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We present a discrete-time adaptive control law for stabilization, command-following, and disturbance rejection
that is effective for systems that are unstable, multi-input/multi-output, and/or non-minimum phase. The adaptive
control algorithm includes guidelines concerning the modeling information needed for implementation. This
information includes the relative degree, the rst nonzero Markov parameter, and the non-minimum-phase zeros.
Exceptwhen the planthas non-minimum-phase zeros whose absolute value is less than the {dapiectral radius, the
required zero information can be approximated by a sufcient number of Markov parameters. No additional
information about the poles or zeros need be known. We present numerical examples to illustrate the algoritkm
effectiveness in handling systems with errors in the required modeling data, unknown latency, sensor noise, and
saturation.

I. Introduction systems without requiring an intermediate discretization step that

NLIKE robust control, which chooses control gains based on MaY éntail loss of stability margins. )

a prior, fixed level of modeling uncertainty, ac?aptive control _ References on discrete-time adaptive control include [2:2414
algorithms tune the feedback gains in response to the true plant andf! [2]: 2discrete-time adaptive control law with guaranteed stability is
exogenous signals: that is, commands and disturbances. Generall§eveloped under a minimum-phase assumption. Extensions given
speaking, adaptive controllers require less prior modeling infor- N [3] based on internal model control [25] and Lyapunov analysis
mation than robust controllers and thus can be viewed as highlyalso |nvc_)ke this assumption. TO circumvent the minimum-phase
parameter-robust control laws. The price paid for the ability of 2SSumption, the zero annihilation periodic control law [23] uses
adaptive control laws to operate with limited prior modeling infor- lifting to move all of the plant zeros to the origin. The drawback of
mation is the complexity of analyzing and quantifying the stability lifting, however, IS the need for op_en-loop operation durlng
and performance of the closed-loop system, especially in light of the@/térnating data windows. An alternative approach, developed in
fact that adaptive control laws, even for linear plants, are nonlinear. [14:15.17,18], is to exploit knowledge of the non-minimum-phase

Stability and performance analysis of adaptive control laws often zeros. In [14], kr_lowledge of th_e non-minimum-phase zeros is ysed
entails assumptions on the dynamics of the plant. For example, 40 allow matching of a desired closed-loop transfer function,
widely invoked assumption in adaptive control is passivity [1], which '€60gnizing that minimum-phase zeros can be canceled but not
is restrictive and difcult to verify in practice. A related assumptionis  MoVed. whereas non-minimum-phase zeros can neither be canceled
that the plant is minimum phase [2,3], which may entail the same hor moved.. I_nj;S_,;LS], knowledgg ofad|agpngl matrix .that contains
difficulties. In fact, sampling may give rise to non-minimum-phase the non-minimum-phase zeros is used within a multi-input/multi-

zeros whether or not the continuous-time system is minimum phase®UtPut (MIMO) directadaptive control algorithm. Finally, knowledge

[4], which must ultimately be accounted for by any adaptive control pf the unstable zeros of a rapidly sampled continuous-time single-

algorithm implemented digitally in a sampled-data control system. |nput(singlf2-c_)ut2$t (SISO) system with a real non-minimum-phase

Beyond these assumptions, adaptive control laws are known to be€r0 is used in [17]. . L

sensitive to unmodeled dynamics and sensor noise [5,6], which  Motivated by the adaptive control laws givenin[3,24], the goal of

necessitates robust adaptive control laws [7]. == T the present paper is to develop a discrete-time adaptive control law
In addition to these basic issues, adaptive control laws may entailthat is effective fc_)r non-mlnlmum_-phase systems. In particular, we

unacceptable transients during adaptation, which may be exacPresent an adaptive control algorithm that extends the retrospective

erbated by actuator limitations{B]. In fact, adaptive controlunder  cOStOPtimization approach used in [24]. This extension is based on a

extremely limited modeling information, such as uncertainty in the retrospective costthatincludes control weighting as well as alearning

; - ; ; : rate, which can be used to adjust the rate of controller convergence
signofthe high-frequency gain[11,12], may yieldatransientresponse nd thus the transient behavior of the closed-loop system. Unlike

that exceeds the practical limits of the plant. Therefore, the type an ; .
X practica’ imi P yp 24], which uses a gradient update, the present paper uses a Newton-

quality of the available modeling information as well as the speed of K date for th troll i the closed-f lution t
adaptation must be considered in the analysis and implementation of € update for the controller gains, as the closed-form solution to a
adaptive control laws. These issues are stressed in [13] quadratic optimization problem. Ndlifie calculations are needed to

Adaptive control laws have been developed in both continuous- implement the algorithr_‘n. A key aspect of this ex_tension is_ the fact
time and discrete-time settings. In the present paper, we conside‘hat the required modeling information |s.the relative degreﬁrﬁng
discrete-time adaptive control laws, since these control laws can bd1°nZero Markov parameter, and non-minimum-phase zeros, if any.
implemented directly in embedded code for sampled-data control=XcePtwhen the planthas non-minimum-phase zeros whose absolute

value is less than the plasspectral radius, we show that the required
zero information can be approximated by afisignt number of
Markov parameters from the control inputs to the performance
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saturation. These numerical examples provide guidance into Letting the data window sizebe a positive integer, we fiee the
choosing the design parameters of the adaptive control law in termsxtended performance vecibk 2 RPz andU k 2 R% by

of the learning rate, data window size, controller order, modeling

data, and control weightings. Preliminary versions of the present

paper are given in [26,27]. 2 K 3 2 Uk 3
. zk CHh Z Uk & £ (5
[I.  Problem Formulation 2 K Uk
Consider the MIMO discrete-time system P Ge
X Kk Axk Buk Dwk 1)
whereq. [n1 p . The data window size has a small but
yk Cxk Dwk 2 noticeable effect on transient behavior. Now Eq. (4) can be written in
the form
zk Exk Ewk 3)
Zk sz zw k BzuU K (6)

wherexk 2 R", yk 2 RY,zk 2 Rz, uk 2 R, wk 2 Rlw,

and k . Our goal is to develop an adaptive output-feedback
controller under which the performance variai¢aminimized in the
presence of the exogenous sigmaln Egs. (3), w can represent ~ where W,, 2 RPlz &lz & W B 2 RP: &L and ,,2
either acommand signal to be followed, an external disturbance to beR%'= % w are given by

2 3
I, nli, 1, 1, n Iy Iy Iy Iy
Woy Egil Iz 1z o é @
17 1, Iz lw
1, o, l i, 1, I n
rejected, or both. For example, [if andE # , then the 2 n Lo Lo 3
objective is to have the outptx follow the command signalE w.
On the other hand, iDb # andE , then the objective is B I, 1y @)
to reject the disturbanee from the performance variabte x. The 2
combined command-following and disturbance-rejection problem is R
addressed wheb andE are suitably partitioned matrices. More Iz 1y Iz 1y n
precisely, ifD D JE E ,and
and
1 1
w k zk
w k
then the objective is to hate x follow the command E w while K k p n 9
rejecting the disturband® w . Finally, if D andE are zero w w k ©)

matrices, then the objective is output stabilization, that is, con-

vergence of to zero. We assume tha, @) is stabilizable 4, C) and

(A, E ) are detectable, and that measurementsnélz are available wk p n

for feedback. If the command signal is included as a component _ o _

of y, then the adaptive controller has a feedforward architecture.Note thabW,, includes modeling information about the plant poles
For disturbance-rejection problems, the controller does not requiréd"d €xogenous input path, wherdgg includes modeling infor-

measurements of the external disturbamce mation about the plant zeros. Bath,, andB,, have block-Toeplitz
structure.
_ . ARMAX Mo_deling _ IV. Controller Construction
Consider the ARMAX representation of Egs. (1) and (3), given by 1¢ formulate an adaptive control algorithm for Egs3{1we use a
> > > strictly proper time-series controller of ordeisuch that the control
zk izk i uk i wk i (4 u k is given by
i i i D74 . < .
where ; ; 2R, ; ; s2R2and ; ; 2Rz, uk i Pikuk i i Qikyk i (10)
We ddine the relative degree  as the smallest positive integer
such that théth Markov parametel, CEJA B 2 Rz v is non- whereP; k 2 R 'v andQ; k 2 R v foralli ; ;nc. The
zero. Note that il , thenH , whereas ifi ,then controller orden, is determined by standard control guidelines in
terms of stabilization and disturbance rejection. The control (10) can
d H Hy be expressed as

andHy 4. uk k k (11)
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where

k CQ k
2R|“ nely ly

Q. k P K

P, k
(12)

is the controller gain matrix, and the regressor vectoris given by

y k
kK ng nely |
k Lk 2R y (13)
uk ng
We ddine the extended control vectdrk 2 RP<u by
2 3
u k
Uk C g (14)
uk pe
wherep. q.. Note that ifp, qc, thenU k U k. From

Eqg. (11), it follows that the extended control vedtbk can be
written as

>

U k Lk i ki (15)

where
2 3

[
L% 1, S2Reb

pC ||u ILI

(16)

Next, we déine the retrospective performance veztork 2 RP'
by

Z kW, wk BuU Kk ByuUk U ;k (17)
where 2 R'v "l ly s the surrogate controller gain mati, 2

RPlz Pelu js the surrogate input matrix, and

>
Uk CL

ki (18)

is the recomputed extended control vector. Substituting Eq. (6) into
Eq. (17) yields

Z;k Zk ByUk U sk (29)
Note that the expression f@& ;k given by Eq. (19) does not
depend on either the exogenous signar the matriXx\,,,, which
includes information about the open-loop poles as well as the transfe

function fromw to z. Hence, we do not need to know this model data,

and wherw represents a disturbance, we do not need to assume that

w is known. However, whew represents a command, thvecan be
viewed as an additional measuremgrand thus the controller has
feedforward action. The matri,, is discussed in Sec. VI.

Note that Eq. (19) can be rewritten as

Z :k fk DKk (20)
where
f Kk CZk B,Uk 2 RM: (21)
X<
Dk C Tk i Byl 2 RP'z Nelulu ly (22)
i

vec is the column-stacking operator, ancepresents the Kronecker
product. Now consider the retrospective cost function
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J:k CZ1 kR KZ :k Z" ')k R ku :k
u't ok R ku ;k
R k k TR k

k (23)

whereR k 2 Rz Pz R k2 RPzl R k2 Ruw R k 2
Rnclu ly nely |y,R k 2 RILI Iu’

1 1
Rk R k
RTk RKk

is positive semidinite, R k andR k are positive dinite, and

u;k [k (24)
Substituting Eq. (20) into Eq. (23) yields
J ;k ™ k bT k ck (25)
where
Mk CDIkR kDk D"k Tk R k
k Tk Rk Rk Rk (26)
bk CD"kR kfk k R kfk
Rk RKkK k (27)
ck CIIkR kf k Rk TkR k k (28)

SinceM k is positive déinite,J ;k hasthe strict global minimizer
k given by
k

M kbk

- (29)
Equation (29) is the adaptive control update law. Noté&hdtwhich
appears iri k andD k ) must be spefied in order to implement
Eg. (29). Furthermore, Eq. (29) requires the online inversion of a

positive-déinite matrix of sizen I, I, I, ncl, 1, |, .
In the special case
T, R k [} R k 51, (30)
R k C—Kly i, 1, R k [T (31)
where k > s ascalar, Eqgs. (2@8) become
Mk DTkDEKk Ko, 1, 1, (32)
r
b k DT kf k k k (33)
ck fTkfk k Tk k (34)
Using the matrix inversion lemma, it follows that
M k k lnclu Iy |y
kD" k kly, DkD"k Dk (35)

Consequently, in this case, the update law (29) requires the online
inversion of a positive-dinite matrix of sizepl, pl,. We use the
weightings (30) and_(31) for all of the examples in this paper. The
weighting parameter k introduced in Eq.(31) is called the learning
rate, since it affects the convergence speed of the adaptive control
algorithm. As k is increased, a higher weight is placed on the
difference between the previous controller fioefts and the
updated controller coié€ients and, as a result, convergence speed is
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Fig. 1 Closed-loop system including adaptive control algorithm with
the retrospective correction lter (dashed box) forp 11

lowered. Likewise, as k is decreased, convergence speed is raised.
By varying k , we can effect tradeoffs between transient perfor-
mance and convergence speed.

We ddine the retrospective performance variat®eR'= by

zk [ ,Z kk

In the particular case af vy, usingz in place ofy in the regressor
vector (13) yields faster convergence. Therefore,zfory, we
reddine Eq. (13) as > 3

I; 1 I, (36)

(37)

uk ng

The novel feature of the adaptive control algorithm given by

Egs. (11) and_(29) is the use of the RCF (19), as shown in Fig. 1 fornormal rank op, g : thatis, the maximum rank pf

p . RCF provides an inner loop to the adaptive control law by
modifying the extended performance vedok in terms of the
difference between the actual past control inguitk and the

recomputed control input$ ;k .

V. Markov-Parameter Polynomial

By recursively substituting Eq. (1) into Eqg. (3), it follows that
can be represented by

zk EAXkK r Huk Huk
Huk r H, wk H, wk
HawyW k1 (38)
wherer  dandH,,, [ElandH,,; CEWW D foralli> .lIn

terms of the backward-shift operatpr, Eq. (38) can be rewritten as

zk E Aq "xk Hq H g H,q "uk
sz; sz; q sz;rq ' w k (39)
Shifting Eq. (39) forward by steps gives
zk r EAxk p,quk W qgwk (40)
whereq is the forward-shift operator,
WI' q I:ng; ql’ HZW; ql’ HZW; ql’ HZW;T (41)
and
prq [Hlg" HAq H, (42)
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We callp, q the Markov-parameter polynomial. Note thatq is
a matrix polynomial in the MIMO case and a polynomial in the SISO

case. Furthermore, sinad Hy when d , it
follows thatp, q forallr d can be written as
Prq  Heq" ¢ Hy g ¢ H, (43)

The Markov-parameter polynomigl, g contains information
about the relative degrdeand, in the SISO case, the sign of the high-
frequency gain: thatis, the signtdf. We show below that, q also
contains information about the transmission zerosGQfz [_1
E zI A B, whichis given by
z" z"

G 2 (44)

z" z" R 8
To relate the transmission zero€of top, q ,the Laurent series

expansion o5,, aboutz 1 s given by

x

G, z z 'H, (45)

I
This expansion converges uniformly on all compact subsets of
fzjzj> Ag, where A is the spectral radius oA ([28],
Theorem 13, page 186). By truncating the summation in Eq. (45), we
obtain the truncated Laurent expans@n, of G,,, given by
x
Gz 2z 'H; = HZ

H z H,

ZTpr z (46)
Consequently, the Markov-parameter polynomialy is closely
related to the truncated Laurent expansioB gf

A. Approximation of Outer Non-Minimum-Phase Zeros

In the case of MIMO systemp, g is a matrix polynomial and
thus does not have roots in the sense of a polynomial. We therefore
require the notion of a Smith zero ([29], page 259). Siwadiy,

z 2 Cis a Smith zero op, q if the rank ofp, z is less than the
taken over
al 2C

Let 2 Cbe atransmission zero@f,. Then is an outer zero of
G, ifj ] A . Otherwise, is aninner zero o&,,.

The following result shows that the Smith zeros of the Markov-
parameter polynomial, g asymptotically approximate each outer
transmission zero @,,.

Factl Let 2 Cbe anoutertransmission zerd3f,. For eachr,
letR, 1} ; ., gdenotethe setof Smithzeropoefq . Then
there exists a sequenicg; ¢ that converges toasr ! 1

The following specialization to SISO transfer functions shows
that the roots op, g asymptotically approximate each outer zero
of G,

Fact2 Considet, |, ,andlet 2 Cbeanouterzero @,,.

For eactr, letR, -1 ; ; , qgbe the set of roots qf, q .
Thenthere exists a sequeffigg, g  that converges toasr ! 1

The following examples illustrate Fact 2 by showing that as
increases, roots of the Markov-parameter polynomiad] , and
hence roots of the numerator of the truncated transfer fur@tign
asymptotically approximate each outer non-minimum-phase zero of
G,,. The remaining roots qf, g are either located at the origin or
form an approximate ring with radius close té . These roots are
spurious and have no effect on the adaptive control algorithm.

Example 1 (SISO, non-minimum-phase, stable pl@uhsider
the plantG,, with d ; H ; poles : A ,

, and 1 |; minimum-phase zeros : :] and

: . |; and outer non-minimum-phase zeros 1.25 and.
Table 1 lists the approximated non-minimum-phase zeros obtained
asroots op, q as afunction of. Note that as increases, the outer
non-minimum-phase zeros are more closely approximated by the
roots ofp, q (see Fig. 2).
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