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Output-feedback control of linear
time-varying and nonlinear systems
using the forward propagating
Riccati equation

Anna Prach1, Ozan Tekinalp2 and Dennis S Bernstein3

Abstract

For output-feedback control of linear time-varying (LTV) and nonlinear systems, this paper focuses on control based on

the forward propagating Riccati equation (FPRE). FPRE control uses dual difference (or differential) Riccati equations that

are solved forward in time. Unlike the standard regulator Riccati equation, which propagates backward in time, forward

propagation facilitates output-feedback control of both LTV and nonlinear systems expressed in terms of a state-

dependent coefficient (SDC). To investigate the strengths and weaknesses of this approach, this paper considers several

nonlinear systems under full-state-feedback and output-feedback control. The internal model principle is used to follow

and reject step, ramp, and harmonic commands and disturbances. The Mathieu equation, Van der Pol oscillator,

rotational-translational actuator, and ball and beam are considered. All examples are considered in discrete time in

order to remove the effect of integration accuracy. The performance of FPRE is investigated numerically by considering

the effect of state and control weightings, the initial conditions of the difference Riccati equations, the domain of

attraction, and the choice of SDC.
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1. Introduction

Output-feedback control of nonlinear systems is an
extremely challenging problem of fundamental import-
ance. In some applications, the assumption of linearity
and the ability to measure all states can be satisfied to a
sufficient extent that both aspects need not be dealt with
simultaneously. In some applications, however, system
nonlinearity cannot be ignored, and the available meas-
urements are a strictly proper subset of the dominant
states. In reality, all systems are nonlinear, and the
inevitable presence of unmodeled dynamics means
that the assumption of full-state feedback may be
unrealistic in some applications.

From a theoretical point of view, output-feedback
control of nonlinear systems remains a challenging
and largely unsolved problem. The source of at least
some of the difficulty stems from the lack of observer-
regulator separation in the nonlinear case, although in
some cases these difficulties can be overcome (Khalil,
2001; Arcak, 2005). Separation aside, constructing

nonlinear observers and state estimators for nonlinear
systems is itself a challenging problem that continues to
attract considerable attention (Rajamani, 1998;
Nijmeijer and Fossen, 1999; Julier and Uhlmann,
2004; Sauvage et al., 2007).

Among the available techniques for output-feedback
control of nonlinear systems are passivity-based meth-
ods (Byrnes et al., 1991); however, passivity is often
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violated in practice (Forbes and Damaren, 2010).
Flatness-based techniques are also applicable assuming
that multiple derivatives of the measurement can be
obtained (van Nieuwstadt et al., 1998); however,
sensor noise may render differentiation infeasible.
Model predictive control techniques implemented with
nonlinear observers provide another option (Findeisen
et al., 2003; Mayne et al., 2006; Copp and Hespanha,
2014), assuming that separation is valid.

In view of the practical need for output-feedback
control of nonlinear systems, the lack of rigorous tech-
niques that are effective in practice has motivated inter-
est in ad hoc methods. For example, gain-scheduling
techniques based on local linearizations are widely
used (Shamma and Athans, 1992). A closely related
technique consists of parameterized linearizations in
the form of linear parameter-varying (LPV) models
(Scherer, 2001).

Another ad hoc class of nonlinear controllers is
based on reformulating the nonlinear dynamics
_x¼ f(x, u) in the ‘‘faux linearization’’ form _x¼A(x)x
þB(x)u, where A(x) and B(x) are state-dependent coef-
ficients (SDC’s). By viewing the state x as instantan-
eously frozen, the state-dependent Riccati equation
(SDRE) approach solves the regulator algebraic
Riccati equation at each point in time (Mracek and
Cloutier, 1998; Shamma and Cloutier, 2003; Erdem
and Alleyne, 2004; Banks et al., 2007; Cimen, 2010;
Korayem and Nekoo, 2015). The regulator gain can
then be used in a separation structure by solving the
dual estimator algebraic Riccati equation with the
argument x of the SDC’s A(x) and B(x) replaced by
the state estimate x̂ (Mracek et al., 1996;
Chandrasekhar et al., 2005).

A variation of SDRE is to replace the algebraic
Riccati equations with differential Riccati equations.
For the estimator, this presents no difficulty since the
Kalman filter propagates forward in time. The only
distinction is the use of the state-dependent coefficient
A(x̂) in place of the Jacobian used in the extended
Kalman filter. For the regulator, however, the optimal
gain is obtained by propagating the differential Riccati
equation backward in time (Callier et al., 1994).
Unfortunately, this is not feasible for nonlinear systems
due to the fact that the future state estimate is not
known.

To overcome the problem of backward propagation
of the differential regulator Riccati equation and
the need to know the future state estimate, a forward-
propagating Riccati equation (FPRE) technique is
proposed in Chen and Kao (1997), Weiss et al.
(2012), Prach et al. (2014a) and Prach et al. (2014b).
The idea behind this approach is to remove the minus
sign in the backward-propagating regulator Riccati
equation and propagate the equation forward as in

the case of the differential estimator Riccati equation.
This technique is rigorously analyzed and fully justified
in Prach et al. (2015) within the context of linear time-
invariant (LTI) systems. However, like SDRE control,
FPRE is not guaranteed to be stabilizing or optimal for
nonlinear systems. Nevertheless, when combined with
the dual estimator whose coefficients depend on the
state estimates, FPRE provides a potentially useful
technique for output-feedback control of nonlinear sys-
tems that can be cast in SDC form Prach et al. (2014b).

A related application of FPRE is control of linear
time-varying (LTV) systems without future knowledge
of the system matrices (Weiss et al., 2012; Prach et al.,
2014a). If A(t) and B(t) are known in advance, then
classical optimal control methods can be used over a
finite horizon. If A(t) and B(t) are known over a limited
future interval and the objective is stabilization, then
receding horizon techniques can be used Tadmor
(1992). For periodically time-varying systems, stabiliza-
tion is considered in Bittanti and Colaneri (2009).
However, in many applications, knowledge of the
future dynamics is not available. This is the case for
LPV models, where A(�(t)) and B(�(t)) depend on a
time-varying parameter �(t) whose future time vari-
ation is not known. FPRE thus provides an alternative
approach to controlling LPV systems.

For LTV systems, the theoretical challenge of FPRE
stems from the fact that the differential regulator
Riccati equation is not guaranteed to be stabilizing.
For the case of the differential estimator Riccati equa-
tion, a quadratic Lyapunov function can be used to
guarantee stability, and this provides the foundation
for the stability of the Kalman filter when used as an
observer for LTV systems (Afanas’ev et al., 1996;
Crassidis and Junkins, 2004; Weiss et al., 2012). For
the differential regulator Riccati equation, the analo-
gous technique does not yield stability due to the fact
that the time-varying matrices A(t) and C(t) are
replaced by the dual time-varying matrices AT(t) and
BT(t), respectively. In the LTI case, this replacement
causes no difficulties since the spectra of A�FC and
(A�FC)T are identical. As shown in Weiss et al. (2012),
however, asymptotic stability of the state transition
matrix of A(t)�F(t)C(t) does not imply asymptotic sta-
bility of the state transition matrix of (A(t)�F(t)C(t))T.
Consequently, for LTV systems, there is no guarantee
of stability through a duality argument. For nonlinear
systems, the use of the state-estimate-dependent coeffi-
cient A(x̂ (t)) presents an additional challenge.

The contribution of the present paper is a numerical
investigation of FPRE aimed at assessing the viability
and efficacy of this method for output-feedback control
of LTV and nonlinear systems. To do this, we consider
a collection of systems that have been widely considered
in the literature using alternative methods.
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These systems include the two-mass system, Mathieu
equation, Van der Pol oscillator, ball and beam, and
rotational-translational actuator. For each problem,
the goal is to determine the performance of FPRE
under output feedback. For example, for the ball-and-
beam system, full-state-feedback control laws are
derived in Hauser et al. (1992), Barbuand et al. (1997)
and Teel (1992), while output-feedback control laws are
considered in Teel (1993). Likewise, for the rotational-
translational actuator (RTAC), full-state-feedback
control laws are derived in Bupp et al. (1998),
Jankovic et al. (1996) and Tadmor (2001), and an
observer-based controller using dissipativity techniques
is given in Tadmor (2001).

We consider step, ramp, and harmonic commands and
disturbances under full-state-feedback and output-
feedback control. To achieve simultaneous command fol-
lowing and disturbance rejection for this class of signals,
we apply the internal model principle (IMP), which states
that asymptotic command following and disturbance
rejection require a model of the exogenous signals in the
feedback loop (Isidori et al., 2003). The most basic exam-
ple of IMP in linear feedback control of LTI systems is the
fact that an integrator in the controller is needed to reject
step disturbances, whereas an integrator in either the
system or the controller suffices to follow step commands.
Both statements are consequences of the final value the-
orem, while analogous statements apply to ramp and har-
monic disturbances and commands. Since the final value
theorem is valid for only LTI systems, the purpose of this
analysis is to motivate a suitable feedback control archi-
tecture for use with LTV and nonlinear systems. The fun-
damental importance of IMP is reflected by its extensive
application to linear controller synthesis (Johnson, 1971;
Young and Willems, 1972; Francis et al., 1974; Davison
and Goldenberg, 1975; Francis and Wonham, 1975;
Hoagg et al., 2008). Within the context of nonlinear feed-
back control, IMP is developed in Byrnes and Isidori
(2003) and Isidori (1995).

In this study, we investigate the performance of FPRE
under various choices of controller tuning parameters.
These parameters include the state and control weight-
ings, the initial conditions of the forward-propagating
Riccati equations, and the choice of the SDC matrices.
We also vary the initial conditions of the system in order
to estimate the domain of attraction of FPRE and its
dependence on the convergence of the state of the obser-
ver-based compensator. These numerical investigations
are intended to highlight the strengths and weaknesses
of FPRE control for LTV and nonlinear systems while
motivating future theoretical developments.

The examples considered in this paper are chosen to
demonstrate the flexibility aspects of FPRE. The two-
mass system demonstrates IMP-based control with
output feedback. This example defines the feedback

control architecture for all subsequent examples.
Next, the Mathieu equation is a second-order LTV
system that has been extensively analyzed by Richards
(1983). Command following and disturbance rejection
are demonstrated for this system using output feed-
back. A notable aspect of FPRE is its ability to stabilize
the Mathieu equation, which is unstable for certain
frequencies and amplitudes of the sinusoidal stiffness.
This ability has not previously been demonstrated
under output feedback.

The three nonlinear examples are chosen to demon-
strate additional challenges to output-feedback control
of nonlinear systems. The Van der Pol oscillator is a self-
excited system, and thus stabilization is required to sup-
press the limit cycle. Stabilization, command following,
and disturbance rejection are demonstrated for this
system using output feedback. This ability has not pre-
viously been demonstrated. The RTAC has been exten-
sively studied, but exclusively under either full-state or
passivity assumptions. In the present paper, we consider
simultaneous command following and disturbance rejec-
tion under output feedback. This study quantifies the
achievable command-following performance in terms
of the frequency and amplitude of the harmonic com-
mand. The RTAC also provides a useful venue for
exploring the effect of the choice of SDC on FPRE per-
formance. Finally, the ball and beam provides a severe
challenge to stabilization due to the fact that its linear-
ization is a quadruple integrator. Unlike prior treat-
ments of this system, which assume both full-state
feedback and no disturbance, we consider simultaneous
command following and disturbance rejection without
full-state measurements. In all of these cases (simultan-
eous command following and disturbance rejection for
LTV and nonlinear systems with output-feedback con-
trol), we are not aware of comparable treatments in the
literature by any method.

2. Command following and sisturbance
rejection for LTI SISO systems:
Full-state-feedback case

Consider the discrete-time LTI system

xkþ1 ¼ Axk þ Buk þD1dk ð1Þ

yr,k ¼ Hxk ð2Þ

where xk 2R
n, uk 2R, dk 2R, yr,k 2R,A2R

n� n,B 2R
n,

D1 2 R
n, and H 2 R

1� n. For full-state-feedback control,
we assume that xk is measured. Let rk 2 R be the com-
mand, and define the command-following error

z ¼
�
r� yr ð3Þ
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The signals r and d are assumed to be linear combin-
ations of steps, ramps, and sinusoids. The goal is to
have the command-following error z converge to zero
in the presence of the disturbance d. This goal is facili-
tated by an internal model of the command r and dis-
turbance d of the form

xim, kþ1 ¼ Aimxim,k þ Bimzk ð4Þ

where xim,k 2 R
n
im is the state of the internal model.

Figure 1 shows the internal-model-based full-state-
feedback control architecture, where G is the transfer
function of the system (1), Gim is the transfer function
of the internal model (4), and Kim and K are full-state-
feedback gains. These components are described in
more detail below.

Augmenting (1), (2) with (4) yields

xa,kþ1 ¼ Aaxa,k þ Bauk þ
0n�1

Bim

� �
rk þ

D1

0nim�1

� �
dk ð5Þ

where

xa,k ¼
� xk

xim,k

� �
, Aa ¼

� A 0n�nim

�BimH Aim

� �

Ba ¼
� B

0nim�1

� � ð6Þ

Defining uim ¼
�
Kimxim, the control u is given by

uk ¼ Kaxa,k ¼ Kxk þ Kimxim,k ¼ Kxk þ uim,k ð7Þ

where Ka ¼ ½K Kim� 2 R
m�ðnþnimÞ is the full-state-feed-

back gain.

2.1. Algebraic Riccati equation control law

For algebraic Riccati equation (ARE) control, we con-
sider the cost

JðuÞ ¼
P1
k¼0

ðxTa,kR1xa,k þ R2u
2
kÞ ð8Þ

where R1 2 R
ðnþnimÞ�ðnþnimÞ is positive semidefinite and

R2 is a positive number. The optimal constant feedback
gain Ka is given by

Ka ¼ �ðB
T
a

�PaBa þ R2Þ
�1BT

a
�PaAa ð9Þ

where �Pa 2 R
ðnþnimÞ�ðnþnimÞ satisfies the ARE

�Pa ¼ AT
a

�PaAa � AT
a

�PaBaðB
T
a

�PaBa þ R2Þ
�1BT

a
�PaAa

þ R1

ð10Þ

2.2. Forward propagating Riccati equation (FPRE)
control law

For FPRE control, the constant feedback gain (9) is
replaced by the time-varying feedback gain

Ka,k ¼ �ðB
T
aPa,kBa þ R2Þ

�1BT
aPa,kAa ð11Þ

where Pa,k 2 R
ðnþnimÞ�ðnþnimÞ satisfies the difference

Riccati equation

Pa,kþ1 ¼ AT
aPa,kAa

� AT
aPa,kBaðB

T
aPa,kBa þ R2Þ

�1BT
aPa,kAa þ R1

ð12Þ

with the positive-semidefinite initial condition Pa,0,
where R1 2 R

ðnþnimÞ�ðnþnimÞ is positive semidefinite and
R2 is a positive number.

The solution Pa,k of (12) converges exponentially
to �Pa. This is illustrated numerically in Example 1
and proved in Prach et al. (2015) for the continuous-
time case. Because knowledge of the future dynamics is
not needed, FPRE control will be used in later sections
for LTV and nonlinear systems.

2.3. Convergence analysis

We use the final value theorem to analyze the
convergence of the error z for the internal-model-
based full-state-feedback controller in the case where
Ka is constant. Although this treatment is classical,
the goal is to set the stage for the later application to
LTV and nonlinear systems. Consider the reformula-
tion of Figure 1 shown in Figure 2, where Gc is the
transfer function of the internal model with the feed-
back gain Kim, that is

GcðzÞ ¼
�
KimðzI� AimÞ

�1Bim ð13Þ

Figure 1. Internal-model-based, full-state-feedback controller.
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and ~G ¼
�
½Gu Gd� is the transfer function of (1), (2) from

[u d]T to yr with the feedback gain K, where

GuðzÞ ¼
�
ðzI� ðAþ BKÞÞ�1B ð14Þ

GdðzÞ ¼
�
ðzI� ðAþ BKÞÞ�1D1 ð15Þ

Let r̂ denote the z-transform of r, and similarly for
other signals. Then

ẑ ¼ r̂� ŷr, ŷr ¼ ~G
û

d̂

� �
¼ Guûþ Gdd̂ ð16Þ

Thus

ẑ ¼ r̂� Guû� Gdd̂ ¼ r̂� GuGcẑ� Gdd̂ ð17Þ

and (17) can be written as

ẑ ¼ 1
1þGuGc

r̂� Gd

1þGuGc
d̂ ð18Þ

Let Gu ¼
Nu

Du
and Gc ¼

Nc

Dc
, note that Gd ¼

Nd

Du
, and let

r̂ ¼ nr
dr
and d̂ ¼ nd

dd
. Then

ẑ ¼ DuDc

DuDcþNuNc

nr
dr
�

DcNd

DuDcþNuNc

nd
dd

ð19Þ

Next, since (4) is an internal model of r and d, it
follows that internal models of the command r and
disturbance d are present in the denominator Dc of
Gc. Therefore, Dc ¼

~drdr ¼ ~dddd, where ~dr and ~dd are
polynomials, and thus

ẑ ¼ Du
~drnr

DuDcþNuNc
�

~ddNdnd
DuDcþNuNc

ð20Þ

Assuming that DuDc þNuNc is asymptotically stable,
the final value theorem yields

lim
k!1

zk ¼ lim
z!1
ðz� 1Þẑ

¼ lim
z!1

ðz� 1ÞDu
~drnr

DuDc þNuNc
�
ðz� 1Þ ~ddNdnd
DuDc þNuNc

" #

¼ 0

ð21Þ

2.4. Internal models

For the case where the command and disturbance are
steps, the internal model is an integrator given by

Aim ¼ 1, Bim ¼ 1, Cim ¼ 1 ð22Þ

For the case where the command and disturbance
are ramps, the internal model is a double integrator
given by

Aim ¼
0 1
�1 2

� �
, Bim ¼

0
1

� �
, Cim ¼ 1 0

� �
ð23Þ

For the case where the command and disturbance are
harmonic with the same frequency �, the internal model
is an undamped oscillator with frequency � given by

Aim ¼
0 1

�1 2 cosð�Þ

� �
, Bim ¼

0

1

� �
,

Cim ¼ 1 0
� � ð24Þ

The matrix Cim is used for output feedback, but is not
needed for full-state feedback.

If the command and disturbance are harmonic with
frequencies �1 and �2, respectively, then the internal
model is fourth-order and consists of the cascade of two
undamped oscillators with frequencies �1 and �2.
Likewise, if the command is a step and the disturbance is
harmonic with frequency � (or vice versa), then the inter-
nal model is third-order and consists of the cascade of an
integrator and an undamped oscillator with frequency �.

In internal-model-based control, neither the height
of a step command or step disturbance nor the ampli-
tude or phase shift of a harmonic command or disturb-
ance need to be known. However, the frequencies of a
harmonic command and a harmonic disturbance must
be known. This is a standard requirement in control
based on the internal model principle.

2.5. Discrete-time models

Each example in this paper is based on a continuous-
time model. In order to obtain discrete-time models for
feedback control, we apply Euler integration to the
continuous-time system. For each example, Ts is
chosen sufficiently small that the open-loop unit step
response of the Euler-discretized model is numerically
close to the open-loop step response of the continuous-
time model computed by the Matlab routine ODE45.
In order to remove the issue of integration accuracy
from the numerical investigation, the Euler-discretized
model is then viewed as the truth model for control,
and the performance of each control law is considered

Figure 2. Reformulation of Figure 1 for analysis based on the

final value theorem.
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only within the context of the discretized model.
Evaluation of the performance of the control laws on
the underlying continuous-time system is outside the
scope of this paper.

Consider the continuous-time system

_xðtÞ ¼ AcontxðtÞ þ BcontuðtÞ þD1,contd ðtÞ ð25Þ

yðtÞ ¼ CcontxðtÞ ð26Þ

Using Euler integration, we obtain the discrete-time
version of (25), (26) given by

xkþ1 ¼ xk þ TsAcontxk þ TsBcontuk þ TsD1,contdk ð27Þ

yk ¼ Ccontxk ð28Þ

where Ts is the sample time, xk ¼
�
xðkTsÞ,

uk ¼
�
uðkTsÞ, dk ¼

�
d ðkTsÞ, and yk ¼

�
yðkTsÞ. Then, the

discrete-time matrices A, B, C, D1 are given by

A ¼ Iþ TsAcont, B ¼ TsBcont

C ¼ Ccont, D1 ¼ TsD1,cont

ð29Þ

2.6. Example 1. Full-state-feedback control of the
two-mass system with harmonic command
and harmonic disturbance

Consider the continuous-time LTI system in Figure 3,
which represents masses m1 and m2 connected by a
spring with stiffness k and dashpot with damping b.
The control force f is applied to m2, and the goal is to
command the position q1 of m1. We consider the case of
an unmatched disturbance, where the disturbance d is
applied to m1 as shown in Figure 3.
The equations of motion are given by

m1 €q1 þ bð _q1 � _q2Þ þ kðq1 � q2Þ ¼ d ð30Þ

m2 €q2 þ bð _q2 � _q1Þ þ kðq2 � q1Þ ¼ f ð31Þ

For the state vector x ¼
�
½q1 _q1 q2 _q2�

T, the continuous-
time matrices in (25) are given by

Acont ¼

0 1 0 0

� k
m1
� b

m1

k
m1

b
m1

0 0 0 1
k
m2

b
m2

� k
m2
� b

m2

2
6664

3
7775

Bcont ¼

0

0

0

1

2
6664

3
7775, D1,cont ¼

0

1

0

0

2
6664

3
7775

ð32Þ

We let Ts¼ 0.1 s, and use (29) to obtain discrete-time
matrices A, B, D1.

To command the position q1 of mass m1, let yr¼ q1.
Let m1¼ 1 kg, m2¼ 0.5 kg, k¼ 2N/m, b¼ 0.3N-s/m,
and x0¼ [0.2m, 0m/s, �0.1m, 0m/s]T. For these par-
ameters, the damped natural frequency is 2.45 rad/s,
and the damping ratio is 7.5%.

Consider the harmonic command rk¼ 0.5sin(�1k)m
and the harmonic disturbance dk¼ cos(�2k)N, with
�1¼ 0.1 rad/sample and �2¼ 0.5 rad/sample. For
Ts¼ 0.1 s, these discrete-time frequencies correspond
to the continuous-time frequencies 1 rad/s and 5 rad/s,
respectively. The internal model is given by the cascade
of two undamped oscillators (24) whose frequencies
are equal to the frequencies of the command and
disturbance.

Let R1¼ I5, R2¼ 1, and Pa,0¼ Inþ nim
. Figure 4 shows

the closed-loop response, and Figure 5 shows the conver-
gence of Pa,k of FPRE to �Pa of ARE.

3. Internal-model-based command
following and disturbance rejection:

Output-feedback case

Consider the LTI system (1). Let yr,k ¼
�
Hxk and

yk ¼
�
Cxk, and define the measurement vector

ymeas,k ¼
yr,k

yk

� �
þD2vk

¼
Hxk

Cxk

� �
þD2vk ¼ Cmeasxk þD2vk

ð33Þ

where vk 2 R
m is vector of zero-mean white noise with

covariance Im, Cmeas 2 R
m� n,H 2 R

1� n, C 2 R
(m�1)� n,

and D2 2 R
m�m. If only one measurement is available,

then ymeas¼ yrþD2vk and C is absent. Except for
Example 3, sensor noise is omitted from the simula-
tions. However, the sensor-noise covariance
V2 ¼

�
D2D

T
2 2 R

m�m is used as a design parameter by
FPRE. The command-following error is defined by (3).

Figure 6 shows the internal-model-based output-
feedback control architecture, where G is the transfer
function of the system (1), (33), Gim is the transfer

Figure 3. Example 1. The disturbance d is unmatched.
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function of the internal model, GOBC is the transfer
function of the observer-based compensator, and Gc is
the transfer function of the augmented compensator.
These components are described below.

We augment (1), (33) with the SISO internal model

xim,kþ1 ¼ Aimxim,k þ Bimzk ð34Þ

yim,k ¼ Cimxim,k ð35Þ

where xim 2 R
nim . The augmented system is thus

given by

xa,kþ1 ¼ Aaxa,k þ Bauk þ
0n�1
Bim

� �
rk þ

D1

0nim�1

� �
dk ð36Þ

ya,k ¼ Caxa,k ð37Þ

where

xa,k ¼
� xk

xim,k

� �
2 R

nþnim , ya,k ¼
� yk

yim,k

� �
2 R

m�1þnim ,

Aa ¼
� A 0n�nim

�BimH Aim

� �
, Ba ¼

� B

0nim�1

� �

Ca ¼
� C 0ðm�1Þ�nim

01�n Cim

� �
ð38Þ

A block diagram of the augmented system (36), (37) is
shown in Figure 7.

Next, for the augmented system (36), (37), we use the
observer-based compensator

x̂a,kþ1 ¼ ðAa þ BaKa � FaCaÞx̂a,k þ Faya,k ð39Þ

uk ¼ Kax̂a,k ð40Þ

where x̂a,k 2 R
nþnim and Fa 2 R

ðnþnimÞ�m. For ARE con-
trol, the constant regulator feedback gain Ka is given by
(9), whereas, for FPRE control, the time-varying regu-
lator feedback gain Ka,k is given by (11). The constant
observer gain Fa for ARE control, as well as the
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Figure 4. Example 1. Internal-model-based, full-state-feedback

control of the two-mass system: (a) state trajectories; (b) control

input and command-following error. The command and disturb-

ance are harmonic with amplitudes 0.5 m and 1.0 N, respectively,

and with frequencies 0.1 rad/sample and 0.5 rad/sample,

respectively.

Figure 5. Example 1. Internal-model-based, full-state-feedback

control of the two-mass system. This plot shows exponential

convergence of Pa,k of FPRE to �Pa of ARE. The norm is the

maximum singular value.

Figure 6. Internal-model-based output-feedback controller.
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time-varying observer gain Fa,k for FPRE control, are
defined below.

3.1. ARE observer-based compensator

ForAREcontrol, the constantobservergainFa is givenby

Fa ¼ Aa
�QaC

T
a ðCa

�QaC
T
a þ V2Þ

�1 ð41Þ

where �Q 2 R
ðnþnimÞ�ðnþnimÞ satisfies

�Qa ¼ Aa
�QaA

T
a � Aa

�QaC
T
a ðCa

�QaC
T
a þ V2Þ

�1Ca
�QaA

T
a

þ V1

ð42Þ

where V1 2 R
(nþ nim)� (nþ nim) is positive semidefinite and

V2 2 R
m�m is positive definite.

3.2. FPRE observer-based compensator

For FPRE control, the time-varying observer gain Fa,k

is given by

Fa,k ¼ AaQa,kC
T
a ðCaQa,kC

T
a þ V2Þ

�1
ð43Þ

where Qa,k 2 R
ðnþnimÞ�ðnþnimÞ satisfies

Qa,kþ1 ¼ AaQa,kA
T
a

� AaQa,kC
T
a ðCaQa,kC

T
a þ V2Þ

�1CaQa,kA
T
a þ V1

ð44Þ

with the positive-semidefinite initial condition Qa,0,
where V1 2 R

ðnþnimÞ�ðnþnimÞ is positive semidefinite and
V2 2 R

m�m is positive definite.
We cascade the observer-based compensator (39),

(40) with the internal model (34), (35) to obtain the
augmented compensator

xc,kþ1 ¼ Acxc,k þ Bczk þ
Fa

0nim�ðm�1Þ

� �
yk

01�1

� �
ð45Þ

uk ¼ Ccxc,k ð46Þ

where

xc,k ¼
� x̂a,k

xim,k

� �
2 R

nþ2nim

Ac ¼
� Aa þ BaKa � FaCa FaCim

0nim�ðnþnimÞ Aim

� �

Bc ¼
� 0ðnþnimÞ�1

Bim

� �
,Cc ¼

�
Ka 01�nim
� �

ð47Þ

If the only measurement is yr, then the last term in (45)
is absent.

3.3. Convergence analysis

Consider the reformulation of Figure 6 shown in
Figure 8, where

G¼
� Gyru Gyrd

Gyu Gyd

� �

is the transfer function of the system (1), (35), where

GyruðzÞ ¼
�
HðzI� AÞ�1B, GyrdðzÞ ¼

�
HðzI� AÞ�1D

GyuðzÞ ¼
�
CðzI� AÞ�1B, GydðzÞ ¼

�
CðzI� AÞ�1D1

ð48Þ

and ½ yr y�
T
¼ G½u d �T. Furthermore, Gc ¼

�
½Gcz Gcy� is

the transfer function of the augmented compensator
(45), (46), where u ¼ Gc½z y�

T and

GczðzÞ ¼
�
CcðzI� AcÞ

�1Bc

GcyðzÞ ¼
�
CcðzI� AcÞ

�1 Fa

0nim�ðm�1Þ

� �
ð49Þ

Since

ẑ ¼ r̂� ŷr, ŷr ¼ Gyruûþ Gyrdd̂ ð50Þ

Figure 7. Augmented system.

Figure 8. Reformulation of Figure 6 for analysis based on the

final value theorem.
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it follows that

ẑ ¼ r̂� Gyruû� Gyrdd̂

¼ r̂� GyruGczẑ� GyruGcyŷ� Gyrdd̂
ð51Þ

Since

ŷ ¼ Gyuûþ Gydd̂

¼ GyuGczẑþ GyuGcyŷþ Gydd̂
ð52Þ

(52) implies that

ŷ ¼ �yzẑþ�ydd̂ ð53Þ

where

�yz ¼
� GyuGcz

1� GyuGcy
, �yd ¼

� Gyd

1� GyuGcy
ð54Þ

Using (53), (51) can be written as

ẑ ¼ r̂� GyruðGczẑþ Gcy�yzÞẑ

� ðGyruGcy�yd þ GyrdÞd̂
ð55Þ

which implies

ẑ ¼
1

1þ GyruðGcz þ Gcy�yzÞ
r̂

�
GyruGcy�yd þ Gyrd

1þ GyruðGcz þ Gcy�yzÞ
d̂

ð56Þ

Let Gyru ¼
Nyru

Dyru
, Gcz ¼

Ncz

Dcz
, and Gyu ¼

Nyu

Dyu
, and note

that Gyrd ¼
Nyrd

Dyru
, Gcy ¼

Ncy

Dcz
, and Gyd ¼

Nyd

Dyu
. Then

�yz ¼
NyuNcz

DyuDcz �NyuNcy
, �yd ¼

NydDcz

DyuDcz �NyuNcy

ð57Þ

Also, let r̂ ¼ nr
dr

and d̂ ¼ nd
dd
. Defining � ¼

�
DyuDcz�

NyuNcy and � ¼
�
DyruDcz�þNyrdNcz�þ NyrdNcyNyu

Ncz, (56) can be written as

ẑ ¼
DyruDcz�

�
r̂�
ðNyruNcyNyd þNyrd�ÞDcz

�
d̂ ð58Þ

Next, since (34) is an internal model of r and d, it
follows that internal models of the command r and dis-
turbance d are present in the denominator Dcz of Gcz.
Therefore, Dcz ¼

~drdr ¼ ~dddd, where ~dr and ~dd are poly-
nomials. Hence

ẑ ¼
Dyru� ~drnr

�
�
ðNyruNcyNyd þNyrd�Þ ~ddnd

�
ð59Þ

Assuming that � is asymptotically stable, the final value
theorem implies that

lim
k!1

zk ¼ lim
z!1
ðz� 1Þẑ

¼ lim
z!1

ðz� 1ÞDyru� ~drnr

�

"

�
ðz� 1ÞðNyruNcyNyd þNyrd�Þ ~ddnd

�

#
¼ 0

ð60Þ

3.4. Example 2. Output-feedback control of the
two-mass system with harmonic command
and harmonic disturbance

For output-feedback control of the two-mass system
described in Example 1 by (31), (32), let ymeas¼ yr¼ q1,
and thus C is omitted.

We consider the same harmonic command and har-
monic disturbance as in Example 1. The internal model
is given by the cascade of two undamped oscillators (24)
whose frequencies are equal to the frequencies of the
command and disturbance. Let x0¼ [0.2m, 0m/s,
�0.1m, 0m/s]T, and x̂a,0 ¼ 0. Let R1¼ I5, R2¼ 1,
V1¼R1, V2¼R2. Let Pa,0¼ Inþ nim

and Qa,0¼ Inþ nim
.

Figure 9 shows the closed-loop response.

4. Application to LTV systems

For full-state-feedback and output-feedback control of
LTV systems, we use the FPRE control law. Consider
the discrete-time LTV system

xkþ1 ¼ Akxk þ Bkuk þD1,kdk ð61Þ

where Ak 2 R
n�n, Bk 2 R

n, and D1,k 2 R
n. For full-state

feedback, the control law is given by (7), where the
constant feedback gain Ka is replaced by the time-
varying feedback gain Ka,k given by (11), and where
the constant matrices A, B in the augmented system
(5), (6) are replaced by the time-varying matrices Ak,
Bk, which results in the time-varying matrices Aa,k, Ba,k

in place of Aa, Ba in (5), (6), (11), (12).
For output feedback, the measurement ymeas given

by (33) is used with the FPRE control given by (11),
(12) along with the augmented observer-based compen-
sator (43), (44). The constant matrices A, B, C in (36),
(37), (38) are replaced by the time-varying matrices Ak,
Bk, Ck. This results in the time-varying matrices Aa,k,
Ba,k, Ca,k replacing Aa, Ba, Ca in (11), (12), (36), (37),
(38), (43), (44), and the time-varying matrices Ac,k, Bc,k,
Cc,k replacing Ac, Bc, Cc in (45), (46), (47).
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4.1. Example 3. Command following and
disturbance rejection for the Mathieu
equation

Consider the Mathieu equation Richards (1983)

€qþ ð�þ � cosð!tÞÞq ¼ bu ð62Þ

where !> 0 is the stiffness frequency, and � and � are
real numbers. For the state vector x ¼

�
½q _q�T, the con-

tinuous-time matrices in (25) are given by

AcontðtÞ ¼
0 1

�ð�þ � cosð!tÞÞ 0

� �
, BcontðtÞ ¼

0
b

� �
ð63Þ

with the unmatched disturbance

D1,contðtÞ ¼
1
0

� �
ð64Þ

For full-state feedback, let yr¼ q. For output feed-
back, let ymeas¼ yr¼ q, and thus C is omitted. Let �¼ 1,
�¼ 1, b¼ 1, !¼ 2 rad/s, which, for Ts¼ 0.01 s, corres-
ponds to 0.02 rad/sample. For these parameters, the
open-loop system is unstable. Let x0¼ [�1 �1]T, and
let x̂a,0 ¼ 0 for output feedback.

We consider a unit step command and unit step
disturbance with the integrator internal model (22).
Let R1¼ I3, R2¼ 10 for full-state feedback and output
feedback, and V1¼R1, V2¼ 1 for output feedback.
Let Pa,0 ¼ �Pa and Qa,0 ¼ �Qa, where �Pa and �Qa are solu-
tions of (10) and (42), respectively, with Aa¼Aa,0,
Ba¼Ba,0, Ca¼Ca,0, assuming that (Aa,0,Ba,0) is stabi-
lizable, (Aa,0, R1) is detectable, (Aa,0, Ca,0) is detectable,
and (Aa,0 V1) is stabilizable. Figure 10 shows that
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Figure 9. Example 2. Internal-model-based, output-feedback

control of the two-mass system: (a) state trajectories; (b) control

input and command-following error. The command and disturb-

ance are harmonic with amplitudes 0.5 m and 1.0 N, respectively,

and with frequencies 0.05 rad/sample and 0.5 rad/sample,

respectively.
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back and output-feedback control of the Mathieu equation: (a)

state trajectories; (b) control input and command-following

error. The command and disturbance are unit steps at k¼ 0 and

k¼ 2000, respectively.
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residual oscillations at the stiffness frequency are pre-
sent in the response x1 for output feedback but not for
full-state feedback.

To reduce the large transient values of the control
input, we replace the step command with a combination
of a ramp followed by a step. Let R1¼ I5, R2¼ 108,
V1¼R1, V2¼ 1. Let Pa,0 ¼ �Pa and Qa,0 ¼ �Qa. The
closed-loop response is shown in Figure 11 for the
case of output feedback, where an undamped oscillator
is included in the internal model to suppress residual
oscillations in the response x1 due to the time-varying
stiffness.

Next we add zero-mean Gaussian white noise with
standard deviation 1 to the step disturbance. Open-loop
responses are given in Figure 12. We consider two cases
for output feedback. In the first case, the internal model
is an integrator, and we let R1¼ I5, R2¼ 10, V1¼R1,

V2 ¼ 1 , Pa,0 ¼ �Pa, and Qa,0 ¼ �Qa. In the second case,
the internal model is an integrator cascaded with an
undamped oscillator, and we let R1¼ I5, R2¼ 108,
V1¼R1, V2¼ 1, Pa,0 ¼ �Pa, and Qa,0 ¼ �Qa. The closed-
loop response given in Figure 13 shows that the
undamped oscillator in the internal model suppresses
residual oscillations in the response x1.

Finally, we consider the previous simulation scenario,
without disturbance and with zero-mean Gaussian white
noise with standard deviation 0.1 added to the measure-
ment yr. The signal-to-noise ratio is 19.6dB. The meas-
urement is given in Figure 14, and the closed-loop
response is given in Figure 15.

4.2. Example 4. Full-state-feedback stabilization
of the Mathieu equation

This example shows that FPRE may fail to stabilize an
LTV system for certain choices of the state and control
weightings. Consider the problem of stabilizing the
Mathieu equation (62) under full-state feedback. Let
x0¼ [1 1]T and R1¼ I2. Figure 16 shows that, for
R2¼ 0.001, 0.01, 0.05, the states converge to zero,
whereas, for R2¼ 0.1, the states diverge.

5. Application to nonlinear systems

Consider the discrete-time nonlinear system

xkþ1 ¼ f ðxk, ukÞ þD1ðxkÞdk, x0 ¼ x0 ð65Þ

where xk 2 R
n, uk 2 R, dk 2 R, and, for all xk 2 R

n and
uk 2 R, f(xk, uk) 2 R

n. We assume that (65) can be writ-
ten in the state-dependent coefficient form (SDC)
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Figure 11. Example 3. Internal-model-based, output-feedback

control of the Mathieu equation: (a) state trajectories; (b) control

input and command-following error. We consider two com-

mands at k¼ 0: a unit step and a ramp/step. The disturbance is a

unit step at k¼ 2000. An undamped oscillator is included in the

internal model to suppress oscillations due to the time-varying

stiffness.
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Figure 12. Example 3. Open-loop response of the Mathieu

equation. We compare a case with no disturbance with a case

where the disturbance consists of a unit step at k¼ 2000 and

white noise with standard deviation 1.0.
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Mracek and Cloutier (1998), Banks et al. (2007), Cimen
(2010)

xkþ1 ¼ AðxkÞxk þ BðxkÞuk þD1ðxkÞdk ð66Þ

where A(xk) 2 R
n� n, B(xk) 2 R

n, and D1(xk) 2 R
n.

5.1. FPRE command following and disturbance
rejection control for nonlinear systems: Full-
state feedback

For internal-model-based full-state feedback, we con-
sider the nonlinear system (65) in SDC form (66). For
the command r and the output yr given by (2), the
command-following error is given by (3). For nonlinear
systems, we replace the constant matrices A, B, D1 in
the augmented system (5), (6) by the SDC matrices
A(xk), B(xk), D1(xk), which results in the SDC matrices
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Figure 15. Example 3. Internal-model-based, output-feedback

control of the Mathieu equation: (a) state trajectories; (b) control

input and command-following error. The command is a ramp/

step at k¼ 0, no disturbance is present, and the measurement

noise is white noise with standard deviation 0.1. The internal

models are an integrator (first) and an integrator with an

undamped oscillator (third order).
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Figure 13. Example 3. Internal-model-based, output-feedback

control of the Mathieu equation: (a) state trajectories; (b) control

input and command-following error. The command is a ramp/

step at k¼ 0. The disturbance is a unit step at k¼ 2000 and white

noise with standard deviation 1.0. The internal models are an

integrator (first order) and an integrator with an undamped

oscillator (third order).
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Figure 14. Example 3. Measurement yr¼ q.
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Aa(xk), Ba(xk). Thus, the control law is given by (7) and
utilizes FPRE control (11), (12) with the constant
matrices Aa, Ba replaced by the SDC matrices Aa(xk),
Ba(xk). The state and control weighting matrices R1, R2

in (11) and (12) can be replaced by state-dependent
state and control weighting matrices R1(xk), R2(xk).

5.2. FPRE command following and disturbance
rejection control for nonlinear systems:
Output feedback

In place of (65), we assume that the measurements have
the form

ymeas,k ¼ hðxkÞ ð67Þ

where ymeas,k 2 R
m and h: R

n
! R

m. Assume that (67)
can be written in the form

ymeas,k ¼ CmeasðxkÞxk ð68Þ

where CmeasðxkÞ 2 R
m�n. Then, (68) can be written in

the form of (33) as

ymeas,k ¼
yr,k

yk

� �
¼ CmeasðxkÞxk ð69Þ

where CmeasðxkÞ ¼
H

CðxkÞ

� �
, H 2 R

1�n, and C(xk) 2
R

(m�1)�n.
Since the full state is not available, we replace the

state x in the SDC matrices in (66) and (69) by its esti-
mate x̂, resulting in A(x̂), B(x̂), C(x̂), D1(x̂). If ymeas

includes components of x, then the corresponding com-
ponents of x̂ in the SDC’s are replaced by the measure-
ments; the modified state estimate is denoted by x̂.
Then, for use in the observer-based compensator,
A(x̂), B(x̂), C(x̂), D1(x̂) are replaced by A(x̂), B(x̂),
C(x̂), D1(x̂).

The internal-model-based output-feedback control
law for nonlinear systems uses the FPRE control (11),
(12) and the augmented observer-based compensator
(43), (44), and is obtained using (45)–(47) with the
matrices A, B, C in (36), (37) replaced by A(x̂k),
B(x̂k), C(x̂k), the matrices Aa, Ba, Ca in (11), (12),
(36), (37), (43), (44) replaced by Aa(x̂k), Ba(x̂k),
Ca(x̂k), and the matrices Ac, Bc, Cc in (45), (46), (47)
replaced by Ac(x̂k), Bc(x̂k), Cc(x̂k). The weighting matri-
ces R1, R2, V1, V2 in (11), (12), (43) and (44) can be
replaced by state-dependent weighting matrices R1(x̂k),
R2(x̂k), V1(x̂k), V2(x̂k).

6. 3. Numerical investigation of FPRE
performance and robustness

In the absence of theoretical guarantees as in the case of
LQG control of LTI systems, the performance of the
FPRE full-state-feedback and output-feedback control-
lers depends strongly on the choice of the weighting
matrices R1, R2, V1, V2. Example 4 showed that
FPRE may fail to stabilize LTV systems for some
choices of the weighting matrices. Hence, the key chal-
lenge is to choose R1, R2 so that the solution Pk of (12)
remains bounded.

In contrast to SDRE control, FPRE requires a
choice of the initial condition Pa,0 in (12). The
choice Pa,0¼ �Inþ nim

, where �� 0, typically provides
a convergent solution Pa,k. However, increasing �
tends to increase the transient control input u. For
nonlinear systems, another convenient choice for Pa,0

is a solution �Pa of the ARE, obtained using the SDC
matrices Aa(xk) and Ba(xk), which are evaluated at
the initial state x0 as in SDRE; however, this
choice requires that (Aa(x0),Ba(x0)) be stabilizable.
These and related issues are investigated in the fol-
lowing examples.
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Figure 16. Example 4. Full-state-feedback control of the

Mathieu equation for several values of R2: (a) state trajectories;

(b) control input and norm of P. For R2¼ 0.1, the states diverge.
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6.1. Example 5. Command following and
disturbance rejection for the Van der Pol
oscillator

Consider the Van der Pol oscillator

€q� �ð1� q2Þ _qþ q ¼ bu ð70Þ

where �> 0 and b 6¼ 0. Define the state vector
x ¼

�
½q _q�T. Equation (70) involves one nonlinear term

��x1
2x2, which can be factored in two ways:

��x21x2 ¼ �ð�x
2
1Þx2 ¼ �ð�x1x2Þx1. Consequently,

two SDC’s can be obtained:

A1,contðxÞ ¼
0 1

�1 �ð1� x21Þ

� �

A2,contðxÞ ¼
0 1

��x1x2 �

� �

Note that every affine combination �A1,cont(x)þ
(1��)A2,cont(x), where � is a real number, is also an
SDC. However, we consider only the cases �¼ 1 and
�¼ 0. The control matrix is Bcont ¼ 0 b½ �

T, and, for an
unmatched disturbance, let D1 be given by (64). Let
Ts¼ 0.01 s, and define the corresponding discrete-time
SDC’s by A1 and A2.

For full-state feedback, let yr¼ q. For output feed-
back, let ymeas¼ yr¼ q, and thus C is omitted. Let
�¼ 0.15, b¼ 1, x0¼ [0. 50. 5]T, and x̂a,0 ¼ 0 for
output feedback. We consider rk¼ sin(�1k) and
dk¼ cos(�2k), with �1¼ 0.01 rad/sample and
�2¼ 0.05 rad/sample.

Let R1¼ I6, R2¼ 108 for full-state feedback and
output feedback, and let V1¼R1, V2¼ 1 for output
feedback. Let Pa,0¼Pa and Qa,0¼Qa, where �Pa and
�Qa are solutions of (10) and (42) with the coefficients
Aa¼Aa(x0), Ba¼Ba(x0), Ca¼Ca(x0). Figures 17 and 18
show the closed-loop responses for A1 and A2 for full-
state feedback and output feedback.

6.2. Example 6. Command following and
disturbance rejection for the rotational-
translational actuator

Consider the rotational-translational oscillator actu-
ator (RTAC) (Jankovic et al., 1996; Bupp et al.,
1998), shown in Figure 19. The equations of motion
are given by

ðMþmÞ €qþ b _qþ kq ¼ �með €� cos � � _�2 sin �Þ þ d

ð71Þ

ðJþme2Þ €� ¼ �me €q cos � þ � ð72Þ

where q and _q are the translational position and vel-
ocity of the cart, and � and _� are the angular position
and angular velocity of the rotating arm, respectively.

M is the mass of the cart, b is the damping coefficient,
k is the spring stiffness, m is the mass of the proof-mass,
J is the moment of inertia of the arm, e is the length of
the arm, � is the control torque applied to the arm, and
d is the disturbance force on the cart. The goal is to
command the position of the cart and reject the
disturbance.

For the state vector x ¼ ½q _q � _��T, the equations of
motion have the form

_x ¼ fcontðxÞ þ BcontðxÞ� þD1,contðxÞd ð73Þ

where

fcontðxÞ ¼
�

x2

� kx1
�ðMþmÞ �

bx2
�ðMþmÞ þ

mex2
4
sin x3

�ðMþmÞ

x4
k"2x1 cosx3

�me þ b"2x2 cosx3
�me �

"2x2
4
sin x3 cosx3
�

2
66664

3
77775 ð74Þ
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Figure 17. Example 5. Internal-model-based, full-state-feed-

back control of the Van der Pol oscillator: (a) state trajectories;

(b) control input and command-following error. The command

and disturbance are harmonic with unit amplitudes and with

frequencies 0.01 rad/sample and 0.05 rad/sample, respectively.
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BcontðxÞ ¼
�

0
� "2 cosx3

�me

0
"2 cosx2

3
þ�

�ðIþme2Þ

2
664

3
775, D1,contðxÞ ¼

�

0
1

�ðMþmÞ
0

"2 cosx3
�me

2
664

3
775 ð75Þ

where

" ¼
� meffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJþme2ÞðMþmÞ

p
and � ¼

�
1� "2 cos2 x3.

The vector field (74) involves four nonlinear terms

that can be factored. Note that
mex2

4
sin x3

�ðMþmÞ can be factored

in two ways:

mex24 sin x3
�ðMþmÞ

¼
mex4 sin x3
�ðMþmÞ

� �
x4 ¼

mex24 sin x3
�ðMþmÞx3

� �
x3;

k"2x1 cos x3
�me

can be factored in one way:

k"2x1 cos x3
�me

¼
k"2 cos x3
�me

� �
x1;

b"2x2 cos x3
�me

can be factored in one way:

b"2x2 cos x3
�me

¼
b"2 cos x3
�me

� �
x2;

and
"2x2

4
sin x3 cos x3
� can be factored in two ways:

"2x24 sin x3 cos x3
�

¼
"2x4 sinx3 cos x3

�

� �
x4

¼
"2x24 sinx3 cos x3

�x3

� �
x3:

Consequently, four SDC’s can be obtained in this way:

A1,contðxÞ ¼

0 1 0 0

� k
�ðMþmÞ �

b
�ðMþmÞ 0 mex4 sinx3

�ðMþmÞ

0 0 0 1
k"2 cosx3
�me

b"2 cosx3
�me 0 � "2x4 sinx3 cosx3

�
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Figure 18. Example 5. Internal-model-based, output-feedback

control of the Van der Pol oscillator: (a) state trajectories; (b)

control input and command-following error. The command and

disturbance are harmonic with unit amplitudes and with fre-

quencies 0.01 rad/sample and 0.05 rad/sample, respectively.

Figure 19. Rotational-translational actuator.
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A4,contðxÞ ¼

0 1 0 0

� k
�ðMþmÞ �

b
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Let Ts¼ 0.001 s, and define the corresponding dis-
crete-time SDC’s by A1, A2, A3, A4. Parameters for
the RTAC configuration are given in Table 1.

Table 1. RTAC parameters.

Description Parameter Value Units

Cart mass M 2 kg

Arm mass m 0.2 kg

Arm eccentricity e 0.1 m

Arm inertia J 0.0002 kg-m2

Spring stiffness k 200 N/m

Damping coefficient b 0.4 N-s/m
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Figure 20. Example 6. Internal-model-based, full-state-feed-

back control of the RTAC: (a) state trajectories; (b) control input

and command-following error. The command and disturbance

are harmonic with amplitudes 0.015 m and 0.1 N, respectively,

and frequency 0.007 rad/sample.
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Figure 21. Example 6. Internal-model-based, output-feedback

control of the RTAC: (a) state trajectories; (b) control input and

command-following error. The command and disturbance are

harmonic with amplitudes 0.015 m and 0.1 N, respectively, and

frequency 0.007 rad/sample.
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Figure 22. Example 6. Amplitude versus frequency for internal-

model-based, output-feedback control of the RTAC. ‘‘�’’ denotes

amplitude/frequency values for which command-following is

achieved, whereas ‘‘� ’’ denotes amplitude/frequency values for

which command-following is not achieved. The results show that

larger amplitudes are achievable for command frequencies near

the open-loop resonance frequency of the RTAC.
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The goal is to make the cart follow a harmonic tra-
jectory in the presence of a harmonic disturbance acting
on the cart. For full-state feedback and output feed-
back, let yr¼ q. For output feedback, the cart position
and arm angle are measured, that is, ymeas ¼ ½q ��T,
and thus C ¼ ½0 0 1 0�. Let x0¼ [0.05m, 0m/s,
	/6 rad, 0 rad/s]T, and let x̂a,0 ¼ 0 for output feedback.

The harmonic command r and harmonic disturbance
d are given by rk¼ 0.015 sin(�k)m and dk¼
0.1 cos(�k)N, respectively, with �¼ 0.007 rad/sample,
which corresponds to the continuous-time frequency
7 rad/s. The damped natural frequency of the RTAC
is approximately 0.01 rad/sample with a damping
ratio of 8%. Let R1¼ diag(103I4, 10�3I2), R2¼ 1 for
full-state feedback and output feedback, and
V1¼diag(I4, 104I2), V2¼ I2 for output feedback. Let
Pa,0¼ Inþ nim

and Qa,0¼ Inþ nim
. The responses for full-

state feedback and output feedback using A1, A2, A3,
A4 are shown in Figures 20 and 21, respectively. Note
that all SDC’s provide similar state responses.
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Figure 24. Example 7. Internal-model-based, full-state-feed-

back control of the ball and beam: (a) state trajectories; (b)

control input and command-following error. The command and

disturbance are harmonic with amplitudes 0.1 m and 0.2 N,

respectively, and frequency 0.001 rad/sample. The state and

control weighting matrices are R1¼ diag(1, 102I2, 104, 0.1I2) and

R2¼ 1.

0 5000 10000 15000
−0.1

0

0.1(a)

(b)

x 1

0 5000 10000 15000
−0.2

0
0.2
0.4

x 2

0 5000 10000 15000
−0.5

0

0.5

x 3

0 5000 10000 15000
−10

0

10

x 4

Time step (k)

Command

A
1

A
2

A
3

A
4

A
5

A
6

0 5000 10000 15000

−10

0

10

u

0 5000 10000 15000
−20

−10

0

lo
g|

z|

Time step (k)

Figure 25. Example 7. Internal-model-based, output-feedback

control of the ball and beam: (a) state trajectories; (b) control

input and command-following error. The command and disturb-

ance are harmonic with amplitudes 0.1 m and 0.2 N, respectively,

and frequency 0.001rad/sample. The weighting matrices are

R1¼ diag(1, 102I2, 104, 0.1I2), R2¼ 1, V1¼ diag(I4, 104I2), V2¼ I2.

Figure 23. Ball and beam system.

Table 2. Ball and beam parameters.

Description Parameter Value Units

Ball mass M 0.1 kg

Ball radius R 0.015 m

Beam inertia J 10�5 kg-m2

Gravitational acceleration g 9.8 m/s
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However, the control inputs for A1 and A2 exhibit oscil-
lations with larger magnitudes than the control inputs
for A3 and A4.

To investigate the range of commandable ampli-
tudes and frequencies in the absence of disturbances,
we consider harmonic commands with amplitudes ran-
ging within [0.005, 0.12]m and frequency ranging
within [0.005, 0.02] rad/sample. Figure 22 shows the
achievable amplitudes and frequencies for output feed-
back using SDC A1. Note that, for command frequen-
cies close to the undamped natural frequency of
RTAC, the controller is able to follow commands
with larger amplitudes.

6.3. Example 7. Command following and
disturbance rejection for the ball and beam

The ball and beam, shown in Figure 23, consists of a
symmetric beam with inertia J that rotates in a vertical

plane subject to a torque �. A ball of mass M slides
without friction along the beam. We are interested in
using the torque � to control the position q of the ball
along the beam.

Neglecting the inertia of the ball, the equations of
motion of the ball and beam are given by Sastry (1999),
Hauser et al. (1992)

€qþ g sin � � q _�2 ¼ 0 ð76Þ

ðMq2 þ JÞ €� þ 2Mq _q _� þMgq cos � ¼ � ð77Þ

For the state vector x ¼
�
½q _q � _��T, (76), (77) can

be written as

_x1 ¼ x2 ð78Þ

_x2 ¼ �g sin x3 þ x1x
2
4 ð79Þ
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Figure 26. Example 7. Internal-model-based, full-state-feed-

back control of the ball and beam: (a) state trajectories; (b)

control input and command-following error. The command and

disturbance are harmonic with amplitudes 0.1 m and 0.2 N,

respectively, and frequency 0.001 rad/sample. The state and

control weighting matrices are R1¼ diag(1, 102I2, 104, 0.1I2) and

R2¼ 105.
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Figure 27. Example 7. Internal-model-based, output-feedback

control of the ball and beam: (a) state trajectories; (b) control

input and command-following error. The command and disturb-

ance are harmonic with amplitudes 0.1 m and 0.2 N, respectively,

and frequency 0.001rad/sample. The weighting matrices are

R1¼ diag(1, 102I2, 104, 0.1I2), R2¼ 105, V1¼ diag(I4, 104I2), and

V2¼ I2.
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_x3 ¼ x4 ð80Þ

_x4 ¼ �
2M

Mx21 þ J
x1x2x4 �

Mg

Mx21 þ J
x1 cos x3

þ
1

Mx21 þ J
�

ð81Þ

The ball and beam equations (78)–(81) involve four
nonlinear terms that can be factored. Note that sinx3
can be factored in one way: sinx3¼ ((sinx3)/x3)x3; x1x4

2

can be factored in two ways: x1x4
2
¼ (x1x4)x4¼ (x4

2)x1;
x1x2x4 can be factored in three ways: x1x2x4¼
(x1x2)x4¼ (x1x4)x2¼ (x2x4)x1; and x2 cosx3 can be fac-
tored in one way: x2 cosx3¼ (cosx3)x2. Consequently,
six SDC’s can be obtained in this way:
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Figure 28. Example 7. Internal-model-based, output-feedback

control of the ball and beam: (a) state trajectories; (b) control

input and command-following error. The command and disturb-

ance are harmonic with amplitudes 0.1 m and 0.2 N, respectively,

and frequency 0.005 rad/sample. The weighting matrices are

R1¼ diag(1, 102I2, 104, 0.1I2), R2¼ 1, V1¼ diag(I4, 104I2), and

V2¼ I2.
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Figure 29. Example 7. Internal-model-based, output-feedback

control of the ball and beam: (a) state trajectories; (b) control input

and command-following error. The command and disturbance are

harmonic with amplitudes 0.1 m and 0.2 N, respectively, and fre-

quency 0.005 rad/sample. The weighting matrices are R1¼ diag(1,

102I2, 104, 0.1I2), R2¼ 105, V1¼ diag(I4, 104I2), and V2¼ I2.
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A4,contðxÞ ¼

0 1 0 0

0 0 �
g sin x3

x3
x1x4

0 0 0 1

�
Mg cos x3þ2Mx2x4

Mx2
1
þJ

0 0 0

2
66664

3
77775

A5,contðxÞ ¼

0 1 0 0

0 0 �
g sin x3

x3
x1x4

0 0 0 1

�
Mg cos x3
Mx2

1
þJ

� 2Mx1x4
Mx2

1
þJ

0 0

2
66664

3
77775

A6,contðxÞ ¼

0 1 0 0

0 0 �
g sin x3

x3
x1x4

0 0 0 1

�
Mg cos x3
Mx2

1
þJ

0 0 � 2Mx1x2
Mx2

1
þJ

2
66664

3
77775

The control matrix is BcontðxÞ ¼ 0 0 0½

1=ðMx21 þ JÞ�T, and the unmatched disturbance
D1,cont ¼ 0 1 0 0½ �

T is applied to the ball. Let

Ts¼ 0.001 s, and define the corresponding discrete-
time SDC’s by A1, A2, A3, A4, A5, A6. The parameters
for this system are given in Table 2.

For full-state feedback and output feedback,
let yr¼ q. For output feedback, the ball position and
beam angle are measured, that is, ymeas¼ [q �]T, and
thus C¼ [0 0 1 0]. Let x0 ¼ ½0:02 m,0:1 m=s,0 rad,
0 rad=s� and x̂a,0 ¼ 0 for output feedback. The har-
monic command r and harmonic disturbance d are
given by rk¼ 0.1sin(�k)m and dk¼ 0.2cos(�k)N,
with �¼ 0.001 rad/sample.

Let R1¼ diag(1, 102I2, 10
4, 0.1I2), R2¼ 105 for full-

state feedback and output feedback, and V1¼ diag(I4,
104I2), V2¼ I2 for output feedback. Let Pa,0 ¼ �Pa and
Qa,0 ¼ �Qa. Figures 24 and 25 show the responses for
the six SDC’s for both full-state feedback and output
feedback. Note that A1, A2, A3 provide similar per-
formance, whereas high-frequency oscillations are pre-
sent in the responses for A4, A5, A6. Using R2¼ 105,
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Figure 30. Example 7. Internal-model-based, output-feedback

control of the ball and beam: (a) state trajectories; (b) control

input and command-following error. The command is a triangular

wave with amplitude 0.1 m, and the internal model is a double

integrator.
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Figure 31. Example 8. Internal-model-based, output-feedback

control of the ball and beam: (a) state trajectories; (b) control

input and command-following error. The command is a step at

k¼ 0 with height 0.3 m, and the disturbance is a step with height

0.3 N at k¼ 5000.
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Figures 26 and 27 show that the high-frequency oscil-
lations are removed, and all six SDC’s give similar
responses.

Now we increase the frequency of the command and
disturbance to �¼ 0.005 rad/sample. All six SDC’s give
similar responses for both full-state feedback and
output feedback with R2¼ 1 and R2¼ 105. The results
for output feedback are shown in Figures 28 and 29.

Next, we consider a triangular wave command with
amplitude 0.1m, and let d¼ 0. The internal model is the
double integrator (23), and letR1¼diag(1,102I2, 10

4, 0.1I2),
R2¼ 1, V1¼diag(I4, 10

4I2) and V2¼ I2. The response for
output feedback with SDC A1 is shown in Figure 30.

6.4. Example 8. Effect of initial condition Pa,0 for
the ball and beam

To investigate the effect of the initial condition Pa,0 on
the performance of FPRE, we consider output
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Figure 34. Example 10. Investigation of the domain of attrac-

tion for nonzero x1, 0 and x2, 0 for the ball and beam: (a) full-state

feedback; (b) output feedback. ‘‘�’’ denotes an initial condition

from which convergence is achieved, whereas ‘‘�’’ denotes an

initial condition from which convergence is not achieved. Initial

conditions with only x1, 0> 0 are considered due to symmetry.
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Figure 32. Example 8. Internal-model-based, output-feedback

control of the ball and beam: (a) state trajectories; (b) control

input and command-following error. The command and disturb-

ance are harmonic with amplitudes 0.1 m and 0.2 N, respectively,

and frequency 0.001 rad/sample.

Figure 33. Example 9. Investigation of the domain of attraction

of the Van der Pol oscillator under output-feedback control.
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feedback as in Example 7. We compare the perform-
ance for the initial conditions Pa,0¼ Inþ nim

and
Pa,0 ¼ �Pa, where �Pa is the solution to (10), with the
coefficients Aa¼Aa(x0), Ba¼Ba(x0). The weighting
matrices R1, R2, V1, V2 are the same for both choices
of Pa,0.

Figures 31 and 32 show that the transient response
with the initial condition Pa,0 ¼ �Pa is better than for
Pa,0¼ Inþ nim

. However, the rate of convergence is the
same for both choices of the initial condition.

6.5. Example 9. Investigation of the domain of
attraction for the Van der Pol oscillator

In this example we investigate the domain of attraction
of the Van der Pol oscillator under output-feedback
control. In particular, we consider a step command
and step disturbance with the weighting matrices R1,
R2, V1, V2 as given in Example 5. Figure 33 shows
the phase portrait of the state trajectories for several

initial conditions x0 contained in [�10, 10]� [�10, 10].
Figure 33 shows that all of the state trajectories con-
verge to [10]T, which corresponds to zero asymptotic
command-following error.

6.6. Example 10. Investigation of the domain of
attraction for the ball and beam

In this example we estimate the domain of attraction
for the ball and beam under full-state feedback and
output feedback. We consider convergence to the equi-
librium in the absence of a disturbance, with nonzero
initial conditions on the ball position and velocity, and
with zero initial conditions on the beam angle and
angular velocity.

For output feedback, we assume that measurements
of the ball position and beam angle are available. For
all initial conditions and for both full-state feedback
and output feedback, let R1¼ diag(102, 103I3) and
R2¼ 103. For output feedback, let V1¼ I4, V2¼ 102I2,
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Figure 35. Example 10. Investigation of the domain of attrac-

tion for full-state-feedback control of the ball and beam. In (a)

each dot indicates the initial ball position versus velocity, while

(b) shows the beam angle versus angular velocity.

−5 0 5 10 15 20 25 30 35
−10

−8

−6

−4

−2

0

2

4(a)

(b)

x 2 (
m

/s
ec

)

x
1
 (m)

−1 −0.5 0 0.5

−5

0

5

10

15

x 4 (
ra

d/
se

c)

x
3
 (rad)

Figure 36. Example 10. Investigation of the domain of attrac-

tion for output-feedback control of the ball and beam using

measurements of ball position and beam angle. In (a) each dot

indicates the initial ball position versus velocity, while (b) shows

the beam angle versus angular velocity.
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and x̂a,0 ¼ ½x1,0 0 x3,0 0�
T. Figure 34 gives a set of initial

conditions with x1,0 2 [0, 60]m, x2,0 2 [�15, 5]m/s,
x3,0¼ 0 rad, and x4,0¼ 0 rad/s. These values are illus-
trative only and are not intended to be physically mean-
ingful. For each initial condition, Figure 34 indicates
whether or not the state converges. It should be noted
that the beam angle � satisfies � 2 (�	/2, 	/2) for all
cases where the states converge. The phase portraits for
selected initial conditions are shown in Figure 35 for
full-state feedback, and in Figure 36 for output
feedback.

Next, we consider output feedback for the case
where measurements of only the ball position are avail-
able for feedback. Let R1¼ diag(102, 103I3), R2¼ 103,
V1¼ I4, V2¼ 100, and x̂a,0 ¼ ½x1,0 0 0 0�T. We con-
sider initial conditions with x1,0 2 [0, 60]m, x2,0¼ 0m/s,
x3,0¼ 0 rad, and x4,0¼ 0 rad/s. For all initial conditions
within the given range, the state trajectories converge to

the zero equilibrium. The phase portraits are shown in
Figure 37.

7. Conclusions

Output-feedback control of linear-time-varying (LTV)
and nonlinear systems presents a longstanding
challenge to modern control methods. Forward-
propagating Riccati equation (FPRE) control addresses
this problem by reversing the direction of the regulator
Riccati equation and employing state-dependent coeffi-
cients (SDC’s) as used by the state-dependent Riccati
equation (SDRE) technique. By using an observer-
based compensator structure, with state estimates
used to evaluate the SDC’s in the compensator in the
case of nonlinear systems, FPRE provides a highly flex-
ible technique for output-feedback control of LTV and
nonlinear systems. For LTI systems, FPRE is fully jus-
tified. However, for LTV and nonlinear systems, FPRE
does not guarantee stabilization. The source of the dif-
ficulty is the fact that, for LTV systems, the Lyapunov
function that guarantees convergence of the state esti-
mate may not provide an analogous Lyapunov function
for the dual regulator.

FPRE provides two main advantages over the
widely studied SDRE method. In particular, SDRE
requires the solution of algebraic Riccati equations at
each step in time, whereas FPRE requires only the time
integration of these equations. Although FPRE
requires an initial condition for the difference Riccati
equation, we found that the initial solution of the alge-
braic Riccati equations often provides a suitable initial
condition; for greater simplicity, the initial conditions
may be taken to be a multiple of the identity matrix.
The second advantage of FPRE over SDRE is the fact
that solution of the algebraic Riccati equations requires
stabilizability and detectability pointwise in time. These
conditions may fail to be satisfied for some choices of
SDC’s along the trajectories of the state estimates,
upon which the SDC’s depend.

The contribution of this paper is an investigation of
the effectiveness of FPRE on systems that have been
widely studied under alternative methods, including the
Mathieu equation, Van der Pol oscillator, rotational-
translational actuator (RTAC), and ball and beam. The
internal model principle was used in an output-feed-
back architecture to achieve command following and
disturbance rejection for steps, ramps, and harmonics.
The effect of Riccati-equation initialization, state and
control weightings, domain of attraction, and choice of
SDC were investigated. These examples illustrate the
usefulness of FPRE in controlling these nonlinear sys-
tems under measurement constraints that are more
restrictive and thus more challenging than have been
considered in the prior literature. To illustrate the
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Figure 37. Example 10. Investigation of the domain of attrac-

tion for output-feedback control of the ball and beam using

measurements of ball position only. Initial conditions with only

x1, 0> 0 are considered due to symmetry. In (a) each dot indi-

cates the initial ball position versus velocity, while (b) shows the

beam angle versus angular velocity.
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potential usefulness of the method for problems of
practical interest, FPRE was used to determine the
range of frequencies and amplitudes of harmonic com-
mands that can be followed by the RTAC.

The ultimate goal of this study is to motivate the
development of a rigorous framework for FPRE. To
further motivate this development, future work will
focus on criteria for selecting the SDC as well as robust-
ness to model uncertainty.
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