
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 7, JULY 2003 1259

Subspace Identification With Guaranteed Stability Using
Constrained Optimization

Seth L. Lacy and Dennis S. Bernstein

Abstract—In system identification, the true system is often known to be
stable. However, due to finite sample constraints, modeling errors, plant
disturbances and measurement noise, the identified model may be un-
stable. We present a constrained optimization method to ensure asymptotic
stability of the identified model in the context of subspace identification
methods. In subspace identification, we first obtain an estimate of the state
sequence or extended observability matrix and then solve a least squares
optimization problem to estimate the system parameters. To ensure
asymptotic stability of the identified model, we write the least-squares
optimization problem as a convex linear programming problem with
mixed equality, quadratic, and positive–semidefinite constraints suitable
for existing convex optimization codes such as SeDuMi. We present
examples to illustrate the method and compare to existing approaches.

Index Terms—System identification, stability, subspace identification,
convex optimization, linear systems.

I. INTRODUCTION

Although linear system identification is widely viewed as a mature
subject [2], [8], [12], [13], [18], recent advances in the development of
subspace methods have significantly enhanced the available tools for
these problems [3], [5]–[7], [10], [11], [15]–[22]. Subspace methods
differ from classical least squares methods in that they provide esti-
mates of a state sequence or an extended observability matrix, which is
subsequently used to estimate the system parameters. These methods
are multivariable, they allow the use of arbitrary identification signals,
and they provide estimates of the plant disturbance and sensor noise sta-
tistics. In addition, subspace methods are based on the computationally
tractable singular value decomposition and least squares procedures.

In practice, system identification is practical only when the system to
be identified is asymptotically stable or, in worst case, linearly unstable
as in a system possessing a rigid body mode. Even when the system is
known to be asymptotically stable, finite sampling constraints, mod-
eling errors, and plant and measurement noise often give rise to un-
stable models. Within subspace methods, techniques have been devel-
oped to enforce the stability of the identified model. One approach to
the problem of identifying stable realizations is to compute a (possibly)
unstable realization, and then reflect the unstable eigenvalues into the
unit disk leaving the stable eigenvalues unchanged. Our approach does
not guarantee that the stable eigenvalues will remain invariant, nor is
it clear that this is desirable. The method developed in [9] enforces
stability by replacing the lastp rows of the extended observability ma-
trix by zeros, wherep is the number of outputs. Since this technique
distorts the estimated observability matrix, alternative approaches in-
volving data augmentation were developed in [1]. In [15], a regular-
ization term is added to the least squares cost function minimization
problem, where the amount of regularization is computed through a
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generalized eigenvalue problem. The spectral radius of the minimizing
solution has an upper bound given in terms of singular values, which
can be chosen by the user. In [4] the maximum singular value of the dy-
namics matrix is constrained. In [10] a weighted cost function is used
and minimized for a particular choice of weighting matrices. All of
the aforementioned methods are inherently conservative. Our method
is conservative in that the Lyapunov inequalitiesP�APAT > 0n and
P > 0n are over-constrained asP � APAT � �In andP � �In,
where� > 0 can be chosen arbitrarily small.

The objective of this note is to develop an alternative approach to
identifying stable models within the context of subspace identifica-
tion. Our approach is based on constrained optimization, where the
least squares optimization procedure used to obtain parameter esti-
mates is replaced by a constrained weighted least squares optimiza-
tion problem involving a stability constraint. The resulting convex op-
timization problem is a linear programming problem over symmetric
cones. This approach is direct, and thus it does not distort the extended
observability matrix with zeros as in [9], modify the estimated state se-
quence, extended observability matrix, or input sequence with fictitious
data as in [1], or augment the cost function to indirectly implement a
singular value constraint as in [15]. The cost function is a weighted
Frobenius matrix norm, different from the unweighted least squares
cost function. This technique can be applied to an estimate of the ex-
tended observability matrix and to an estimate of the state sequence.

To solve this convex optimization problem, we adapt the SeDuMi
MATLAB code [14] to the constrained least squares problem. This code
solves linear programming problems with convex symmetric cone
constraints, that is, constraints involving mixed equality, inequality,
quadratic, and positive-semidefinite constraints. We reformulate the
problem of identifying a stable model given the state sequence in
Section II. In Section III, we reformulate the problem of identifying a
stable model given the extended observability matrix. In Section IV,
we provide several numerical examples and compare the results to
previous techniques.

II. STATE SEQUENCEPROBLEM DESCRIPTION

The identification problem is to estimate the coefficient matrices of
the system

x(k + 1) =Ax(k) +Bu(k) (2.1)

y(k) =Cx(k) +Du(k) (2.2)

given measurements ofu(k : k + ` � 1), y(k : k + ` � 1), and an
estimate of the state sequencex(k : k + `) obtained from a subspace
identification algorithm, whereA 2 n�n, B 2 n�m, C 2 p�n,
andD 2 p�m. Our goal is to obtain an estimate of the dynamics
matrixA that is asymptotically stable.

The least squares problem is to minimize

J
2

x(A;B;C;D)
�
=

Lx 0

0 Ly

x(k + 1 : k + `)

y(k : k + `� 1)

�
A B

C D

x(k : k + `� 1)

u(k : k + `� 1)
Rx

2

F

=J
2

1 (A;B) + J
2

2 (C;D) (2.3)

whereu(k : k+ `� 1) 2 m�`, x(k : k+ `� 1) 2 n�`, x(k+1 :
k + `) 2 n�`, y(k : k + ` � 1) 2 p�`, Lx 2 s�n, Ly 2 t�p,
andRx 2

`�r are weighting matrices and

J1(A;B)
�
= kLx (x(k + 1 : k + `)� [A B]
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x(k : k + `� 1)

u(k : k + `� 1)
Rx

F

(2.4)
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J2(C;D)
�
= kLy (y(k : k + `� 1)� [C D]

�
x(k : k + `� 1)

u(k : k + `� 1)
Rx

F

: (2.5)

The notationu(k : k+ `�1) denotes the matrix[u(k); . . . ; u(k+ `�
1)]. The minimizers of (2.4) and (2.5) and, thus, (2.3) are given by

[Â B̂] =x(k + 1 : k + `)

�Rx

x(k : k + `� 1)

u(k : k + `� 1)
Rx

R

(2.6)

[Ĉ D̂] = y(k : k + `� 1)

�Rx

x(k : k + `� 1)

u(k : k + `� 1)
Rx

R

(2.7)

whereV R �
= V T(V V T)

+
, V L �

= (V TV )
+
V T, andM+ denotes the

Moore–Penrose generalized inverse ofM .
The solutionsÂ andB̂ are independent of the solutionŝC andD̂.

Thus, we can use the least-squares solution (2.7) to findĈ and D̂
and focus on minimizingJ1 subject to a stability constraint in place
of (2.6). We would like to solve this minimization problem subject to
the stability constraint thatA is asymptotically stable. The matrixA
is asymptotically stable if�(A) < 1, where�(A) denotes the spectral
radius ofA. Alternatively, we could implement the constraint thatA is
Lyapunov stable, i.e., that�(A) � 1 and all of the eigenvalues ofA
on the unit circle are semisimple. We detail the asymptotically stable
constraint approach below.

The asymptotic stability ofA is equivalent to the Lyapunov inequal-
ities

P �APA
T
> 0n; P > 0n: (2.8)

The constraints (2.8) constrainP andA to open sets, while we need
closed constraint sets to guarantee that a solution to the convex opti-
mization problem exists. Hence, we enforce (2.8) with the inequalities

P � APA
T � �In; P � �In (2.9)

where� > 0. Using Schur complements, the constraints (2.9) are
equivalent to

S
�
=

P � �In AP

PAT P
� 02n: (2.10)

The constraint (2.10) constrainsS to a closed convex set.
The problem restated with the linear matrix inequality constraint

(2.10) is:minJ1(A;B) subject to (2.10). We let

Rx =
x(k : k + `� 1)

u(k : k + `� 1)

R
PRx 0n�r
0m�r Rx

(2.11)

whereRx 2 n�r andRx 2 m�r . This weighting matrix will
allow us to use a change of variables leading to a convex optimization
problem. The cost function is then

J
2
1 (A;B) = Lx x(k + 1 : k + `)

x(k : k + `� 1)

u(k : k + `� 1)

R

�
PRx 0n�r
0m�r Rx

�[APRx BRx ]
2

F

=J
2
11(A) + J

2
12(B) (2.12)

where

J
2
11(A)

�
= kLx(X1 � A)PRx k

2

F
(2.13)

J
2
12(B)

�
= kLx(X2 �B)Rx k

2

F
(2.14)

[X1 X2]
�
=x(k + 1 : k + `)

x(k : k + `� 1)

u(k : k + `� 1)

R

(2.15)

X1 2
n�n, andX2 2

n�m. Hence, the valuêB of B minimizing
(2.14) isB̂ = X2 and we can now focus on minimizingJ11 subject to
the stability constraint (2.10).

Defining the change of variables

Q
�
= AP (2.16)

the cost function (2.13) and the constraint (2.10) become

J
2
11(A) = kLx(X1P �Q)Rx k

2

F
(2.17)

P � �In Q

QT P
� 02n: (2.18)

We computeÂ from Q̂ andP̂ asÂ
�
= Q̂P̂�1.

Our optimization problem is a quadratic programming problem with
positive–semidefinite constraints. We rewrite this as the linear pro-
gramming problem:mina;Q;P a, subject toa � J11(A) and (2.18).
We can state this problem in a form suitable for use in a convex opti-
mization routine as

min cTx z (2.19)

subject to

[�Lx LxX1]Z3
0n�r
Rx

=Z2 (2.20)

[0n In]Z3
0n
In

� �In = [In 0n]Z3
In

0n
(2.21)

Z1 �kZ2kF (2.22)

Z3 � 02n (2.23)

where zi
�
= vecZi, cx

�
= [1 01�4n +r s]

T 2 4n +r s+1,

z
�
= [z1 z

T
2 zT3 ]

T
2 4n +r s+1, andZ1 = z1 2 represents the

value of the cost functionJ11(A), Z2 2 s�r represents the matrix
Lx(X1P �Q)Rx ,Z3 2 2n�2n represents the matrix in (2.18). The
equality constraint (2.20) ensures that the blocks ofZ3 corresponding
to P and Q are used to construct the cost function. The equality
constraint (2.21) ensures that the matrixP is used to construct the
(1,1) and (2,2) blocks ofZ3. The quadratic constraint (2.22) ensures
that we are minimizing the desired cost function. The linear matrix
inequality constraint (2.23) enforces the stability constraint (2.18).

To recast the minimization problem in a form suitable for use with a
convex optimization code, we rewrite the equality constraints as func-
tions ofzi and obtain the optimization problem

min cTx z (2.24)

subject to

Axz = bx (2.25)

z1 �kz2k (2.26)

Z3 � 02n (2.27)

whereAx 2
n +r s�4n +r s+1 is given by

Ax
�
=

0r s�1 �Ir s 0r �nR
T
x 
 [�Lx LxX1]

0n �1 0n �r s [0n In]
 [0n In]� [In 0n]
 [In 0n]
(2.28)

andbx 2 n +r s is given by

bx
�
= �

0r s�1

vec In
(2.29)

where
 represents the Kronecker product and we have used the iden-
tity vec(AXB) = (BT 
 A) vecX. WhileAx has(n2+r1s)(4n2+
r1s + 1) = 4n4 + (5r1s + 1)n2 + r21s

2 + r1s entries, at most
2(r1s+ 1)n2 + r1s are nonzero. If we chooseLx = Rx = In, then
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at mostn3+4n2 are nonzero. Similarly, at mostn of then2+ r1s en-
tries ofbx are nonzero. This optimization problem involves minimizing
a linear function over symmetric cones and can be solved using the Se-
DuMi MATLAB package [14]. Note that SeDuMi automatically forces
positive–semidefinite matrices to be symmetric.

III. EXTENDED OBSERVABILITY MATRIX PROBLEM DESCRIPTION

In this section, we estimate the coefficient matrices of (2.1) and (2.2)
given an estimate of the extended observability matrix�0;q obtained
from a subspace identification algorithm, where, fori � j, �i;j 2
p(j�i+1)�n is given by

�i;j
�
=

CAi

...
CAj

: (3.1)

Our goal is to obtain a stable estimate of the dynamics matrixA given
�0;q.

The least squares problem is to minimize

J�(A)
�
= kL�(�1;q � �0;q�1A)R�kF (3.2)

whereL� 2 s�qp, R� 2 n�r , �1;q 2 qp�n, and�0;q�1 2
qp�n. The minimizer of (3.2) is

Â
�
= (L��0;q�1)

LL��1;q: (3.3)

SinceÂ may not be stable, we minimize (3.2) subject to the constraint
thatA be asymptotically stable.

As before, we ensure thatA is asymptotically stable by using the
linear matrix inequality constraint (2.18). The problem restated with
the linear matrix inequality constraint is:minJ�(A) subject to (2.18).
This is a quadratic programming problem with positive–semidefinite
constraints. We let

R�
�
= PR� (3.4)

whereR� 2 n�r . This weighting matrix will allow us to use the
change of variables (2.16) leading to a convex optimization problem.
Using (3.4), the cost functionJ�(A) becomesJ�(A) = kL�(�1;qP�
�0;q�1Q)R� kF. We can rewrite this minimization problem as the
linear programming problem

min cT�z (3.5)

subject to

[�L��0;q�1 L��1;q]Z3
0n�r
R�

=Z2 (3.6)

[0n In]Z3
0n
In

� �In = [In 0n]Z3
In
0n

(3.7)

Z1 �kZ2kF (3.8)

Z3 � 0 (3.9)

wherezi
�
= vec(Zi), c�

�
= [1 01�4n +r s]

T 2 4n +r s+1, z
�
=

[z1 z
T
2 zT3 ]

T
2 4n +r s+1, andZ1 = z1 2 represents the value of

the cost functionJ�, Z2 2 s�r represents the matrixL�(�1;qP �
�0;q�1Q)R� , andZ3 2 2n�2n represents the matrix in (2.18).

Rewriting the equality constraints as functions ofzi yields the opti-
mization problem

min cT�z (3.10)

subject to

A�z = b� (3.11)

z1 �kz2k (3.12)

Z3 � 02n (3.13)

whereA� 2
n2+r s�4n +r s+1 is given by

A�
�
=

0r s�1 �Ir s 0r �n R
T
� 
 [�L��0;q�1 L��1;q]

0n �1 0n �r s [0nIn]
 [0n In]� [In0n]
 [In 0n]
(3.14)

andb� 2 n +r s is given by

b�
�
= �

0r s�1

vec In
: (3.15)

WhileA� has(n2 + r1s)(4n
2 + r1s+ 1) = 4n4 + (5r1s+ 1)n2 +

r21s
2 + r1s entries, at most2(r1s + 1)n2 + r1s are nonzero. If we

chooseL� = Iqp andR� = In, then at most2(qp+1)n2 are nonzero.
Similarly,n of then2+r1s entries ofb� are nonzero. This optimization
problem involves minimizing a linear function over symmetric cones
and can be solved using the SeDuMi MATLAB package [14].

IV. EXAMPLES

Here, we apply the constrained optimization algorithm to several nu-
merical examples. In each example, we add zero-mean white noisew
to the output of the system scaled such that the signal-to-noise ratio
S=N

�
= ky(1 : `) � w(1 : `)kF =kw(1 : `)kF = 10. The input se-

quence is a realization of a zero mean unit variance noise sequence.
We find the least squares solution, the constrained optimization solu-
tion, the augmented data solution [1], and the zero padding solution [9]
for each example. We then evaluate the cost functionsJx (A;B)

�
=

J1(A;B) with Lx = In andRx = I`, andJ� (A)
�
= J�(A)

with L� = Iqp andR� = In at each solution, and compare them to
the least squares solutions according to the error metricsex(Â; B̂)

�
=

(Jx (Â; B̂) � Jx (ÂLS; B̂LS))=Jx (ÂLS; B̂LS), and e�(Â)
�
=

(J� (Â) � J� (ÂLS))=J� (ÂLS), whereÂ is the solution ob-
tained from the identification method, and̂ALS is the optimal least
squares solution without stability enforcement. Finally, we plot the re-
sulting eigenvalues. In all of the examples, we letLx = In,Rx = In,
L� = Iqp, R� = In, and� = 0:001. For the state sequence case, we
use the method of [3]. For the extended observability case, we use the
n4sid algorithm in the MATLAB system identification toolbox. For each
example, we run the simulations for 100 realizations of the input and
noise sequences and present the locations of the resulting eigenvalues,
as well as the average values of the cost functions.

In the first example, the true system (4.1), shown at the top of page
1263, is unstable with�(A) = 1:02,m = 2,n = 8, p = 4, q = 4, and
` = 28 = 256. The results for 10 of the 100 simulations are shown in
Fig. 1. The least squares solution matches the unstable poles of the true
system well, while the stability-constrained solution produced a stable
estimate. The least squares and the stability-constrained solutions do
not match the stable poles of the true system. The averaged error and
the standard deviation of the error in each case are given in Table I.

In the second example, the true system (4.2), shown at the top of
page 1263, is asymptotically stable with�(A) = 0:99,m = 2, n = 8,
p = 4, q = 4 and ` = 28 = 256. The results for 10 of the 100
simulations are shown in Fig. 2. The averaged error and the standard
deviation of the error in each case are given in Table II.

It is interesting to note that the weighting matrix (2.11) does not dis-
tort the locations of the stable eigenvalues in the state sequence case as
compared to the unweighted least-squares solution (2.6). However, the
stable eigenvalues obtained using the weighting matrix (3.4) in the ex-
tended observability case differ from the eigenvalues of the unweighted
least-squares solution (3.3).
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(a)

(b)

Fig. 1. System poles:� represent true pole locations,+ represent pole
estimates using the least squares solution without stability enforcement,
� represent pole estimates from the constrained optimization algorithm,�

represent pole estimates from the data augmentation method [1], and
represent pole estimates using the zero padding method [9]. (a) State sequence
case. (b) Observability matrix case.

TABLE I
PERFORMANCECOMPARISON OFIDENTIFIED MODELS FOR THE

UNSTABLE EXAMPLE

V. CONCLUSION

We applied a convex optimization algorithm to the problem
of identifying stable models in the context of subspace identifi-

(a)

(b)

Fig. 2. System poles:� represent true pole locations,+ represent pole
estimates using the least squares solution without stability enforcement,
� represent pole estimates from the constrained optimization algorithm,�

represent pole estimates from the data augmentation method [1], and
represent pole estimates using the zero padding method [9]. (a) State sequence
case. (b) Observability matrix case.

TABLE II
PERFORMANCE COMPARISON OFIDENTIFIED MODELS FOR THE

ASYMPTOTICALLY STABLE EXAMPLE

cation. We compared the solutions to previous methods [1], [9].
Our approach ensures that the identified model is asymptotically
stable by introducing a weighted least squares cost function and a
stability constraint in the form of a linear matrix inequality. Our
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A B
C D

=

0 0 0 0 0 0 0:5100 0:5100 �1:9543 1:3296

1:0200 0 0 0 0 0 0 0 1:2572 �0:1496

0 1:0200 0 0 0 0 0 0 0:2918 �0:3654

0 0 1:0200 0 0 0 0 0 0:5261 �0:8707

0 0 0 1:0200 0 0 0 0 1:5873 1:6333

0 0 0 0 1:0200 0 0 0 �0:6412 �1:1886

0 0 0 0 0 1:0200 0 0 �0:7587 �1:1782

0 0 0 0 0 0 1:0200 0 �0:4139 �1:1780

1:6921 �1:3086 �1:2142 1:3373 �0:1417 0:7199 2:3559 1:4775 �0:2636 �0:0410

�1:3291 0:4212 1:0219 �0:2298 �0:2106 0:1293 �0:2946 0:0729 �1:7673 �0:2443

0:8306 0:1074 �1:5395 0:000 �0:8902 0:6599 1:2316 �0:7068 �2:5699 �0:7960

0:9312 �0:2612 0:4026 �0:5150 �0:3453 1:8806 1:0548 �0:8103 0:8632 0:1359

(4.1)

A B
C D

=

0 0 0 0 0 0 0:4950 0:4950 �0:8056 1:4781

0:9900 0 0 0 0 0 0 0 �0:5625 �0:2717

0 0:9900 0 0 0 0 0 0 0:7474 2:1011

0 0 0:9900 0 0 0 0 0 0:2185 �0:0900

0 0 0 0:9900 0 0 0 0 0:7854 �0:1639

0 0 0 0 0:9900 0 0 0 �1:7552 0:1018

0 0 0 0 0 0:9900 0 0 0:9748 �0:4069

0 0 0 0 0 0 0:9900 0 �1:0410 �0:8454

�0:5973 �1:5440 �0:7101 �0:7632 0:4998 �1:0601 �1:8191 1:7949 �1:3871 0:8332

0:1902 0:5863 �0:9760 0:2053 0:8722 0:6516 1:8280 �0:3479 0:9179 0:2827

�0:1573 �0:0415 1:0886 0:3592 0:3033 �0:9744 �0:7285 �0:9539 �1:1044 0:0173

�1:0262 �3:3213 �1:1302 �1:6497 1:2149 �0:4110 �0:5041 �0:0880 0:6041 2:2327

(4.2)

constrained optimization problem is conservative in that the Lyapunov
inequalitiesP � APA

T
> 0n andP > 0n are over-constrained

asP � APA
T
� �In andP � �In with � > 0. The amount

of conservatism, characterized by�, can be made arbitrarily small.
This differs from the methods of [1], [4], [9], and [15], which can
be arbitrarily conservative. Our approach is not computationally
burdensome, typically requiring 10–20 iterations of the optimization
algorithm and a couple seconds for the examples we presented.
However, our optimization approach is more complex than some
of the alternative methods that require algebraic manipulations and
computing the eigenvalues or a singular value decomposition. The
benefit of our approach is that the identified model is guaranteed to
be stable with little degradation in accuracy compared to the possibly
unstable least squares solution, and at low computational cost.
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