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We derive a continuous nonlinear control law for spacecraft attitude tracking of arbitrary continuously

differentiable attitude trajectories based on rotation matrices. This formulation provides almost global

stabilizability, that is, Lyapunov stability of the desired equilibrium of the error system as well as convergence from

all initial states except for a subset for which the complement is open and dense. This controller thus overcomes the

unwinding phenomenon associated with continuous controllers based on attitude representations, such as

quaternions, that are not bijective and without resorting to discontinuous switching. The controller requires no

inertia information, no information on constant-disturbance torques, and only frequency information for sinusoidal

disturbance torques. For slew maneuvers (that is, maneuvers with a setpoint command in the absence of

disturbances), the controller specializes to a continuous, nonlinear, proportional–derivative-type, almost globally

stabilizing controller, in which case the torque inputs can be arbitrarily bounded a priori. For arbitrary maneuvers,

we present an approximate saturation technique for bounding the control torques.

I. Introduction

C ONTROL of rigid spacecraft is an extensively studied problem
[1].Despite the vast range of available techniques, however, the

development of a spacecraft control system is a labor-intensive, time-
consuming process. For applications in which spacecraft must be
launched on short notice, it is of interest to employ control algorithms
that are robust to uncertainty, such as inexact knowledge of the
spacecraft mass distribution, errors in the alignment of sensors
and actuators, measurement errors, and time delays in network-
implemented feedback loops.

Spacecraft control is an inherently nonlinear (in particular,
bilinear) problem for which the natural state space involves the
special orthogonal group of 3 � 3 rotation matrices, that is, SO(3).
Although linear controllers can be used for maneuvers over small
angles, the desire for minimum-fuel or minimum-time operation
suggests that control systems that are tuned for operation on SO(3)
are advantageous for large-angle maneuvers [2,3]. However, the
compactness of SO(3) presents difficulties with regard to global
asymptotic stabilization, that is, Lyapunov stability of a desired
equilibrium along with global convergence.

To appreciate these difficulties, we can consider rotation about a
fixed axis, that is, motion around a circle. Covering the unit circle

with the real line and with the origin 0 viewed as distinct from 2�
leads to controllers that rotate the spacecraft needlessly from 2� to 0.
The difficulty is due to the fact that 0 and 2� represent distinct values
on the real lineR but correspond to the same physical configuration.
This unwinding phenomenon is discussed in [4].

The unwinding phenomenon suggests that global asymptotic
stabilization is impossible when the controller is required to be
continuous. On the unit circle, a continuous vector field may have
exactly one equilibrium, as the vector field sin2��=2� shows. How-
ever, if an equilibrium on the unit circle is required to be Lyapunov
stable, then the vector field must have at least two equilibria,
whereas, on SO(3), the minimum number seems to be 4; related
issues are discussed in [5]. The mere existence of multiple equilibria
precludes global asymptotic stability in the physical configuration
space. In view of this impediment, the quest for continuous control
signals may seem inadvisable, especially in view of the fact that
many spacecraft thrusters are on–off devices. In fact, some variable-
structure control algorithms achieve robustness through high-
frequency switching [6,7]. Nevertheless, discontinuous dynamics
entail special difficulties [8] andmay lead to chattering in the vicinity
of a discontinuity, especially in the presence of sensor noise or
disturbances. It is thus of interest to determine which closed-loop
properties can be achieved under continuous control.

A further complicating factor in spacecraft control is the choice of
representation for attitude. Various attitude representations can be
used, such as Euler angles, quaternions (also called Euler parameters
[1]), Rodrigues parameters, modified Rodrigues parameters, direc-
tion cosinematrices, and rotationmatrices (the transpose of direction
cosine matrices) [9]. Each representation can be used to capture the
orientation of the spacecraft frame relative to an inertial frame.
Difficulties arise from the fact that some representations, such as
Euler angles, possess singularities and thus cannot represent all
orientations, whereas, other representations, such as quaternions, are
not one-to-one. In fact, the quaternions constitute a double covering
by the unit sphere S3 in R4 of SO(3). Thus, every physical attitude
is represented by two distinct quaternions. The problem with a
representation that is not one-to-one is that control laws may be
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inconsistent, which means that the same physical orientation of the
spacecraft may give rise to two different control inputs, a property
that may be undesirable in practice.

Despite this inconsistency, continuous controllers can be defined
in terms of the quaternion representation, and convergence to a
desired equilibrium can be achieved for every point except the
remaining equilibria. Lyapunov stability fails, however, for the
desired physical orientation due to the fact that trajectories starting
near the desired physical orientation may move very far before
returning. As such, small perturbations can cause the spacecraft to
rotate through large angles despite the fact that shorter paths may
exist. In particular, when the quaternion representation is used,
convergence to one of the two quaternion equilibria representing the
desired physical orientation causes the spacecraft to exhibit
unwinding, in the sense that an initial condition close to a quaternion
equilibrium can entail a large-angle physical rotation away from and
then back to the desired physical orientation, thereby reflecting the
lack of Lyapunov stability on the physical space SO(3). This
shortcoming arises in continuous quaternion-based controllers such
as those derived in [10–12]. A discontinuous quaternion-based
controller that overcomes unwinding is used in [7].

The present work is motivated by [13–16], in which rotation
matrices are used to represent SO(3). Unlike unit quaternions, each
rotation matrix represents a unique physical attitude. Although
global asymptotic stabilization under continuous control is
impossible due to the inherent nature of SO(3) (regardless of the
adopted representation), the results obtained in [13–16] possess the
practically useful property of almost global stabilization, which
means that the desired equilibrium is Lyapunov stable and the set of
initial conditions that give rise to trajectories that converge to the
undesirable equilibria constitute a set ofmeasure zero that is nowhere
dense. In practice, this property is effectively equivalent to global
stabilization.

For numerical simulation of rigid-body control laws, it is possible
to use structured numerical integration schemes based on rotation
matrices, such as the Lie group variational integrator implemented in
[17]. These numerical integration schemes ensure that the attitude
dynamics evolve on SO(3) during numerical simulation and in
practical application, without resorting to either local parameter-
ization or reprojection from R3�3 to SO(3).

The goal of the present paper is to extend the almost globally
stabilizing controllers of [13–16], which are confined to slew
maneuvers (that is, maneuvers that bring the spacecraft to rest at a
desired orientation), to the problem of attitude tracking in the pre-
sence of disturbances. The results we obtain do not require
knowledge of the spacecraft inertia and are thus analogous to those
given in [12]. The results given herein are distinct from those of [18],
which treats the attitude tracking problem but uses a discontinuous
controller that requires inertia information while allowing distur-
bance moments with a known a priori bound; these disturbance
moments vanish when the angular velocity vanishes, which models
moments caused by atmospheric drag.

An additional consideration in spacecraft control is the need to
account for constraints on themagnitudes of the control torques [19–
21]. In the absence of information about the spacecraft’s mass
distribution and when external disturbances are not present, it is not
surprising that asymptotic convergence to an arbitrary constant
attitude (that is, setpoint) is attainable under arbitrarily bounded
torque inputs. In fact, an almost globally stabilizing controller given
in [13] achieves asymptotic setpoint regulation from almost all initial
attitudes and angular velocities using arbitrarily bounded torques.
Because the rigid body is effectively a three-dimensional double
integrator, it is not surprising that this controller requires only
proportional and rate terms to attain zero steady-state pointing error
without the need for an integrator. For the case of an angular-velocity
setpoint command, however, asymptotic convergence is not gener-
ally feasible using arbitrarily bounded torques. However, in the
special case in which the angular-velocity setpoint command is
aligned with a principal axis of inertia, it is intuitively clear that
asymptotic convergence in the commanded time-varying attitude is
feasible under arbitrarily bounded torque inputs, although we are not

aware of any controller that has this property. This goal can be
approximately attained by a two-step procedure, wherein the first
step uses arbitrarily bounded torques to bring the spacecraft to rest at
a desired attitude, followed by a spinup around the desired principal
axis to asymptotically follow the commanded attitude trajectory.

Finally, the preceding discussion and contents of this paper are
based on the assumption that the spacecraft attitude and angular
velocity are available for feedback and that the spacecraft is
controlled by three independent torque actuators. When these
assumptions are violated, the rigid-body control problem becomes
significantly more complex [22–24].

In the present paper, we consider a disturbance rejection problem
in Sec. II involving internally or externally applied disturbance
torques. In Sec. III, the disturbances are modeled as outputs of a
Lyapunov-stable exogenous system; this exogenous system can
model persistent disturbances such as steps and sinusoids. To use this
approach in practice, it is necessary to know all of the spectral
components of the torque that may be present in each disturbance
channel. In Sec. III, we then use an internal model control approach
that automatically determines whether each spectral component is
present in each disturbance channel. Internal model control requires
no knowledge of the amplitude or phase of each harmonic
component of the disturbance [25]. Numerical examples for slew and
spin maneuvers are given in Secs. IV and V.

II. Spacecraft Model

As a spacecraft model, we consider a single rigid body controlled
by force or torque actuators, such as thrusters or magnetic torque
devices, and without onboard momentum storage. We consider only
the rotational motion of the spacecraft and not the translational
motion of the spacecraft’s center ofmass; therefore, we consider only
the torque applied by the force actuators. We assume that a body-
fixed frame is defined for the spacecraft, for which the origin is
chosen to be the center of mass, and that an inertial frame is specified
for determining the attitude of the spacecraft. The spacecraft
equations of motion are given by Euler’s equation and Poisson’s
equation, which are given, respectively, by

J _!� �J!� � !� Bu� zd (1)

_R� R!� (2)

where ! 2 R3 is the angular velocity of the spacecraft frame with
respect to the inertial frame resolved in the spacecraft frame,!� is the
cross-product matrix of !, J 2 R3�3 is the constant positive-definite
inertia matrix of the spacecraft (that is, the inertia dyadic of the
spacecraft relative to the spacecraft center of mass resolved in the
spacecraft frame), andR 2 R3�3 is the rotation dyadic that transforms
the inertial frame into the spacecraft frame resolved in the spacecraft
frame. Therefore, R is the proper orthogonal matrix (that is, the
rotation matrix) that transforms the components of a vector resolved
in the spacecraft frame into the components of the same vector
resolved in the inertial frame.

Because J is an inertiamatrix, its eigenvalues�1,�2, and�3 satisfy
the triangle rule, that is,�1 < �2 � �3, where 0< �3 � �2 � �1. The
components of the vector u 2 R3 represent three independent inputs,
and the matrix B 2 R3�3 determines the applied torque about each
axis of the spacecraft frame due to u as given by the productBu. The
vector zd represents disturbance torques (that is, all internal and
external torques applied to the spacecraft aside from control torques),
which may be due to onboard components, gravity gradients, solar
pressure, atmospheric drag, or the ambient magnetic field. For
convenience in Eqs. (1) and (2), we omit the argument t, recognizing
that !, R, u, and d are time-varying quantities.

Both rate (inertial) and attitude (noninertial) measurements are
assumed to be available. Gyro measurements yrate 2 R3 are assumed
to provide measurements of the angular velocity resolved in the
spacecraft frame, that is,

1168 SANYAL ET AL.



yrate � ! (3)

For simplicity, we assume that gyro measurements are available
without noise and without bias. In practice, bias can be corrected by
using attitude measurements.

Attitude is measured indirectly through direction measurements
using sensors such as star trackers. The attitude is determined to be

yattitude � R (4)

When attitude measurements are given in terms of an alternative
attitude representation, such as quaternions, Rodrigues’s formula can
be used to determine the corresponding rotation matrix. Attitude
estimation on SO(3) is considered in [17].

The objective of the attitude control problem is to determine
control inputs such that the spacecraft attitude given by R follows a
commanded attitude trajectory given by the possibly time-varying
C1 rotation matrix Rd�t�. For t � 0, Rd�t� is given by

_R d�t� � Rd�t�!d�t�� (5)

Rd�0� � Rd0 (6)

where !d is the desired possibly time-varying angular velocity. The
error between R�t� and Rd�t� is given in terms of the attitude-error
rotation matrix

~R�△ RTdR (7)

which satisfies the differential equation

_~R� ~R ~!� (8)

where the angular-velocity error ~! is defined by

~!≜ ! � ~RT!d

We rewrite Eq. (1) in terms of the angular-velocity error as

J _~!� 	J� ~!� ~RT!d�
 � � ~!� ~RT!d�
� J� ~! � ~RT!d � ~RT _!d� � Bu� zd (9)

A scalarmeasure of attitude error is given by the rotation angle ��t�
about an eigenaxis needed to rotate the spacecraft from its attitude
R�t� to the desired attitude Rd�t�, which is given by [1]

��t� � cos�1�1
2
	tr ~R�t� � 1
� (10)

III. Attitude Control Law

The following preliminary results are needed. Let I denote the
identity matrix, for which the dimensions are determined by context,
and letMij denote the i, j entry of the matrixM.

Lemma 1. Let A 2 R3�3 be a diagonal positive-definite matrix.
Then the following statements hold:

1) For all i; j 2 f1; 2; 3g, Rij 2 	�1; 1
.
2) The inequality tr�A � AR� � 0 holds.
3) The inequality tr�A � AR� � 0 holds if and only if R� I.
For convenience, we note that if R is a rotation matrix and

x; y 2 R3, then

�Rx�� � Rx�RT

and therefore,

R�x � y� � �Rx� � Ry

Next, we introduce the notation

J!� L�!�� (11)

where � 2 R6 is defined by

� ≜ 	 J11 J22 J33 J23 J13 J12 
T

and

L�!�≜
!1 0 0 0 !3 !2

0 !2 0 !3 0 !1

0 0 !3 !2 !1 0

2
4

3
5

With this notation, Eq. (9) can be rewritten as

J _~!� 	L� ~!� ~RT!d��
�� ~!� ~RT!d�
� L� ~! � ~RT!d � ~RT _!d�� � Bu� zd (12)

Next, let Ĵ 2 R3�3 denote an estimate of J, and define the inertia-
estimation error:

~J≜ J � Ĵ

Letting �̂ and ~� 2 R6 represent Ĵ and ~J, respectively, it follows that

~� � � � �̂ (13)

Likewise, let ẑd 2 R3 denote an estimate of zd and define the
disturbance-estimation error:

~z d ≜�zd � ẑd

We now summarize the assumptions upon which the following
development is based:

Assumption 1. J is constant but unknown.
Assumption 2. B is constant, nonsingular, and known.
Assumption 3. Each component of zd is a linear combination of

constant and harmonic signals for which the frequencies are known
but for which the amplitudes and phases are unknown.

Assumption 3 implies that zd can be modeled as the output of an
autonomous system of the form

_d� Add (14)

zd � Cdd (15)

where Ad 2 Rnd�nd and Cd 2 R3�nd are known matrices, and Ad is a
Lyapunov-stable matrix. In this model, d�0� is unknown, which is
equivalent to the assumption that the amplitude and phase of all
harmonic components in the disturbance are unknown. The matrix
Ad is chosen to include eigenvalues of all frequency components that
may be present in the disturbance signal, where the zero eigenvalue
corresponds to constant disturbances. In effect, the controller
provides infinite gain at the disturbance frequency, which results in
asymptotic rejection of harmonic disturbance components. In
particular, an integral controller provides infinite gain at dc to reject
constant disturbances. In the case of orbit-dependent disturbances,
the frequencies can be estimated from the orbital parameters.
Likewise, in the case of disturbances originating from onboard
devices, the spectral content of the disturbances may be known. In
other cases, it may be possible to estimate the spectrum of the
disturbances through signal processing. Assumption 3 implies that
Ad can be chosen to be skew symmetric, whichwe do henceforth. Let

d̂ 2 Rnd denote an estimate of d, and define the disturbance-state
estimation error:

~d≜ d � d̂

Assumptions 1–3 are mathematical idealizations, which we state
explicitly to provide a precise foundation for the subsequent results.
In practice, these assumptions can be viewed as approximations, for
which the validity can be assessed based on engineering judgment.
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For i� 1, 2, 3, let ei denote the ith column of the 3 � 3 identity
matrix.

Theorem 1. Let Kp be a positive number, let K1 2 R3�3, let A�
diag�a1; a2; a3� be a diagonal positive-definite matrix, letQ 2 R6�6

and D 2 Rnd�nd be positive definite, and define

S≜
X3
i�1

ai� ~RTei� � ei

Then the Lyapunov candidate

V� ~!; ~R; ~�; ~d�≜ 1
2
� ~!� K1S�TJ� ~!� K1S�

� Kp tr�A � A ~R� � 1
2
~�TQ ~� � 1

2
~dTD ~d (16)

is positive definite; that is, V is nonnegative, and V � 0 if and only if

~!� 0, ~R� I, ~� � 0, and ~d� 0.

Proof. It follows from statement 1 of Lemma 1 that tr�A � A ~R� is
nonnegative. Hence, V is nonnegative. Now suppose that V � 0.

Then ~!� K1S� 0, ~� � 0, and ~d� 0, and it follows from

statement 3 of Lemma 1 that ~R� I and thus S� 0; therefore,
~!� 0. □

Theorem 2. Let Kp be a positive number; let Kv 2 R3�3,
K1 2 R3�3, Q 2 R6�6, and D 2 Rnd�nd be positive definite; assume
that ATdD�DAd is negative semidefinite; let A� diag�a1; a2; a3�
be a diagonal positive-definite matrix; define S and V as in

Theorem 1; and let �̂ and d̂ satisfy

_̂� �Q�1	LT�!�!� � LT�K1
_S� ~! � ! � ~RT _!d�
� ~!� K1S�

(17)

where

_S�
X3
i�1

ai	� ~RTei� � ~!
 � ei (18)

and

_̂
d� Add̂�D�1CTd � ~!� K1S� (19)

ẑ d � Cdd̂ (20)

Furthermore, let

u� B�1�v1 � v2 � v3� (21)

where

v1 ≜ ��Ĵ!� � ! � Ĵ�K1
_S� ~! � ! � ~RT _!d� (22)

v2 ≜ �ẑd (23)

and

v3 ≜ �Kv� ~!� K1S� � KpS (24)

Then

_V� ~!; ~R; ~�; ~d� � �� ~!� K1S�TKv� ~!� K1S�

� KpSTK1S� 1
2
~dT�ATdD�DAd� ~d (25)

is negative semidefinite.

Proof. Noting that

d

dt
tr�A � A ~R� � �trA _~R

��trA� ~R!� � !�d ~R�

� �
X3
i�1

aie
T
i � ~R!� � !�d ~R�ei

��
X3
i�1

aie
T
i
~R�!� � ~RT!�d ~R�ei

��
X3
i�1

aie
T
i
~R�! � ~RT!d��ei

�
X3
i�1

aie
T
i
~Re�i ~!

�
�
�
X3
i�1

aiei � ~RTei

�
T

~!

�
�X3
i�1

ai� ~RTei� � ei
�
T

~!

� ~!TS

we have

_V� ~!; ~R; ~�; ~d�

� � ~!� K1S�T�J _~!� JK1
_S� � KptrA _~R� ~�TQ _̂� � ~dTD

_~d

� � ~!� K1S�T 	�J!� � !� J� ~! � ! � ~RT _!d�

� Bu� zd � JK1
_S
 � Kp ~!TS � ~�TQ _̂� � ~dTD

_~d

� � ~!� K1S�T 	�J!� � !� J�K1
_S� ~! � ! � ~RT _!d�

� v1 � v2 � v3 � zd
 � Kp ~!TS � ~�TQ _̂� � ~dTD
_~d

� � ~!� K1S�T 	� ~J!� � !� ~J�K1
_S� ~! � ! � ~RT _!d�


� � ~!� K1S�T ~zd � � ~!� K1S�TKv� ~!� K1S�

� Kp� ~!� K1S�TS� Kp ~!TS � ~�TQ _̂� � ~dTD
_~d

� � ~!� K1S�T 	L�!� ~� � !� L�K1
_S� ~! � ! � ~RT _!d� ~�


� � ~!� K1S�TKv� ~!� K1S� � KpSTK1S � ~�TQ _̂�

� ~dTCTd � ~!� K1S� � ~dTD	Ad ~d �D�1CTd � ~!� K1S�


� �� ~!� K1S�TKv� ~!� K1S� � KpSTK1S � ~�TQ _̂�

� � ~!� K1S�T 	�!�L�!� � L�K1
_S� ~! � ! � ~RT _!d�
 ~�

� 1
2
~dT�ATdD�DAd� ~d

��� ~!� K1S�TKv� ~!� K1S� � KpSTK1S

� ~�T 	�Q _̂� � �LT�!�!� � LT�K1
_S� ~! � ! � ~RT _!d��

� � ~!� K1S�
 � 1
2
~dT�ATdD�DAd� ~d

��� ~!� K1S�TKv� ~!� K1S� � KpSTK1S

� 1
2
~dT�ATdD�DAd� ~d

□

The closed-loop spacecraft attitude dynamics with the controller
given by Theorem 2 are given by

J _~!� 	L�!� ~�
�!� L� ~! � ~RT!d � RT _!d� ~� � L�K1
_S��̂

� ~zd � Kv� ~!� K1S� � KpS (26)
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If Ad is chosen to be skew symmetric, then choosing D to be a

multiple of the identity implies that ATdD�DAd � 0, and thus _V is
negative semidefinite.

Equation (17) can be viewed as an estimator for the inertia matrix
J. The form of these dynamics is similar to those given in [12,26].
Note that Theorem 3 does not imply that the estimates of the inertia-
matrix entries or the estimates of the disturbance components
converge to their true values. In fact, convergence of these estimates
is neither guaranteed nor required for almost global stabilization and
asymptotic trajectory tracking. As discussed in [12,26] and demons-
trated by numerical examples in Secs. V and VI, convergence of the
estimates of the inertia-matrix entries depends on the persistency of
the command signals.

Equations (19) and (20), which generate an estimate of the
disturbance, are based on an internal model of the disturbance
dynamics. Internal model control theory provides asymptotic track-
ing and disturbance rejection without knowledge of either the
amplitude or phase of harmonic signals, but requires knowledge of
the spectral content of the exosystem. Constant disturbances, for
which the amplitudes need not be known, are treated as a special case
of harmonic signals with zero frequency; for details, see [25] and the
references therein.

The following Lemma is needed. This result is given by
Lemma IX.1 of [13] andLemma 1 of [15], inwhich the proof is based
on Morse theory. The proof we give here is based on elementary
linear algebra.

Lemma 3. Let rij ≜ � ~RT�ij, define S as in Theorem 1, and assume

that a1, a2, and a3 are positive and distinct. If S� 0, then ~R 2 R,
where

R ≜ fI; diag�1;�1;�1�; diag��1; 1;�1�; diag��1;�1; 1�g

Alternatively, ifa1,a2, anda3 are not all distinct, then r12, r13, and r23
can be arbitrary elements of ��1; 1�.

Proof. Setting S� 0 yields

a1e
�
1
~RTe1 � a2e�2 ~RTe2 � a3e�3 ~RTe3 � 0 (27)

It follows that Eq. (27) is equivalent to a2r32 � a3r23, a1r31 � a3r13,
and a1r21 � a2r12. Because a1, a2; and a3 are positive, ~RT can be
written as

~R T �
r11 r12 r13
a2
a1
r12 r22 r23

a3
a1
r13

a3
a2
r23 r33

2
4

3
5 (28)

Because ~RT is orthogonal, it follows that�
1 � a

2
2

a21

�
r212 �

�
1 � a

2
3

a21

�
r213 � 0 (29)

�
1 � a

2
3

a21

�
r213 �

�
1 � a

2
3

a22

�
r223 � 0 (30)

�
1 � a

2
2

a21

�
r212 �

�
1 � a

2
3

a22

�
r223 � 0 (31)

We now show that if �r12; r13; r23� satisfies Eqs. (29–31), then
either 1) the trivial solution �r12; r13; r23� � �0; 0; 0� or 2) r12, r13,
and r23 are all nonzero. Suppose r12 ≠ 0. Then becausea1,a2, anda3
are distinct, it follows that

1 � a
2
2

a21
≠ 0

1 � a
2
3

a21
≠ 0

and

1 � a
2
3

a22
� 0

Because r12 ≠ 0, it follows from Eq. (29) that r13 ≠ 0, and from
Eq. (30) it follows that r23 ≠ 0. Similar arguments hold for the cases
in which r13 ≠ 0 and r23 ≠ 0. Thus, every solution to Eqs. (29–31)
satisfies either case 1 or case 2.

Consider case 2. Suppose a1 > a2. Then�
1 � a

2
2

a21

�
r212 > 0

because r12 ≠ 0, and hence Eq. (29) yields

�
1 � a

2
3

a21

�
r213 < 0

Because r213 is positive, it follows thata3 > a1. Thus,a3 > a1 > a2. It
follows that

�
1 � a

2
3

a21

�
r213 < 0

and

�
1 � a

2
3

a22

�
r223 < 0

Therefore, the sum of these two terms is negative, which contradicts
Eq. (30). Similar arguments show that, for a1 < a2, Eqs. (29–31)
yield a contradiction for case 2. Hence, case 2 yields a contradiction,
and the only solution to Eqs. (29–31) is r12 � r13 � r23 � 0.

Consequently, it follows from Eq. (28) that ~RT is one of the four
matrices given inR. Because all matrices in the setR are symmetric,

it follows that ~R 2 R. □

The following results assume thata1,a2, anda3 are distinct, which
implies the existence of four disjoint equilibrium manifolds for the
closed-loop system.We denote the four rotationmatrices in the setR
by R0 � I, R1 � diag�1;�1;�1�, R2 � diag��1; 1;�1�, and
R3 � diag��1;�1; 1�.

Lemma 4. LetKp,Kv,K1,D,Q, �̂, d̂, and u be as in Theorem 2; let
0< a1 < a2 < a3; and let Ad be skew symmetric. Then the closed-
loop system (17–20) and (26) has four disjoint equilibriummanifolds
in R3 � SO 3 � R6 � R3

� �
given by

Ei � f� ~!; ~R; ~�; ~d� 2 R3 � SO�3� � R6 � R3: ~R�Ri

~! � 0; � ~�; ~d� 2 Qig
(32)

where Qi for i 2 f0; 1; 2; 3g is the closed subset of R6 � R3 defined
by

Qi ≜ f� ~�; ~d� 2 R6 � R3: 	L�RT
i !d� ~�
��RT

i !d�

� L�RT
i _!d� ~� � Cd ~d� 0; _~� � 0;

_~d� Ad ~dg (33)

The equilibrium manifold � ~!; ~R; � ~�; ~d�� � �0; I;Q0� of the closed-
loop system given by Eqs. (17–20) and (26) is locally asymptotically
stable, and the remaining equilibriummanifolds given by �0;Ri;Qi�
for i 2 f1; 2; 3g are unstable. Furthermore, the set of all initial
conditions converging to these equilibriummanifolds forms a lower-
dimensional submanifold of R3 � SO 3 � R6 � R3

� �
.

Proof. The proof of Theorem 2 shows that the time derivative of

the Lyapunov candidateV� ~!; ~R; ~�; ~d� defined byEq. (16) is given by
Eq. (25). Because Ad in the disturbance model (14) is skew
symmetric, we chooseD� �I, where � > 0 is a real scalar constant.
Thus, ATdD�DAd � 0. Therefore, the time derivative of

V� ~!; ~R; ~�; ~d� along the closed-loop system consisting of Eqs. (8),
(12), (17), and (19) is given by
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_V� ~!; ~R; ~�; ~d� � �� ~!� K1S�TKv� ~!� K1S� � KpSTK1S (34)

Now _V � 0 implies that S � 0 and ~! � 0, and, by Lemma 3, S� 0

implies that ~R 2 R. Furthermore, using Eqs. (17) and (20), the con-

ditions S � 0 and ~! � 0 imply, respectively, that as _̂� � 0, we have

_~� � 0, and because
_̂
d� Add̂, we have _~d� Ad ~d. Therefore, for the

closed-loop spacecraft attitude dynamics (26), it follows that if
_V � 0, then ~!� 0, ~R�Ri, and � ~�; ~d� 2 Qi for all i 2 f0; 1; 2; 3g,
where Qi is the closed subset of R6 � R3 defined by Eq. (33).
Therefore, the equilibrium manifolds of the closed-loop system are

given by Eq. (32), and the largest invariant subset of _V�1�0� is given
by the union of these manifolds.

Let X denote the vector field defining the closed-loop spacecraft
attitude dynamics, that is,

_~!� X� ~!; ~R; ~�; ~d�

where X� ~!; ~R; ~�; ~d� is the right-hand side of Eq. (26). Then we take
the tracking error in the angular momentum as the output vector:

Y�t� � J ~!�t� 2 R3 (35)

The Lie derivative of a component Yi of the output vector along the
closed-loop vector field X is denoted by LXYi. The observability
codistribution is defined as [27]

dO� ~!; ~R; ~�; ~d�

≜ span fdLkXYi� ~!; ~R; ~�; ~d�; i� 1; 2; 3; k� 0; 1; 2; . . .g

where L0
XYi � Yi, L2

XYi � LX�LXYi�, and so on. According to
Corollary 2.3.5 of [27], the closed-loop attitude and angular-velocity
dynamics (8) and (26) with the output function (35) are observable at
the point

� ~!; ~R; ~�; ~d� 2 R3 � SO 3 � R6 � R3
� �

if the dimension of dO� ~!; ~R; ~�; ~d� is 6. We evaluate the Lie
derivatives of Yi on the equilibrium manifold

�0; I; ~�; ~d� 2 R3 � SO 3 �Q0� �

of the closed-loop system. Computation of the first few vector fields
in the observability codistribution evaluated on this equilibrium
manifold confirms that its dimension is 6. Therefore, the system is
locally observable on the equilibriummanifold �0; I;Q0�. Therefore,
there exists a neighborhood N of �0; I;Q0� such that the outputs
Yi�t� � 0 are equivalent to!i�t� � 0 for t � 0, if and only if the state
is in �0; I;Q0�. Hence, the equilibrium manifold �0; I;Q0� is locally
asymptotically stable.

The remaining three equilibrium manifolds for the closed-loop
system (17–20) and (26) are given by �0;Ri;Qi� for i 2 f1; 2; 3g.
The second variation of tr�A � A ~R�with respect to ~Rwhen evaluated

at each of the ~R�Ri for i� 1; 2; 3 is indefinite (as shown in the
proof of Lemma 1 in [18]), from which it follows that the corres-
ponding linearized system is unstable at these equilibriummanifolds.
Thus, these three equilibrium manifolds for the nonlinear closed-
loop system are unstable. Following the arguments presented in [18],
it can be shown that each of these three equilibrium manifolds has
nontrivial stable and unstable manifolds. The set of all initial condi-
tions that converge to these three unstable equilibrium manifolds
consists of the union of their stable manifolds. Therefore, the set of
all initial conditions that converge to these three unstable equili-
brium manifolds forms a lower-dimensional submanifold of R3�
SO 3 � R6 � R3
� �

. □

We now state and prove the main result of this paper, which
follows from Theorem 2, Lemmas 3 and 4, and arguments used in
[13–16,18].

Theorem 3. Let the assumptions of Lemma 4 hold. Then there
exists an invariant subsetM inR3 � SO 3 � R6 � R3

� �
forwhich the

complement is open and dense and is such that, for all initial
conditions

� ~!�0�; ~R�0�; ~��0�; ~d�0�� =2M

the solution of the closed-loop system consisting of Eqs. (8), (12),

(17), and (19) has the property that ~!�t� ! 0 and ~R�t� ! I as
t!1.

Proof. Under the stated assumptions, the time derivative of the

Lyapunov candidate V� ~!; ~R; ~�; ~d� defined by Eq. (16) is given by

Eq. (34). Because Kp > 0 and K1 and Kv are positive definite, _V is

negative except when S� 0 and ~!� 0, in which case _V � 0.
Therefore, for all

� ~!�0�; ~R�0�� 2 R3 � SO 3� �

and for each ~� 2 R6 and ~d 2 R3, the compact set

J �f� ~!; ~R; ~�; ~d� 2R3

�SO 3�R6�R3: V� ~!; ~R; ~�; ~d� �V� ~!�0�; ~R�0�; ~��0�; ~d�0��g
� �

is an invariant set of the closed-loop system.
Next, by the invariant-set theorem, it follows that all solutions that

begin in J converge to the largest invariant subset of _V�1�0�
contained inJ . From the proof of Lemma 4, it follows that the largest

invariant subset of _V�1�0� is E �[i�f0;1;2;3gEi, the union of the
equilibrium manifolds given by Eq. (32). Therefore, all solutions of
the closed-loop system converge to E \ J . Note that because Ad is

skew symmetric (and thus Lyapunov stable), ~d�t� has the same norm

bound as ~d�0� for all t > 0. Therefore, E0; . . . ; E3 and thus E are
compact invariant sets. Also, according to Lemma 4,

E 0 � f� ~!; ~R; ~�; ~d� � �0; I;Q0�g

is the only stable equilibrium manifold in R3 � SO 3 � R6 � R3
� �

.
The other three disjoint equilibriummanifolds have stable manifolds
that are closed submanifolds of R3 � SO 3 � R6 � R3

� �
. Let M

denote the union of these stable manifolds. Therefore, the comple-
ment of M is open and dense in R3 � SO 3 � R6 � R3

� �
. Conse-

quently, for all initial conditions

� ~!�0�; ~R�0�; ~��0�; ~d�0�� =2M

the solution of the closed-loop system consisting of Eqs. (8), (12),

(17), and (19) satisfies ~!�t� ! 0 and ~R�t� ! I as t!1. □

IV. Specialization to Slew Maneuvers

We now specialize the results of Sec. III to the case of a slew
maneuver, inwhich the objective is to bring the spacecraft to restwith
a specified attitude. Hence, we assume that the desired attitude Rd is
constant and thus!d � 0. In this case, we also assume for illustrative
purposes that the disturbance d is constant, which is modeled by
assuming thatAd � 0. In this case, the control law (21) of Theorem 2
is given by the proportional–integral–derivative-type control law:

u��B�1	�Kp � KvK1�S� CdD�1CTd
Z
t

0

�!� K1S�ds

� Kv!� ĴK1
_S� �Ĵ!� � !
 (36)

Note that the integral involves both position and rate terms, the term

involving _S is a rate term, and the last term is an acceleration. Because
Ad � 0, taking the Lyapunov function (16) yields Eq. (34), which
implies almost global stabilization of the constant desired config-
uration Rd. The control law (36) achieves zero steady-state error for
constant-attitude setpoint commands in the presence of constant
disturbances and without knowledge of J.

In the special case in which the disturbance is zero, the controller
given in Theorem 2 can be further simplified. In this case, it is not
necessary to include an estimate of the inertia. Specifically, we set
K1 � 0 and define V as
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V�!; ~R�≜ 1
2
!TJ!� Kp tr�A � A ~R� (37)

Taking u to be the proportional–derivative-type control law

u��B�1�KpS� Kv!� (38)

yields

_V�!; ~R� � �!TKv! (39)

which implies almost global stabilization of the constant desired
configuration Rd. This control law, which is given in [13], achieves
zero steady-state error for constant-attitude setpoint commands
without integral action and without knowledge of J.

The interpretation of the gains in Theorem 2 in terms of rate and
position gains is useful in suggesting how these values can be
adjusted to tune the dynamics of the closed-loop system. For further
discussion on this aspect, see [14].

The following result shows that, for slew maneuvers without
disturbances, it is possible to arbitrarily bound the level of torque
about each axis. Let �max�M� and �min�M� denote, respectively, the
maximum and minimum singular values of the matrix M. Further-
more, let kxk1 denote the largest absolute value of the components
of the vector x.
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Fig. 1 Eigenaxis attitude errors for the slew maneuver with a constant
nonzero disturbance. Convergence is achieved with no prior knowledge

of the spacecraft inertia or the constant disturbance.
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Fig. 2 Angular-velocity components for the slew maneuver with a

constant nonzero disturbance. Convergence to zero of the angular-

velocity components confirms that the spacecraft is brought to rest, as
indicated by Fig. 1.
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Fig. 3 Torque inputs for the slew maneuver with a constant nonzero

disturbance. No attempt is made here to constrain the amplitude of the

torque inputs during the transient.
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Fig. 5 Disturbance-estimate errors for the slew maneuver with a

constant nonzero disturbance. This plot shows that the disturbance

estimates converge to the true values.
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Fig. 4 Torque-input norm with a constant nonzero disturbance. This

plot shows that the componentwise norm of the control input ku�t�k1
does not satisfy Proposition 1, due to the presence of the disturbance.
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Proposition 1. Let � and � be positive numbers, let A�
diag�a1; a2; a3� be a diagonal positive-definite matrix with distinct
diagonal entries, and let Kp and Kv � Kv�!� be given by

Kp �
�

trA
(40)

and

Kv � �

1
1�j!1j 0 0

0 1
1�j!2j

0

0 0 1
1�j!3 j

2
64

3
75 (41)

Furthermore, assume that d� 0. Then for all t � 0, the control
torque given by Eq. (38) satisfies

ku�t�k1 �
�� �
�min�B�

(42)

Proof. Note that

ku�t�k1 � �max�B�1�kKv!�t� � KpS�t�k1

� 1

�min�B�
�kKv!�t�k1 � KpkS�t�k1�

� 1

�min�B�

�
�� �

trA

X3
i�1
kai	 ~RT�t�ei
 � eik2

�

� 1

�min�B�

�
�� �

trA

X3
i�1

ai

�
� �� �
�min�B�

□

V. Slew Maneuver Example

Let the inertia matrix J be given by

J�
5 �0:1 �0:5
�0:1 2 1

�0:5 1 3:5

2
4

3
5 kg �m2 (43)

for which the principal moments of inertia are 1.4947, 3.7997, and
5.2056, and let B� I. We consider a slew maneuver in which we
wish to bring the spacecraft from the initial attitudeR0 � I and initial
angular velocity

!�0� � 	 1 �1 0:5 
T rad=s

to rest at the desired final orientation Rd � diag�1;�1;�1� in the
presence of the constant torque disturbance

d� 	 0:7 �0:3 0 
T N �m

Hence, d is given by Eqs. (14) and (15), with Ad � 03�3 andCd � I3
and with the unknown initial condition d�0� � 	 0:7 �0:3 0 
.

For this slew maneuver, we set K1 � I3, and we choose A�
diag�1; 2; 3� and �� �� 1, which, by Proposition 1, enforces the
torque bound umax � 2 when no disturbance is present. Figures 1–6
show, respectively, the attitude errors, angular-velocity components,
torque inputs, torque-input norm, disturbance-estimate errors, and
inertia-estimate errors. Although the attitude error in Fig. 1 shows
that the response is underdamped, damping can be added by
increasing the derivative gain Kv; for details on adjusting the
damping and stiffness of a related controller, see [14]. Note that the
torque-input norm does not satisfy the torque bound given by
Proposition 1 due to the presence of the nonzero constant distur-
bance. Note also that the disturbance-estimate errors become small,
but a bias persists in the inertia estimates. This bias has no effect,
however, on the steady-state attitude error.

To limit the torque gains in the case of a nonzero disturbance, we
implement a simple variation of the controller given in Theorem 2.
Specifically, at each point in time, we reduce K1, Kp, and Kv to
approximately limit the magnitude of the control input. Although the
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Fig. 6 Inertia-estimate errors for a) principal moments of inertia and b) cross-product moments of inertia for the slew maneuver with a constant

nonzero disturbance. The inertia estimates do not converge to the true values because the command signal is not persistent. However, convergence of the

inertia estimates is not needed to achieve asymptotic tracking.
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magnitude of Eq. (24) can be limited by this technique, this
modification does not precisely limit the control input u due to the
fact that v1 and v2 given by Eqs. (22) and (23) do not [except for one
term in Eq. (22)] depend on these gains, although, for !d � 0, the

terms ~! � ! and ~RT _!d in Eq. (22) are zero. This technique is thus an
approximate saturation method. Figure 7 shows how the attitude-
error performance is degraded by this technique, and Fig. 8 shows the
corresponding torque norm, which is saturated at 4 N �m.

Next, we remove the disturbance by setting d� 0 and reconsider
the slew maneuver. Figures 9–12 show, respectively, the attitude
errors, angular-velocity components, torque inputs, and torque-input
norm. Note that the torque-input norm is well below the specified
bound. For larger initial angular velocities (not shown), the torque-
input norm approaches the bound.

VI. Spin Maneuver Example

We consider a spin maneuver with J given as in the previous
section, B� I, and with the spacecraft initially at rest with R� I.
The specified attitude is given by Rd�0� � I with desired constant
angular velocity

!d � 	 0:5 �0:5 �0:3 
T rad=s

and the disturbance is chosen to be the constant torque specified in
the previous section. We choose A� diag�1; 2; 3�, �� �� 1,
K1 �D� I3, and Q� I6. Figures 13–18 show, respectively, the
attitude errors, angular-velocity components, torque inputs, torque-
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Fig. 10 Angular-velocity components for the slew maneuver with zero
disturbance.
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Fig. 11 Torque inputs for the slew maneuver with zero disturbance.
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Fig. 9 Eigenaxis attitude errors for the slew maneuver with zero

disturbance.
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Fig. 8 Torque-input norm with a constant nonzero disturbance. The

input is limited to the specified value 4 N �m by the approximate

saturation technique.
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Fig. 7 Eigenaxis attitude errors for the slew maneuver with a constant
nonzero disturbance and with the control input limited by the

approximate saturation technique. The performance is degraded

relative to Fig. 1 due to the torque limit.
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input norm, inertia-estimate errors, and disturbance-estimate errors.
Note that, for this maneuver, the spin command consists of a speci-
fied time history (frequency and phase) of rotation about a body axis
aligned in a specified inertial direction. Figure 17 shows that, unlike
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Fig. 17 Disturbance-estimate errors for the spin maneuver. Unlike the
case of the slew maneuver shown in Fig. 5, the disturbance estimates do

not converge to the true values, although this has no effect on asymptotic

tracking.
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Fig. 16 Torque-input norm for the spin maneuver.
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Fig. 15 Torque inputs for the spin maneuver.
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Fig. 14 Angular-velocity components for the spin maneuver. The

asymptotic values confirm that the commanded spin rates are achieved.
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Fig. 13 Eigenaxis attitude errors for the spin maneuver, where the

command consists of a specified time history (frequency and phase) of

rotation about a body axis aligned in a specified inertial direction.
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Fig. 12 Torque-input normwith zero disturbance. This plot shows that

the componentwise norm of the control input ku�t�k1 satisfies

Proposition 1 because the disturbance is zero.
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the slew maneuver case shown in Fig. 5, the disturbance estimates
do not converge to the true values, although this has no effect on
asymptotic tracking.

Finally, we consider the spin maneuver example with a harmonic
disturbance having a known frequency of 1 Hz. Specifically, we
assume that zd has the form

zd�t� �
sin 2�t
2 cos 2�t
3 sin 2�t

2
4

3
5

To model this disturbance, let

Ad � block-diag

�
0 2�
�2� 0

� �
;

0 2�
�2� 0

� �
;

0 2�
�2� 0

� ��

Cd �
1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

2
4

3
5

and

d�0� � 	 0 2� 2 0 0 6� 
T

In accordance with Assumption 3, the initial condition d�0� that
determines the amplitudes and phases of the components of zd�t� is
unknown. We choose A� diag�1; 2; 3�, �� �� 1, K1 � I3,
D� I6, andQ� I6. Figure 19 shows the resulting eigenaxis attitude
errors.

VII. Conclusions

Almost global stabilizability (that is, Lyapunov stability with
almost global convergence) of spacecraft tracking is feasible without
inertia information and with continuous feedback. In addition,
asymptotic rejection of harmonic disturbances (including constant
disturbances as a special case) is possible with knowledge of the
disturbance spectrum but without knowledge of either the amplitude
or phase. These results have practical advantages relative to previous
controllers that 1) require exact or approximate inertia information or
2) are based on attitude parameterizations such as quaternions that
require discontinuous control laws or fail to be physically consis-
tent (that is, specify different control torques for the same physical
orientation).

A key problem that this paper does not fully resolve is that of
torque saturation. Although the approximate saturation technique
provides a simple technique for reducing the torque during tran-
sients, it is desirable to extend this technique to cases in which
sufficient torque is not available to follow the desired trajectory or
reject the ambient disturbances. In addition, the problem of deter-
mining persistent inputs that guarantee convergence of the inertia
estimates to their true values may be of interest in some applications.
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Fig. 19 Eigenaxis attitude errors for the spin maneuver with a 1 Hz

harmonic disturbance. The frequency of the disturbance is assumed to be

known, but neither the amplitude nor the phase of the disturbance need
to be known.
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Fig. 18 Inertia-estimate errors for a) principal moments of inertia and b) cross-product moments of inertia for the spin maneuver. As in the case of

Fig. 6, the inertia estimates do not converge to the true values because the command signal is not persistent.
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Finally, almost global stabilization for momentum-bias spacecraft is
of interest.
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