 to 10−8. For each value of γ s, we
first find the optimal Ĥs(γs), and then we construct the
Markov block–HankelmatrixH(Ĥs(γs)) and compute its
singular values. Figure 5 shows the singular values of the
Hankel matrixH(Ĥs(γs)) versus γ s. Figure 5 shows that
four singular values ofH(H̄s(γs)) are robust to the change
in γ s, which correctly yields n̂s = 4 as the estimated order
of Gs. Using ERA, we obtain

Ĝs(z) = 0.0732z3 + 0.0211z2 − 0.0039z + 0.0112
z4 + 1.275z3 + 0.4491z2 + 0.2447z + 0.1721

.

(105)

Similarly, for Gu(z−1), we set n̂u = 10 and solve the
optimisation problem (103), (104) for values of γ u rang-
ing from 10−10 to 10−8. For each value of γ u, we first find
the optimal Ĥu(γu), and then we construct the Markov
block–Hankel matrix H(Ĥu(γu)) and compute its sin-
gular values. Figure 6 shows the singular values of the
Hankel matrix H(Ĥu(γu)) versus γ u. Figure 6 shows
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Figure . Plot of the singular values ofH(H̄(γu)) versus γ u, where n̂u = 10 and Ĥu in () is the vector of estimatedMarkov parameters
of Gu(z

−) obtained using PEMwith a noncausal FIR model with r= d= , averaged over  independent experiments. Note that three
singular values ofH(H̄(γu)) are robust to the change in γ u, which correctly yields n̂u = 3 as the estimated order of Gu.

Figure . The Matlab System Identification Toolbox is used to obtain the number of parameters of the ARX model that gives the best fit
of G, which has  parameters as indicated by this figure. Moreover, the orders of the denominator, numerator, and input-output delay of
the ARX model are na = , nb = , nk = , respectively..



INTERNATIONAL JOURNAL OF CONTROL 199

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Frequency θ [rad/sample]

|G
(e

jθ
)
−

Ĝ
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Figure . Bode plots of G − ĜIIR , G − ĜIIR,BestFit , G − ĜFIR , and G − ĜERA . Note that the noncausal FIR estimate Ĝr,d yields the smallest
error in the estimated frequency response of G.

that three singular values ofH(H̄u(γu)) are robust to the
change in γ u, which correctly yields n̂u = 3 as the esti-
mated order of Gu. Using ERA, we obtain

Ĝu(z−1) = 0.0093z3 − 0.0883z2 + 0.0088z − 0.0006
z3 − 1.700z2 + 0.9321z − 0.1550

,

(106)

that is,

Ĝu(z) = 0.0006z3 − 0.0088z2 + 0.0883z − 0.0093
0.1550z3 − 0.9321z2 + 1.7z − 1

.

(107)

It follows that the estimate Ĝ of G is

ĜERA(z) = Ĝs(z) + Ĝu(z)

=
0.0006z7 + 0.0033z6 + 0.0123z5 + 0.2036z4
−0.0062z3 − 0.0223z2 + 0.0358z − 0.0128
0.155z7 − 0.7344z6 + 0.5805z5 + 0.7870z4
−0.7135z3 − 0.1936z2 + 0.0478z − 0.1721

.

(108)

The Matlab system identification toolbox is used to
obtain the number of parameters of the ARX model that

gives the best fit of G, which has 12 parameters as indi-
cated by the solid red rectangle in Figure 7. Moreover, the
orders of the denominator, numerator, and input–output
delay for this ARX model are na = 9, nb = 3, nk = 1,
respectively, as suggested by the Matlab system identifi-
cation toolbox.

Figure 8 shows the difference between the Bode plots
of G and the estimates ĜIIR obtained using PEM with an
IIR model with order nmod = 7, ĜIIR,BestFit obtained using
PEM with an ARX model with orders na = 9, nb = 3,
nk = 1, ĜERA in (108), and Ĝr,d obtained using PEMwith a
noncausal FIR model with r= d= 25. Note that the non-
causal FIR estimate, Ĝr,d , yields the smallest error in the
estimated frequency response of G. Moreover, note that
GERA gives better estimates than ĜIIR and ĜIIR,Best Fit.

8. Conclusions and future research

In this paper, we used noncausal FIR models for closed-
loop identification of open-loop-unstable plants. To iden-
tify the noncausalmodel, we delayed themeasured output
relative to the measured input. We found that the iden-
tified FIR model approximates the Laurent series of the
plant inside the annulus of analyticity lying between the
disk of stable poles and the punctured plane of unstable
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poles.We presented examples to compare the accuracy of
the identified model obtained using least squares, instru-
mental variables methods, and prediction error methods
for both IIR and noncausal FIR models under arbitrary
noise that is fed back into the loop. Numerical examples
showed that using noncausal FIR models for identifica-
tion of unstable systems in closed loop can give better esti-
mates than using IIRmodels.We used nuclear normmin-
imisation to estimate the orders of the asymptotically sta-
ble and unstable parts of the plant, which can improve the
identification accuracy for IIR systems. Finally, we recon-
structed an IIR model of the system from its asymptoti-
cally stable and unstable parts using the eigensystem real-
isation algorithm.

Future research will focus on three extensions. First,
the results in this paper assume that the plant has no
poles on the unit circle. A potential approach to this prob-
lem is to scale the coefficients of the Laurent series of
the plant in the annulus that contains the unit circle as
in (22) so that the effective plant has no poles with unit
modulus. Next, the command signal and the input noise
signal in this paper were assumed to be white. The case
where the command signal is arbitrary or the input noise
signal is coloured can arise in practice and remains to
be addressed. Finally, to enhance persistency, an external
noise signal, which is either known or unknown, can be
added to the control signal at the expense of performance
degradation. However, in some cases, the improved iden-
tification speed and accuracy may warrant this degrada-
tion, and this tradeoff remains to be explored.
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