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Subspace Identification With Guaranteed Stability Using  generalized eigenvalue problem. The spectral radius of the minimizing

Constrained Optimization solution has an upper bound given in terms of singular values, which
can be chosen by the user. In [4] the maximum singular value of the dy-
Seth L. Lacy and Dennis S. Bernstein namics matrix is constrained. In [10] a weighted cost function is used

and minimized for a particular choice of weighting matrices. All of
] o ] the aforementioned methods are inherently conservative. Our method
Abstract—In system identification, the true system is often known to be is conservative in that the Lyapunov inequalities- AP AT > 0, and
stable. However, due to finite sample constraints, modeling errors, plant . AT B "
disturbances and measurement noise, the identified model may be un- I’ > O are over-constrained d8— APA" > 4l andP > 81,
stable. We present a constrained optimization method to ensure asymptotic whered > 0 can be chosen arbitrarily small.
stability of the identified model in the context of subspace identification The objective of this note is to develop an alternative approach to
methods. In subspace identification, we first obtain an estimate of the state identifying stable models within the context of subspace identifica-
sequence or extended observability matrix and then solve a least squares,. . . S
optimization problem to estimate the system parameters. To ensure tion. Our approac_h '_S b_aSEd on constrained optlmlgatlon, where the_
asymptotic stability of the identified model, we write the least-squares €ast squares optimization procedure used to obtain parameter esti-
optimization problem as a convex linear programming problem with mates is replaced by a constrained weighted least squares optimiza-
mixed equality, quadratic, and positive-semidefinite constraints suitable tion problem involving a stability constraint. The resulting convex op-
for existing convex opfimization codes such as SeDuMi. We present ;s ation problem is a linear programming problem over symmetric
examples to illustrate the method and compare to existing approaches. . L . .
cones. This approach is direct, and thus it does not distort the extended
Index Terms—System identification, stability, subspace identification, ohservability matrix with zeros as in [9], modify the estimated state se-
convex optimization, linear systems. quence, extended observability matrix, or input sequence with fictitious
data as in [1], or augment the cost function to indirectly implement a
|. INTRODUCTION singular value constraint as in [15]. The cost function is a weighted

] ) o ) Frobenius matrix norm, different from the unweighted least squares
Although linear system identification is widely viewed as a maturggst function. This technique can be applied to an estimate of the ex-

subject [2], [8], [12], [13], [18], recent advances in the development gfnded observability matrix and to an estimate of the state sequence.
subspace methods have significantly enhanced the available tools fofg golve this convex optimization problem, we adapt the SeDuMi
these problems 3], [5]-{7], [10], [11], [15]-{22]. Subspace methodgiari ag code [14] to the constrained least squares problem. This code
differ from classical least squares methods in that 't.hey prQV|de ‘?%tbflves linear programming problems with convex symmetric cone
mates of a state sequence or an extended observability matrix, whicBdfstraints, that is, constraints involving mixed equality, inequality,
subsequently used to estimate the system parameters. These methodgratic, and positive-semidefinite constraints. We reformulate the
are multivariable, they allow the use of arbitrary identification S'Q”alﬁroblem of identifying a stable model given the state sequence in
and they provide estimates of the plant disturbance and sensor noisesgtion |1. In Section |11, we reformulate the problem of identifying a
tistics. In addition, subspace methods are based on the computationglije model given the extended observability matrix. In Section 1V,

tractable singular value decomposition and least squares procedurgg, provide several numerical examples and compare the results to
In practice, system identification is practical only when the system fevious techniques.

be identified is asymptotically stable or, in worst case, linearly unstable
as in a system possessing a rigid body mode. Even when the system is
known to be asymptotically stable, finite sampling constraints, mod-
eling errors, and plant and measurement noise often give rise to unThe identification problem is to estimate the coefficient matrices of
stable models. Within subspace methods, techniques have been ddhelsystem
oped to enforcg the_st_ablllty of the |Qen_t|f|ed_ model. One approac_h to o(k+ 1) = Au(k) + Bu(k) 2.1)
the problem of identifying stable realizations is to compute a (possibly) , (

unstable realization, and then reflect the unstable eigenvalues into the y(k) =Ca(k) + Du(k) (2.2)
unit disk leaving the stable eigenvalues unchanged. Our approach d@@én measurements af(k : k + ( — 1), y(k : k + ¢ — 1), and an

not guarantee that the stable eigenvalues will remain invariant, Noli§imate of the state sequeng@ : & + () obtained from a subspace
it clear that this is desirable. The method developed in [9] enforcginiification algorithm, wherel € R"X", B € R"X™, (' € RP*"

stability by replacing the lagt rows of the extended observability ma-5,q p € RP*™ . Our goal is to obtain an estimate of the dynamics
trix by zeros, where is the number of outputs. Since this technique,airix 4 that is asymptotically stable.
distorts the estimated observability matrix, alternative approaches inTne |east squares problem is to minimize

volving data augmentation were developed in [1]. In [15], a regular-
L. O 2(k+1:k+1)
0 L, ylk:k+£—1)

ization term is added to the least squares cost function minimization ;24 B, C, D) £ ‘
problem, where the amount of regularization is computed through a =~
|:A B] |:l(l\ o 1)}) R
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J2(C.D) 2 ||Ly (y(k : k+ ¢ —1) — [C D]

2k k+4-1)
L‘(kik—l—f—l)])gfr .

The notation:(k : k+(— 1) denotes the matripu(k), ..., u(k+(—
1)]. The minimizers of (2.4) and (2.5) and, thus, (2.3) are given by

(2.5)

[AB =2(k+1:k+10)

ki k+0—1) b
X Ra <|:u(k:k+f— 1):| RI) (2.6)
[C D] =y(k:k+(—1)
2k k+6—1) ®
X Ra <Lt(k:k+f— 1)} RI) @7)

whereV® 2 VTV VT VY2 (VTV)T VT andM T denotes the
Moore—Penrose generalized inverseldf

The solutionsA and B3 are independent of the solutionsand D.
Thus, we can use the least-squares solution (2.7) todinand D

and focus on minimizing/; subject to a stability constraint in place
of (2.6). We would like to solve this minimization problem subject to

the stability constraint that is asymptotically stable. The matrix
is asymptotically stable if(4) < 1, wherep(A) denotes the spectral
radius ofA. Alternatively, we could implement the constraint thiais
Lyapunov stable, i.e., that(4) < 1 and all of the eigenvalues of

on the unit circle are semisimple. We detail the asymptotically stable

constraint approach below.

The asymptotic stability oft is equivalent to the Lyapunov inequal-

ities

P—APAY >0,, P>0,. (2.8)
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X1 € R**", andX, € R"*™. Hence, the valu® of B minimizing
(2.14) isB = X, and we can now focus on minimizing; subject to
the stability constraint (2.10).

Defining the change of variables

Q=2 AP (2.16)
the cost function (2.13) and the constraint (2.10) become
T (A) = |IL.(X1P = Q)R. I} (2.17)
P-6I, Q
[ ot P} > 0a,,. (2.18)

We computed from Q andP asA 2 QP .

Our optimization problem is a quadratic programming problem with
positive—semidefinite constraints. We rewrite this as the linear pro-
gramming problemmin, ¢,p a, subject toa > J11(A4) and (2.18).

We can state this problem in a form suitable for use in a convex opti-
mization routine as

min ¢ (2.19)
Isubject to

(L. L.X1]Zs {0} =27 (2.20)

R.r1

On c [n

[0 L] Zs | [ | = 81n = (I 04]Z5 (2.21)
Zy 2 || Za||v (2.22)
Zs > 02, (2.23)

A A An24g s
wherez; = vecZi, co = [1054024,,. € R™ Froofh

The constraints (2.8) constrait and A to open sets, while we need ., & [21 2T :3T]VL € R st andz, = », € R represents the

closed constraint sets to guarantee that a solution to the convex oplir,e of the cost functiod: (A), Z» € R*X" represents the matrix
mization problem exists. Hence, we enforce (2.8) with the inequalitigs (X1P=Q)R,,, Zs € R2nx2n represents the matrix in (2.18). The
LA z1 . .
P—APAT > 61, P> 61, (2.9) equality constraint (2.20) ensures that the block&:otorresponding
) . to P and @ are used to construct the cost function. The equality
whereé > 0. Using Schur complements, the constraints (2.9) agnstraint (2.21) ensures that the matfixis used to construct the

P - 41,
pat

AP

r

equivalent to
52 { (2.10)

The constraint (2.10) constrai¥sto a closed convex set.

:| 2 0271-

(1,1) and (2,2) blocks ofs. The quadratic constraint (2.22) ensures
that we are minimizing the desired cost function. The linear matrix
inequality constraint (2.23) enforces the stability constraint (2.18).

To recast the minimization problem in a form suitable for use with a
convex optimization code, we rewrite the equality constraints as func-

The problem restated with the linear matrix inequality constraifPs of =i and obtain the optimization problem

(2.10) is:min J; (A, B) subject to (2.10). We let min c? z (2.24)
_ (e k+ =] [ PRy Ousr,y subject to
R, = |:'u‘(k k4l 1)} Omxri R, (2.11) )
. N L Azz =y 2.25
whereR,, € R"*" andR,, € R™*"2. This weighting matrix will (2.25)
allow us to use a change of variables leading to a convex optimization 21 2 ||zl (2.26)
problem. The cost function is then Z3 2 021 (2.27)

a(k:k+—-1)1" whereA, € R* x4’ s+ s given b
JHAB) = L. (m(k—kl:k—i—/{)r(k_k—i_(, 1)} A € given by
?l,( o + - ) A é |:0r13><1 _Irls I:()ranBa-fl] ?’ [_Lr L’J:4Y1]
- 2 v 0"2 0,12 ras On In, (624 077, In, - [n On & [n On
FR TR Ot D0 LIO0 1] =0 0] [ 01
, e i ¥ andb. € R™ T71* is given by
=J3(A) + JH(B) (2.12) .
where by 26 { ;1] (2.29)
R . vec I,
TP (A) 2 || La(X1 = A)PR, |1} (2.13) .
N A ) where® represents the Kronecker product and we have used the iden-
Ji2(B) = ||La (X = B) R, || (2.14) ity vec(AX B) = (B" © A)vec X.While A, has(n?+r5)(4n” +
-1 A ] wlk:k+0-1) R ris + 1) = 4n* + (5715 + 1)n® + ris®> + r1s entries, at most
[X1 Xo] Sw(k+1:k+0) [u(k ) S 1)} (2.15) 2(r1s + 1)n* + ry s are nonzero. If we choose, = R,, = I,,, then
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at most® + 4n? are nonzero. Similarly, at mostof then? 4 r1 s en- 21 > |22l (3.12)
tries ofb,. are nonzero. This optimization problem involves minimizing Zs > O (3.13)
a linear function over symmetric cones and can be solved using the Se- -
DuMi MaTLAB package [14]. Note that SeDuMi automatically force%vhereflp € Rr2trisxan®tristl g given by
positive—semidefinite matrices to be symmetric.
A A 01‘13><1 _Irls [()r1X7z Bgl] ® [_LF[‘O,qfl L’Frl,q]
Ill. EXTENDED OBSERVABILITY MATRIX PROBLEM DESCRIPTION r= 0,251 025,00 [0nTn] @ [0n In] — [1,00] @ [In 0,]
In this section, we estimate the coefficient matrices of (2.1) and (2.2)1db RPIF11 s b (3.14)
given an estimate of the extended observability mdtrx obtained andbr € IS given by

from a subspace identification algorithm, where, foK j, I'; ; €

e A | Orys
p(j—i1+1)Xn ; B br é & risxl . 3.15
R is given by | 1 {vec 1, (3.15)
cA
T, a : ) (3.1) While Ar has(n? + 7'15)(4712 +ris+1)= ant + (bris+ 1)71,2 +

ris? 4+ ris entries, at mosk(ris + 1)n? + r1s are nonzero. If we
choosd.r = I,, andRr, = I,,,then atmos2(¢p-+1)n? are nonzero.
Our goal is to obtain a stable estimate of the dynamics matgiven  Similarly, » of then®+r; s entries obr are nonzero. This optimization

cA’

Toq- problem involves minimizing a linear function over symmetric cones
The least squares problem is to minimize and can be solved using the SeDuMatAB package [14].
A ) ’
Ji(4) 2 | Li(Trg = To g1 A)Rr |y (32) V. ExAVPLES

sX nxr Xn
W?fxrfh‘ € R, By € R™, Ty € RYTY, andlo g1 € Here, we apply the constrained optimization algorithm to several nu-
R?7". The minimizer of (3.2) is merical examples. In each example, we add zero-mean white moise
A2 (LFI‘O,qfl)TALI‘Fl,q- (3.3) to therutput of the system scaled such that the S|gnal-.to-n0|se ratio
R SIN = |ly(1: €) —w(l: O|lr/||lw(l: )]s = 10. The input se-

SinceA may not be stable, we minimize (3.2) subject to the constraigtience is a realization of a zero mean unit variance noise sequence.
that A be asymptotically stable. We find the least squares solution, the constrained optimization solu-

As before, we ensure that is asymptotically stable by using thetion, the augmented data solution [1], and the zero padding solution [9]
linear matrix inequality constraint (2.18). The problem restated wifa; each example. We then evaluate the cost functibns (A, B) EY
the linear matrix inequality constraint isiin .Jr(4) subject to (2.18). Ji(A,B) with L, = I, andR. = I, andJp . (A) A Ji(A4)

This is a quadratic programming problem with positive—semidefinitg;., Lr = I,, andRr = I, at each solution, and compare them to
constraints. We let

the least squares solutions according to the error me{;i@ft, B) 2
R 2 PRy, (3.4) (Jors (%B) = Jopg (ALS.BLS))A/JILS (x‘iLS,B;LS), ander (A) =

(Jrog(A) — Jrg(ALs))/Jr s (ALs), where A is the solution ob-
whereR;, € R"*"1. This weighting matrix will allow us to use the tained from the identification method, antt s is the optimal least
change of variables (2.16) leading to a convex optimization problesguares solution without stability enforcement. Finally, we plot the re-
Using (3.4), the cost functiofir (4) becomes/r(A) = | Ly (', ,P—  sulting eigenvalues. In all of the examples, wellet= I.,, R.., = I,
Lo,,—1Q)Rr, ||r. We can rewrite this minimization problem as theLr = I,,, Rr, = I, andé = 0.001. For the state sequence case, we
linear programming problem use the method of [3]. For the extended observability case, we use the
n4sid algorithm in the MrLAB system identification toolbox. For each

min cf 2 (35 example, we run the simulations for 100 realizations of the input and

subject to noise sequences and present the locations of the resulting eigenvalues,
as well as the average values of the cost functions.
[—LrTo, 1 LTy % |:0n><7“1 ] -7, (3.6) In the first example, the true system (4.1), shown at the top of page
' Rr, 1263, is unstable with(A) = 1.02,m = 2,n = 8,p = 4, = 4, and
0, I, { = 2% = 256. The results for 10 of the 100 simulations are shown in

(00 In]Z5 .1~ 81, =[I. 0n]2Z5 0 ' 3.7) Fig. 1. The least squares solution matches the unstable poles of the true

! system well, while the stability-constrained solution produced a stable

Zi 2 || Z2|le (3.8)

estimate. The least squares and the stability-constrained solutions do
Z3 >0 (3.9) not match the stable poles of the true system. The averaged error and
A NN T in?4r 41 &  the standard deviation of the error in each case are given in Table I.
wherez; = Vec(Z;)' er = [1 Opxanzyrs]” €R 12 = In the second example, the true system (4.2), shown at the top of
[2125 23] € R"™ *"1°* andZ; = 2 € R represents the value of page 1263, is asymptotically stable wjth4) = 0.99,m = 2,7 = 8,
the cost function/r, Z, € R**" represents the matrikr(I's ;P = ;, = 4, ¢ = 4 and( = 2° = 256. The results for 10 of the 100
Lo,4—1Q)Rr,, andZ; € R*"**" represents the matrix in (2.18).  simulations are shown in Fig. 2. The averaged error and the standard
Rewriting the equality constraints as functions:p¥ields the opti- Jeviation of the error in each case are given in Table I1.
mization problem Itis interesting to note that the weighting matrix (2.11) does not dis-
tort the locations of the stable eigenvalues in the state sequence case as
compared to the unweighted least-squares solution (2.6). However, the
stable eigenvalues obtained using the weighting matrix (3.4) in the ex-
tended observability case differ from the eigenvalues of the unweighted
Arz =br (3.11) least-squares solution (3.3).

min cp 2 (3.10)

subject to
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(b)

(b)

Fig. 1. System polesx represent true pole locations; represent pole Fid. 2. System polesx represent true pole locations; represent pole
estimates using the least squares solution without stability enforceme®ittimates using the least squares solution without stability enforcement,
o represent pole estimates from the constrained optimization algorghm, represent pole estimates from the constrained optimization algorithm,
represent pole estimates from the data augmentation method [1]CandrePresent pole estimates from the data augmentation method [1]5and
represent pole estimates using the zero padding method [9]. (a) State sequEtRi€Ssent pole estimates using the zero padding method [9]. (a) State sequence

case. (b) Observability matrix case.

TABLE |

PERFORMANCE COMPARISON OF IDENTIFIED MODELS FOR THE
UNSTABLE EXAMPLE

Error Constrained Data Zero
Metric | Optimization Augmentation Padding

€ 0.1238 + 0.2084 | 2.2571 £ 0.7611 —
p(A) 0.9575 + 0.0552 | 0.4327 + 0.0650 —

er 3.7386 + 1.0929 | 17.8565 + 8.3113 | 9.7894 + 3.6829
p(fl) 0.9331 + 0.0163 | 0.6591 + 0.0967 | 0.7609 + 0.0274

V. CONCLUSION

case. (b) Observability matrix case.

TABLE 1l

PERFORMANCE COMPARISON OF IDENTIFIED MODELS FOR THE

ASYMPTOTICALLY STABLE EXAMPLE

Error Constrained Data Zero
Metric | Optimization Augmentation Padding

€r 0.0001 + 0.0011 | 3.5751 + 1.1523 —
p(A) |0.9737 4 0.0053 | 0.3034 + 0.0400 —

er 0.3812 + 0.1821 | 21.6645 + 6.7593 | 10.6295 + 3.4102
p(/i) 0.9791 4+ 0.0037 | 0.6996 + 0.0100 | 0.7309 % 0.0167

cation. We compared the solutions to previous methods [1], [9].

Our approach ensures that the identified model is asymptotically
We applied a convex optimization algorithm to the problerstable by introducing a weighted least squares cost function and a

of identifying stable models in the context of subspace identifstability constraint in the form of a linear matrix inequality. Our
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- 0 0 0 0 0 0 05100 0.5100 | —1.9543  1.32067

1.0200 0 0 0 0 0 0 0 12572 —0.1496

0 1.0200 0 0 0 0 0 0 0.2918 —0.3654

0 0 1.0200 0 0 0 0 0 0.5261 —0.8707

0 0 0 1.0200 0 0 0 0 15873 1.6333

A | BY_ 0 0 0 0 1.0200 0 0 0 | —0.6412 —1.1886
|:C D] - ZEQYT Qe (41)

0 0 0 0 0 1.0200 0 0 | —0.7587 —1.1782

0 0 0 0 0 0 1.0200 0 | —0.4139 —1.1780

16021 —1.3086 —1.2142 13373 —0.1417 0.7199 2.3559 14775 | —0.2636 —0.0410

13201 04212 10219 —0.2298 —0.2106 0.1203 —0.2046  0.0720 | —1.7673 —0.2443

0.8306  0.1074 —1.5395  0.000 —0.8902 0.6599 1.2316 —0.7068 | —2.3699 —0.7960

0.9312 —0.2612  0.4026 —0.5150 —0.3453 1.8806  1.0548 —0.8103 0.8632  0.1359 ]

- 0 0 0 0 0 0 04950 0.4950 | —0.8056  1.47817

0.9900 0 0 0 0 0 0 0 | —0.5625 —0.2717

0 0.9900 0 0 0 0 0 0 0.7474  2.1011

0 0 0.9900 0 0 0 0 0 0.2185 —0.0900

0 0 0 0.9900 0 0 0 0 0.7854 —0.1639

A | BY_ 0 0 0 0 0.9900 0 0 0 | —1.7552  0.1018
[c D}_ (4.2)

0 0 0 0 0 0.9900 0 0 0.9748 —0.4069

0 0 0 0 0 0 0.9900 0 | —1.0410 —0.8454

05973 —1.5440 —0.7101 —0.7632 0.4998 —1.0601 —1.8101 1.7949 | —1.3871  0.8332

0.1902  0.5863 —0.9760  0.2053 0.8722  0.6516  1.8280 —0.3479 0.9179  0.2827

—0.1573 —0.0415  1.0886  0.3592 0.3033 —0.9744 —0.7285 —0.9539 | —1.1044  0.0173

| 10262 —3.3213 —1.1302 —1.6407 1.2149 —0.4110 —0.5041 —0.0880 0.6041  2.2327 ]

constrained optimization problem is conservative in that the Lyapunov(8]

inequalitiesP — APAY > 0, andP > 0, are over-constrained
asP — APAT > 6I, andP > 6I, with § > 0. The amount
of conservatism, characterized by can be made arbitrarily small.

be arbitrarily conservative. Our approach is not computationally
burdensome, typically requiring 10-20 iterations of the optimization

algorithm and a couple seconds for the examples we presente[}.ll

However, our optimization approach is more complex than some

of the alternative methods that require algebraic manipulations anfd2]
computing the eigenvalues or a singular value decomposition. The

benefit of our approach is that the identified model is guaranteed t

be stable with little degradation in accuracy compared to the possiblyM]

unstable least squares solution, and at low computational cost.

(1
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REFERENCES

N. L. C. Chuiand J. M. Maciejowski, “Realization of stable models with
subspace methods&utomaticavol. 32, no. 11, pp. 1587-1595, 1996.

[2] J.-N. JuangApplied System ldentification Upper Saddle River, NJ:

(3]

(4]

[5] W.E. Larimore ADAPTx Users Manual

(6]

(71

Prentice-Hall, 1993.
S. L. Lacy and D. S. Bernstein, “Subspace identification for nonlinear

systems that are linear in unmeasured states,” presented at the Coffit9]

Decision Control, Orlando, FL, Dec. 2001.
——, “Subspace identification with guaranteed stability using con-

strained optimization,” presented at the American Control Conf.,[20]

Anchorage, AK, May 2002.
McLean, VA: Adaptics, Inc.

[9]
This differs from the methods of [1], [4], [9], and [15], which can [10]

[16]

(17]

(18]

L. Ljung, System Identification: Theory for the Us@nd ed, ser. Pren-
tice Hall Information and System Sciences. Upper Saddle River, NJ:
Prentice-Hall, Jan. 1999.

J. M. Maciejowski, “Guaranteed stability with subspace methofgst.
Control Lett, vol. 26, pp. 153-156, 1995.

J. Mari, P. Stoica, and T. McKelvey, “Vector ARMA estimation: a re-
liable subspace approachBEE Trans. Signal Processingol. 48, pp.
2092-2104, July 2000.

M. Moonen, B. De Moor, L. Vandenberghe, and J. Vandewalle, “On- and
off-line identification of linear state-space modelgyt. J. Contro| vol.

49, no. 1, pp. 219-232, 1989.

R. Pintelon and J. Schoukerystem Identification: A Frequency Do-
main Approach Piscataway, NJ: IEEE Press, 2001.

3] T. Soderstrom and P. Stoic&ystem ldentificatian Upper Saddle

River, NJ: Prentice-Hall, 1989.

J. F. Sturm,Using SeDuMi 1.0x, a MrLAB Toolbox for Optimization
Over Symmetric Cones Maastricht, The Netherlands: Dept. Quantita-
tive Economics, Maastricht Univ., 1999.

T. Van Gestel, J. A. K. Suykens, P. Van Dooren, and B. De Moor, “lden-
tification of stable models in subspace identification by using regulariza-
tion,” IEEE Trans. Automat. Contwol. 46, pp. 1416—-1420, Sept. 2001.
P. Van Overschee and B. De Moor, “N4SID: subspace algorithms for
the identification of combined deterministic-stochastic systemstd-
maticg vol. 30, no. 1, pp. 75-93, Jan. 1994.

——, “A unifying theorem for three subspace system identification al-
gorithms,” Automaticavol. 31, no. 12, pp. 1853-1864, 1995.

——, Subspace Identification for Linear Systems: Theory Implementa-
tion, Applications Norwell, MA: Kluwer, 1996.

M. Verhaegen, “Subspace model identification part 3. Analysis of the
ordinary output-error state-space model identification algorithnt,’J.
Control, vol. 58, no. 3, pp. 555-586, 1993.

M. Verhaegen and P. Dewilde, “Subspace model identification part 1.
The output-error state-space model identification class of algorithms,”
Int. J. Control vol. 56, no. 5, pp. 1187-1210, 1992.

——, “System identification, reduced-order filtering and modeling via [21] ——, “Subspace model identification part 2. Analysis of the elementary

canonical variate analysis,” Proc. Amer. Control ConfSan Francisco,
CA, 1983, pp. 445-451.

Proc. 27th IEEE Conf. Decision Controfustin, TX, Dec. 1988, pp.
1720-1725.

, “Generalized canonical variate analysis of nonlinear systems,” in[22]

output-error state-space model identification algorithimt.’J. Contro|

vol. 56, no. 5, pp. 1211-1241, 1992.

M. Viberg, “Subspace-based methods for the identification of linear
time-invariant systems,Automatica vol. 31, no. 12, pp. 1835-1851,
1995.



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


