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We present a discrete-time adaptive control law for stabilization, command-following, and disturbance rejection
that is effective for systems that are unstable, multi-input/multi-output, and/or non-minimum phase. The adaptive
control algorithm includes guidelines concerning the modeling information needed for implementation. This
information includes the relative degree, the� rst nonzero Markov parameter, and the non-minimum-phase zeros.
Except when the plant has non-minimum-phase zeros whose absolute value is less than the plant’s spectral radius, the
required zero information can be approximated by a suf� cient number of Markov parameters. No additional
information about the poles or zeros need be known. We present numerical examples to illustrate the algorithm’s
effectiveness in handling systems with errors in the required modeling data, unknown latency, sensor noise, and
saturation.

I. Introduction

UNLIKE robust control, which chooses control gains based on
a prior,fixed level of modeling uncertainty, adaptive control

algorithms tune the feedback gains in response to the true plant and
exogenous signals: that is, commands and disturbances. Generally
speaking, adaptive controllers require less prior modeling infor-
mation than robust controllers and thus can be viewed as highly
parameter-robust control laws. The price paid for the ability of
adaptive control laws to operate with limited prior modeling infor-
mation is the complexity of analyzing and quantifying the stability
and performance of the closed-loop system, especially in light of the
fact that adaptive control laws, even for linear plants, are nonlinear.

Stability and performance analysis of adaptive control laws often
entails assumptions on the dynamics of the plant. For example, a
widely invoked assumption in adaptive control is passivity [1], which
is restrictive and difficult to verify in practice. A related assumption is
that the plant is minimum phase [2,3], which may entail the same
difficulties. In fact, sampling may give rise to non-minimum-phase
zeros whether or not the continuous-time system is minimum phase
[4], which must ultimately be accounted for by any adaptive control
algorithm implemented digitally in a sampled-data control system.
Beyond these assumptions, adaptive control laws are known to be
sensitive to unmodeled dynamics and sensor noise [5,6], which
necessitates robust adaptive control laws [7].

In addition to these basic issues, adaptive control laws may entail
unacceptable transients during adaptation, which may be exac-
erbated by actuator limitations [8–10]. In fact, adaptive control under
extremely limited modeling information, such as uncertainty in the
signof thehigh-frequencygain [11,12],mayyieldatransient response
that exceeds the practical limits of the plant. Therefore, the type and
quality of the available modeling information as well as the speed of
adaptation must be considered in the analysis and implementation of
adaptive control laws. These issues are stressed in [13].

Adaptive control laws have been developed in both continuous-
time and discrete-time settings. In the present paper, we consider
discrete-time adaptive control laws, since these control laws can be
implemented directly in embedded code for sampled-data control

systems without requiring an intermediate discretization step that
may entail loss of stability margins.

References on discrete-time adaptive control include [2,3,14–24].
In [2], adiscrete-time adaptivecontrol lawwith guaranteed stability is
developed under a minimum-phase assumption. Extensions given
in [3] based on internal model control [25] and Lyapunov analysis
also invoke this assumption. To circumvent the minimum-phase
assumption, the zero annihilation periodic control law [23] uses
lifting to move all of the plant zeros to the origin. The drawback of
lifting, however, is the need for open-loop operation during
alternating data windows. An alternative approach, developed in
[14,15,17,18], is to exploit knowledge of the non-minimum-phase
zeros. In [14], knowledge of the non-minimum-phase zeros is used
to allow matching of a desired closed-loop transfer function,
recognizing that minimum-phase zeros can be canceled but not
moved, whereas non-minimum-phase zeros can neither be canceled
nor moved. In [15,18], knowledge of a diagonal matrix that contains
the non-minimum-phase zeros is used within a multi-input/multi-
output (MIMO)directadaptivecontrolalgorithm.Finally, knowledge
of the unstable zeros of a rapidly sampled continuous-time single-
input/single-output (SISO) system with a real non-minimum-phase
zero is used in [17].

Motivated by the adaptive control laws given in [3,24], the goal of
the present paper is to develop a discrete-time adaptive control law
that is effective for non-minimum-phase systems. In particular, we
present an adaptive control algorithm that extends the retrospective
cost optimization approach used in [24]. This extension is based on a
retrospective cost that includes control weighting as well as a learning
rate, which can be used to adjust the rate of controller convergence
and thus the transient behavior of the closed-loop system. Unlike
[24], which uses a gradient update, the present paper uses a Newton-
like update for the controller gains, as the closed-form solution to a
quadratic optimization problem. No offline calculations are needed to
implement the algorithm. A key aspect of this extension is the fact
that the required modeling information is the relative degree, thefirst
nonzero Markov parameter, and non-minimum-phase zeros, if any.
Exceptwhen theplanthasnon-minimum-phase zeroswhoseabsolute
value is less than the plant’s spectral radius, we show that the required
zero information can be approximated by a sufficient number of
Markov parameters from the control inputs to the performance
variables. No matching conditions are required on either the plant
uncertainty or disturbances.

The goal of the present paper is to develop the retrospective
correctionfilter (RCF) adaptive control algorithm and demonstrate
its effectiveness for handling non-minimum-phase zeros. To this
end, we consider a sequence of examples of increasing complexity,
ranging from SISO minimum-phase plants to MIMO non-minimum-
phase plants, including stable and unstable cases. We then revisit
these plants under offnominal conditions: that is, with uncertainty in
the required plant modeling data, unknown latency, sensor noise, and
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saturation. These numerical examples provide guidance into
choosing the design parameters of the adaptive control law in terms
of the learning rate, data window size, controller order, modeling
data, and control weightings. Preliminary versions of the present
paper are given in [26,27].

II. Problem Formulation
Consider the MIMO discrete-time system

x�k � 1� � Ax�k� � Bu�k� � D1w�k� (1)

y�k� � Cx�k� � D2w�k� (2)

z� k� � E1x�k� � E0w�k� (3)

wherex�k� 2 Rn, y� k� 2 Rl y , z� k� 2 Rl z , u� k� 2 Rl u , w�k� 2 Rlw ,
and k � 0. Our goal is to develop an adaptive output-feedback
controller under which the performancevariablezis minimized in the
presence of the exogenous signalw. In Eqs. (1–3), w can represent
either a command signal to be followed, an external disturbance to be

rejected, or both. For example, ifD1 � 0 and E0 ≠ 0, then the
objective is to have the outputE1x follow the command signal� E0w.
On the other hand, ifD1 ≠ 0 and E0 � 0, then the objective is
to reject the disturbancew from the performance variableE1x. The
combined command-following and disturbance-rejection problem is
addressed whenD1 andE0 are suitably partitioned matrices. More
precisely, ifD1 � � D11 0 �, E0 � � 0 E02 �, and

w�k� �
w1� k�
w2� k�

� �

then the objective is to haveE1x follow the command� E02w2 while
rejecting the disturbanceD11w1. Finally, if D1 and E0 are zero
matrices, then the objective is output stabilization, that is, con-
vergence ofzto zero. We assume that (A,B) is stabilizable, (A,C) and
(A, E1) are detectable, and that measurements ofy andzare available
for feedback. If the command signal is included as a component
of y, then the adaptive controller has a feedforward architecture.
For disturbance-rejection problems, the controller does not require
measurements of the external disturbancew.

III. ARMAX Modeling
Consider the ARMAX representation of Eqs. (1) and (3), given by

z�k� �
Xn

i � 1

� � i z� k � i � �
Xn

i � 1

� i u� k � i � �
Xn

i � 0

� i w�k � i � (4)

where� 1; . . . ; � n 2 R, � 1; . . . ; � n 2 Rl z	 lu , and� 0; . . . ; � n 2 Rl z	 lw .
We define the relative degreed � 1 as the smallest positive integeri
such that thei th Markov parameterHi ≜ E1Ai� 1B 2 Rl z	 lu is non-
zero. Note that ifd � 1, thenH1 � � 1, whereas ifd � 2, then

� 1 � 
 
 
 � � d� 1 � H1 � 
 
 
 � Hd� 1 � 0

andHd � � d.

Letting the data window sizep be a positive integer, we define the
extended performance vectorZ�k� 2 Rpl z andU1� k� 2 Rqclu by

Z�k� ≜
z�k�
..
.

z�k � p � 1�

2

64

3

75; U1� k� ≜
u�k � 1�

..

.

u�k � qc�

2

64

3

75 (5)

whereqc ≜ n � p � 1. The data window sizep has a small but
noticeable effect on transient behavior. Now Eq. (4) can be written in
the form

Z�k� � Wzw� zw� k� � BzuU1� k� (6)

where Wzw 2 Rpl z	� qclz�� qc� 1� lw�, Bzu 2 Rpl z	 qclu , and � zw 2
Rqclz�� qc� 1� lw are given by

Wzw ≜

� � 1I lz 
 
 
 � � nI lz 0l z	 l z 
 
 
 0l z	 l z � 0 
 
 
 �n 0l z	 lw 
 
 
 0l z	 lw

0l z	 l z
. .
. . .

. . .
. ..

.
0l z	 lw

. .
. . .

. . .
. ..

.

..

. . .
. . .

. . .
.

0l z	 l z
..
. . .

. . .
. . .

.
0l z	 lw

0l z	 l z 
 
 
 0l z	 l z � � 1I l z

 
 
 � � nI lz 0l z	 lw 
 
 
 0l z	 lw � 0 
 
 
 �n

2

66664

3

77775
(7)

Bzu ≜

� 1 
 
 
 � n 0l z	 l u

 
 
 0l z	 l u

0l z	 lu
. .
. . .

. . .
. ..

.

..

. . .
. . .

. . .
.

0l z	 l u

0l z	 lu 
 
 
 0l z	 lu � 1 
 
 
 � n

2

66664

3

77775
(8)

and

� zw� k� ≜

z�k � 1�
..
.

z�k � p � n � 1�
w�k�
..
.

w�k � p � n � 1�

2

666666664

3

777777775

(9)

Note thatWzw includes modeling information about the plant poles
and exogenous input path, whereasBzu includes modeling infor-
mation about the plant zeros. BothWzw andBzu have block-Toeplitz
structure.

IV. Controller Construction
To formulate an adaptive control algorithm for Eqs. (1–3), we use a

strictly proper time-series controller of ordernc such that the control
u�k� is given by

u�k� �
Xnc

i � 1

Pi � k�u�k � i � �
Xnc

i � 1

Qi �k�y�k � i � (10)

wherePi � k� 2 Rl u	 lu andQi � k� 2 Rl u	 l y for all i � 1; . . . ; nc. The
controller ordernc is determined by standard control guidelines in
terms of stabilization and disturbance rejection. The control (10) can
be expressed as

u�k� � � � k� � � k� (11)
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where

� �k� ≜ � Q1� k� 
 
 
 Qnc
� k� P1� k� 
 
 
 Pnc

� k� �

2 Rl u	 nc� lu� l y� (12)

is the controller gain matrix, and the regressor vector� � k� is given by

� �k� ≜

y�k � 1�
..
.

y�k � nc�
u�k � 1�

..

.

u�k � nc�

2

666666664

3

777777775

2 Rnc� lu� l y� (13)

We define the extended control vectorU�k� 2 Rpclu by

U�k� ≜
u�k � 1�

..

.

u�k � pc�

2

64

3

75 (14)

wherepc � qc. Note that ifpc � qc, then U�k� � U1� k� . From
Eq. (11), it follows that the extended control vectorU�k� can be
written as

U�k� �
Xpc

i � 1

Li � � k � i � � � k � i � (15)

where

Li ≜
0� i � 1� l u	 lu

I lu
0� pc� i � l u	 lu

2

4

3

5 2 Rpclu	 lu (16)

Next, we define the retrospective performance vectorẐ� �̂; k � 2 Rpl z

by

Ẑ� �̂; k �Wzw� zw�k� � BzuU1� k� � �Bzu�U�k� � Û� �̂; k �� (17)

where�̂ 2 Rl u	 nc� lu� l y� is the surrogate controller gain matrix,�Bzu 2
Rpl z	 pclu is the surrogate input matrix, and

Û� �̂; k � ≜
Xpc

i � 1

Li �̂� � k � i � (18)

is the recomputed extended control vector. Substituting Eq. (6) into
Eq. (17) yields

Ẑ� �̂; k � � Z�k� � �Bzu�U�k� � Û� �̂; k �� (19)

Note that the expression for̂Z� �̂; k � given by Eq. (19) does not
depend on either the exogenous signalw or the matrixWzw, which
includes information about the open-loop poles as well as the transfer
function fromw toz. Hence, we do not need to know this model data,
and whenw represents a disturbance, we do not need to assume that
w is known. However, whenw represents a command, thenw can be
viewed as an additional measurementy, and thus the controller has
feedforward action. The matrix�Bzu is discussed in Sec. VI.

Note that Eq. (19) can be rewritten as

Ẑ� �̂; k � � f � k� � D�k�vec�̂ (20)

where

f �k� ≜ Z�k� � �BzuU�k� 2 Rpl z (21)

D�k� ≜
Xpc

i � 1

� T� k � i � � � �BzuLi � 2 Rpl z	 nclu� lu� l y� (22)

vec is the column-stacking operator, and� represents the Kronecker
product. Now consider the retrospective cost function

J� �̂; k � ≜ ẐT� �̂; k �R1� k� Ẑ� �̂; k � � 2ẐT� �̂; k �R12� k� û� �̂; k � 1�

� ûT� �̂; k � 1�R2� k� û� �̂; k � 1�

� tr�R3� k�� �̂ � � � k�� TR4� k�� �̂ � � � k��� (23)

whereR1� k� 2 Rpl z	 pl z , R12� k� 2 Rpl z	 lu , R2� k� 2 Rl u	 lu , R3� k� 2
Rnc� lu� l y�	 nc� lu� l y� , R4� k� 2 Rl u	 lu ,

R1� k� R12� k�
RT
12� k� R2� k�

� �

is positive semidefinite,R3� k� andR4� k� are positive definite, and

û� �̂; k � ≜ �̂� � k� (24)

Substituting Eq. (20) into Eq. (23) yields

J� �̂; k � � � vec �̂ � TM�k�vec �̂ � bT� k�vec �̂ � c� k� (25)

where

M�k� ≜ DT�k�R1� k�D�k� � 2DT�k�� � T� k� � R12� k��

� � � � k� � T� k�� � R2� k� � R3� k� � R4� k� (26)

b�k� ≜ 2DT�k�R1� k� f � k� � 2�� � k� � RT
12� k�� f � k�

� 2�R3� k� � R4� k��vec � � k� (27)

c�k� ≜ f T� k�R1� k� f � k� � tr�R3� k� � T� k�R4� k� � � k�� (28)

SinceM�k� is positive definite,J� �̂; k � has the strict global minimizer
� � k � 1� given by

� � k � 1� � � 1
2
vec� 1�M� 1� k�b�k�� (29)

Equation (29) is the adaptive control update law. Note that�Bzu (which
appears inf � k� andD�k� ) must be specified in order to implement
Eq. (29). Furthermore, Eq. (29) requires the online inversion of a
positive-definite matrix of sizenclu� l u � l y� 	 ncl u� l u � l y� .

In the special case

R1� k� ≜ I pl z
; R12� k� ≜ 0pl z	 l u

; R2� k� ≜ 0l u	 lu (30)

R3� k� ≜ � � k� I nc� lu� l y� ; R4� k� ≜ I lu (31)

where� � k� > 0 is a scalar, Eqs. (26–28) become

M�k� � DT�k�D�k� � � � k� I nclu� l u� l y� (32)

b�k� � 2DT�k� f � k� � 2� � k�vec � � k� (33)

c�k� � f T� k� f � k� � � � k� tr�� T� k� � � k�� (34)

Using the matrix inversion lemma, it follows that

M� 1� k� � � � 1� k� I nclu� lu� l y�

� � � 1� k�DT�k�� � � k� I pl z
� D�k�DT�k�� � 1D�k� (35)

Consequently, in this case, the update law (29) requires the online
inversion of a positive-definite matrix of sizepl z 	 pl z. We use the
weightings (30) and (31) for all of the examples in this paper. The
weighting parameter� � k� introduced in Eq. (31) is called the learning
rate, since it affects the convergence speed of the adaptive control
algorithm. As� �k� is increased, a higher weight is placed on the
difference between the previous controller coefficients and the
updated controller coefficients and, as a result, convergence speed is
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lowered. Likewise, as� � k� is decreased, convergence speed is raised.
By varying � �k� , we can effect tradeoffs between transient perfor-
mance and convergence speed.

We define the retrospective performance variableẑ 2 Rl z by

ẑ� k� ≜ � I lz 0l z	 l z 
 
 
 0l z	 l z �Ẑ� � � k� ; k� (36)

In the particular case ofz � y, usingẑ in place ofy in the regressor
vector (13) yields faster convergence. Therefore, forz � y, we
redefine Eq. (13) as

� � k� ≜

ẑ� k � 1�
..
.

ẑ� k � nc�
u� k � 1�

..

.

u�k � nc�

2

666666664

3

777777775

(37)

The novel feature of the adaptive control algorithm given by
Eqs. (11) and (29) is the use of the RCF (19), as shown in Fig. 1 for
p � 1. RCF provides an inner loop to the adaptive control law by
modifying the extended performance vectorZ�k� in terms of the
difference between the actual past control inputsU�k� and the
recomputed control inputŝU� �̂; k � .

V. Markov-Parameter Polynomial
By recursively substituting Eq. (1) into Eq. (3), it follows thatz�k�

can be represented by

z�k� � E1Ar x�k � r � � H1u�k � 1� � H2u�k � 2� � 
 
 


� Hr u� k � r � � Hzw;0w�k� � Hzw;1w�k � 1� � 
 
 


� Hzw;rw�k � r � (38)

wherer � d andHzw;0 ≜ E0, andHzw;i ≜ E1Ai� 1D1 for all i > 0. In
terms of the backward-shift operatorq� 1, Eq. (38) can be rewritten as

z�k� � E1Ar q� r x�k� � � H1q� 1 � H2q� 2 � 
 
 
 � Hr q� r �u� k�

� � Hzw;0 � Hzw;1q� 1 � 
 
 
 � Hzw;rq� r �w�k� (39)

Shifting Eq. (39) forward byr steps gives

z�k � r � � E1Ar x�k� � pr � q�u�k� � Wr �q�w�k� (40)

whereq is the forward-shift operator,

Wr �q� ≜ Hzw;0qr � Hzw;1qr� 1 � Hzw;2qr� 2 � 
 
 
 � Hzw;r (41)

and

pr �q� ≜ H1qr� 1 � H2qr� 2 � 
 
 
 � Hr (42)

We callpr �q� the Markov-parameter polynomial. Note thatpr �q� is
a matrix polynomial in the MIMO case and a polynomial in the SISO
case. Furthermore, sinceH1 � 
 
 
 � Hd� 1 � 0 when d � 2, it
follows thatpr �q� for all r � d � 1 can be written as

pr �q� � Hdqr� d � Hd� 1qr� d� 1 � 
 
 
 � Hr (43)

The Markov-parameter polynomialpr �q� contains information
about the relative degreed and, in the SISO case, the sign of the high-
frequency gain: that is, the sign ofHd. We show below thatpr �q� also
contains information about the transmission zeros ofGzu� z�≜
E1� zI � A� � 1B, which is given by

Gzu� z� �
1

zn � � 1zn� 1 � 
 
 
 � � n
� � 1zn� 1 � � 2zn� 2 � 
 
 
 � � n� (44)

To relate the transmission zeros ofGzu topr �q� , the Laurent series
expansion ofGzu aboutz � 1 is given by

Gzu� z� �
X1

i � 1

z� i Hi (45)

This expansion converges uniformly on all compact subsets of
f z:jzj > � �A�g, where � �A� is the spectral radius ofA ([28],
Theorem 13, page 186). By truncating the summation in Eq. (45), we
obtain the truncated Laurent expansion�Gr;zu of Gzu, given by

�Gr;zu� z� ≜
Xr

i � 1

z� i Hi �
1

zr �H1zr� 1 � 
 
 
 � Hr � 1z � Hr �

�
1

zr pr � z� (46)

Consequently, the Markov-parameter polynomialpr �q� is closely
related to the truncated Laurent expansion ofGzu.

A. Approximation of Outer Non-Minimum-Phase Zeros

In the case of MIMO systems,pr �q� is a matrix polynomial and
thus does not have roots in the sense of a polynomial. We therefore
require the notion of a Smith zero ([29], page 259). Specifically,
z 2 C is a Smith zero ofpr �q� if the rank ofpr � z� is less than the
normal rank ofpr �q� : that is, the maximum rank ofpr � � � taken over
all � 2 C.

Let � 2 C be a transmission zero ofGzu. Then� is an outer zero of
Gzu if j� j � � �A� . Otherwise,� is an inner zero ofGzu.

The following result shows that the Smith zeros of the Markov-
parameter polynomialpr � q� asymptotically approximate each outer
transmission zero ofGzu.

Fact 1. Let� 2 C be an outer transmission zero ofGzu. For eachr ,
letR r ≜ f � r;1; . . . ; � r;mr

gdenote the set of Smith zeros ofpr �q� . Then
there exists a sequencef � r;i r

g1
r � 1 that converges to� asr ! 1 .

The following specialization to SISO transfer functions shows
that the roots ofpr �q� asymptotically approximate each outer zero
of Gzu.

Fact 2. Considerlu � l z � 1, and let� 2 C be an outer zero ofGzu.
For eachr , let R r ≜ f � r;1; . . . ; � r;r � dg be the set of roots ofpr �q� .
Then there exists a sequencef � r;i r

g1
r � 1 that converges to� asr ! 1 .

The following examples illustrate Fact 2 by showing that asr
increases, roots of the Markov-parameter polynomialpr �q� , and
hence roots of the numerator of the truncated transfer function�Gr;zu,
asymptotically approximate each outer non-minimum-phase zero of
Gzu. The remaining roots ofpr �q� are either located at the origin or
form an approximate ring with radius close to� �A� . These roots are
spurious and have no effect on the adaptive control algorithm.

Example 1 (SISO, non-minimum-phase, stable plant). Consider
the plantGzu with d � 2; H2 � 1; poles0:5 � 0:5| , � 0:5 � 0:5| ,
� 0:95, and � 0:7| ; minimum-phase zeros0:3 � 0:7| and
� 0:7 � 0:3| ; and outer non-minimum-phase zeros 1.25 and� 1:5.
Table 1 lists the approximated non-minimum-phase zeros obtained
as roots ofpr �q� as a function ofr . Note that asr increases, the outer
non-minimum-phase zeros are more closely approximated by the
roots ofpr �q� (see Fig. 2).

Fig. 1 Closed-loop system including adaptive control algorithm with
the retrospective correction� lter (dashed box) forp � 1.
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