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vast range of technological systems—from aerospace 
vehicles to chemical processes to Segways—depend 
on feedback control. These applications typically rely 
on a combination of classical and modern control 
techniques, logic for mode switching, and diagnos-

tics for fault detection to ensure safety and reliability, all of 

which are validated and verified through simulation and 
testing. A feedback control system is the quintessential cyber-
physical system, in which real-time digital computing elements 
interact bidirectionally with the full complexity of the real 
world through noisy transducers and limited communication 
channels [1]. In many applications, the control system is cru-
cial to safe operation, and the potential benefits of new ideas 
and techniques for feedback control must be weighed against 
the risk of unanticipated response and/or failure.
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A successful application of feedback control depends first 
and foremost on the availability of reliable and affordable sen-
sors and actuators that can monitor the response of the plant 
and modify its behavior. An autopilot for an aircraft is a clas-
sical example, where inertial and noninertial sensors provide 
measurements of position, velocity, attitude, and angular 
rates, while thrust and aerodynamic surfaces provide forces 
and moments. In other applications, such as controlled com-
bustion [2], flow control [3]–[5], and controlled fusion [6], the 
development of sensing and actuation strategies presents a 
challenge. Control research is typically concerned with appli-
cations for which effective sensing and actuation technologies 
are available, and the goal is to use this technology reliably 
and efficiently to achieve stabilization, command following, 
and disturbance rejection.

Despite these successes, many applications of feedback 
control remain beyond the reach of modern tools and tech-
niques. These applications may be highly undersensed and 
underactuated relative to the order of their significant dynam-
ics; they may be difficult to model due to complex, unknown, 
or unpredictably changing physics; and they may require reli-
able high-performance control systems that must be engi-
neered within tight deadlines and budgets. Adaptive control 
offers a viable approach to these applications.

The underlying motivation for research in adaptive con-
trol is to develop control algorithms that can accommodate 
sensor and actuator limitations; respect communication con-
straints; account for complex, uncertain, and unpredictably 
changing dynamics; and operate robustly in the presence of 
noise and reliably in the event of sensor/actuator failure. The 
promise of adaptive control is the ability to account for all of 
these effects with minimal prior modeling, tuning, and anal-
ysis for applications that are beyond the reach of fixed-gain 
and fixed-logic model-based control laws.

Adaptive control is different from robust control, which 
also accounts for uncertainty. In particular, robust control 
views uncertainty as static and seeks to trade performance 
for robustness to the assumed level of uncertainty. In con-
trast, adaptive control strives to learn about the plant during 
operation, either explicitly or implicitly, to overcome prior un-
certainty. Consequently, by tuning itself to the actual 
plant, an adaptive controller transcends the performance/
robustness tradeoff of robust control. To illustrate this point, 
consider a plant subject to a harmonic disturbance whose fre-
quency is .~  If ~  is known, then a stabilizing controller 
based on the internal model principle can be used to apply 
infinite gain at the disturbance frequency to asymptotical-
ly reject the disturbance. If, however, ~  is unknown, then a 
robust controller must apply high but finite gain across a 
bandwidth of possible disturbance frequencies, thus sacrific-
ing asymptotic disturbance rejection and unnecessarily am-
plifying sensor noise. In contrast, an adaptive controller can 
tune itself to the actual disturbance frequency and thereby 
asymptotically reject the disturbance. The same principle ap-
plies to the case of a plant with a lightly damped mode subject 

to broadband disturbances. If the modal frequency is uncer-
tain, then the H∞ distance between possible plants is large. 
Consequently, a robust controller based on an H∞ uncertainty 
metric must account for a large set of uncertain plants. In con-
trast, an adaptive controller can tune itself to the actual mod-
al frequency.

Plants that are inherently difficult to control due to 
achievability constraints on closed-loop performance [7] 
pose a potentially severe challenge to adaptive control, as 
articulated in [8]:

Control engineers grounded in classical control know 
it is possible to formulate control design problems 
which in practical terms are not possible to solve. An 
inverted pendulum with more than two rods is a well-
known example; again, a plant with nonminimum 
phase zeros well inside the passband and unstable 
poles may be near impossible to control, unless addi-
tional inputs or outputs are used; another famous ex-
ample was provided in [9] and so on. When the plant 
is initially known, as well as the control objective, it 
will generally become clear at some point in the de-
sign process, if not ab initio, that the control objective 
is impractical.

Now what happens in adaptive control? The catch 
is that a full description of the plant is lacking. There 
may be no way to decide on the basis of the a priori 
information that the projected design task is or is not 
practical. So what will happen if an adaptive control 
algorithm is run in such a case? At the least, the algo-
rithm will not converge. At worst, an unstable closed 
loop will be established.
This article focuses on retrospective cost adaptive control 

(RCAC), which is a direct, discrete-time adaptive control 
technique for stabilization, command following, and distur-
bance rejection. As a discrete-time approach, RCAC is mo-
tivated by the desire to implement control algorithms that 
operate at a fixed measurement sampling rate without the 
need for controller discretization. This discretization also 
means that the required modeling information can be esti-
mated based on data sampled at the same rate as the control 
update. Adaptive control algorithms for continuous-time 
plants are developed in [10]–[18] and for discrete-time plants 
in [19]–[30], and the ability to handle plants with nonmini-
mum-phase (NMP) zeros, that is, zeros outside of the open 
unit disk, is demonstrated in [20]–[23].

RCAC was motivated by the concept of retrospectively 
optimized control, where past controller coefficients used 
to generate past control inputs are reoptimized in the sense 
that, if the reoptimized coefficients had been used over 
a previous window of operation, then the performance 
would have been better. However, unlike signal processing 
applications such as estimation and identification, it is 
impossible to change past control inputs, and thus the 
reoptimized controller coefficients are used only to gener-
ate the next control input. Since RCAC depends heavily on 
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data for the controller update, this technique is similar to 
data-driven control [31]–[36].

RCAC was originally developed within the context of ac-
tive noise-control experiments [37]. The algorithm used in 
[37] is gradient based, where the direction and step size are 
derived from different cost functions. In subsequent work 
[38], the gradient algorithm was replaced by batch least-
squares optimization. In both [37] and [38], the modeling in-
formation is given by Markov parameters (impulse-response 
coefficients) of the open-loop transfer function Gzu  from the 
control input u to the performance variable .z  More recently, 
in [39], a recursive least-squares (RLS) algorithm is used 
along with knowledge of the NMP zeros of .Gzu  The ap-
proaches in [37]–[39] are closely related in the sense that all 
of the NMP zeros outside of the spectral radius of Gzu  are 
approximate roots of a polynomial whose coefficients are 
Markov parameters of ;Gzu  this polynomial is the numerator 
of a truncated Laurent expansion of Gzu  about infinity. The 
truncated Laurent expansion serves as the transfer function 
Gf  that defines the retrospective cost by filtering the differ-
ence between the actual past control inputs and the reopti-
mized control inputs. A key contribution of this article is to 
show that Gf  serves as a target model for a specific closed-
loop transfer function, as explained below. To construct G ,f  
Markov parameters are used in [37] and [38], and NMP zeros 
are used in [39].

RCAC is applied to Rohrs’s counterexamples [40] in [41], 
broadband disturbance rejection in [42], decentralized con-
trol in [43], sampled-data plants with aliasing in [44], multi-
input, multi-output (MIMO) plants in [45], and Hammerstein 
plants in [46]–[48]. Numerical simulation studies are given 
in [49] and [50] for flow control; in [51] for noncolocated con-
trol of a linkage; in [42], [43], [52], and [53] for vibration con-
trol; in [54] for engine control; in [55]–[59] for aircraft 
control; in [60] for spacecraft control; in [61] for quadrotor 
control; in [62] for missile control; in [63] for scramjet con-
trol; and in [48], [64], and [65] for control of plants with hys-
teresis and hysteretic friction. Laboratory experiments are 
reported in [37], [66], and [67] for noise control; in [68] for 
control of a ducted flame; and in [69] for control of a  six-
degree-of-freedom shaker table.

This article has several objectives. The first objective is to 
present the RCAC algorithm in sufficient detail that readers 
can grasp all of the key steps. This version of the algorithm is 
based on RLS optimization. The algorithm is presented within 
the context of the adaptive standard problem, which includes 
command-following and disturbance-rejection problems with 
and without feedforward control as special cases; several of 
these problems are presented as special cases of the adaptive 
servo problem. The adaptive standard problem and the adap-
tive servo problem are stated for vector signals, and thus the 
RCAC algorithm is fully MIMO.

The next contribution of this article concerns the model-
ing data used by RCAC as incorporated in .Gf  In particular, 
it is shown that Gf  serves as a target model for a closed-loop 

transfer function G ,zu ku u  whose zeros include the zeros of .Gzu  
The special closed-loop transfer function G ,zu ku u  arises from 
the way in which RCAC updates the controller coefficients. 
This controller update can be interpreted as a virtual exter-
nal control perturbation uu  that is injected internally to the 
control update, which is called intercalated injection.

Intercalated injection of the virtual external control pertur-
bation uu  gives rise to the closed-loop transfer function .G ,zu ku u  
At the same time, minimization of the retrospective cost up-
dates the controller coefficients so as to fit G ,zu ku u  to the target 
model .Gf  With this insight, it immediately becomes clear 
why RCAC requires knowledge of the NMP zeros of .Gzu  Spe-
cifically, if an NMP zero of Gzu  is not included in ,Gf  then 
RCAC cancels the zero through feedback to match G ,zu ku u  to .Gf  
Although the RCAC algorithm is presented in the fully MIMO 
case, the construction of Gf  in the present article is confined to 
the case where the control input and performance variable are 
scalar signals.

Since RCAC updates the controller so as to match G ,zu ku u  
to the target model ,Gf  it is straightforward to use Gf  to 
place the closed-loop poles, that is, for adaptive pole place-
ment. Pole placement aside, RCAC also matches the fre-
quency response of G ,zu ku u  to the frequency response of .Gf  
What is, perhaps, more surprising is that, if Gf  is chosen to 
be a finite impulse response (FIR) target model and the 
controller order is chosen to be sufficiently large, then 
RCAC yields a controller whose closed-loop frequency re-
sponse matches the frequency response of the closed-loop 
system given by high-authority linear-quadratic-Gaussian  
(LQG) synthesis, that is, LQG with zero control weighting 
and zero measurement-noise covariance. This connection 
is surprising because LQG uses a complete and exact 
plant model, whereas RCAC uses extremely limited mod-
eling information.

In addition to presenting a self-contained description of 
the RCAC algorithm, a further goal of this article is to illus-
trate RCAC and investigate the role of Gf  through exam-
ples. These examples include plants with various types of 
stability (asymptotically stable, Lyapunov stable, and 
unstable), various types of control architectures [feedback, 
feedforward, model reference adaptive control (MRAC), 
and proportional-integral-derivative (PID)], various prob-
lem objectives (stabilization, command following, and dis-
turbance rejection), and various types of exogenous signals, 
including step, ramp, and harmonic commands as well as 
step, ramp, harmonic, and stochastic sensor noise and dis-
turbances. In addition, RCAC is applied to linear plants 
with magnitude and rate control saturation and tested on 
nonlinear oscillators. Many of these examples go beyond 
the theory presented in [39], which is confined to feedback 
control of linear plants in the absence of sensor noise and 
with exogenous signals generated by Lyapunov-stable 
exogenous dynamics. Neither broadband disturbances nor 
saturation are considered in [39]. Consequently, these 
examples provide insight into the performance of RCAC in 
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situations that lie outside the current theory. To this end, 
for several examples, the problem data are varied to make 
the problems progressively more difficult until RCAC fails. 
These trends highlight the strengths and weaknesses of 
RCAC and provide guidelines for applications.

The contents of this article are as follows. The next sec-
tion presents the standard and servo control problems, fol-
lowed by a definition of the adaptive standard and servo 
problems. The RCAC algorithm is then presented with a 
discussion of the construction of the target model ,Gf  which 
incorporates the modeling information required by RCAC. 
Several examples of adaptive pole placement and adaptive 
control for harmonic commands and disturbances are then 
presented. Stochastic exogenous signals are also consid-
ered, and RCAC is compared to high-authority LQG. The 
final sections investigate the effect of sensor noise and 
modeling errors, in particular, erroneous and unmodeled 
NMP zeros, erroneous relative degree, unmodeled time 
delay, and erroneous plant gain.

Standard Problem
Consider the standard problem consisting of the discrete-
time, linear, time-invariant plant

	 ( ) ( ) ( ) ( ),x k Ax k Bu k D w k1 1+ = + + � (1)

	 ( ) ( ) ( ) ( ),y k Cx k D u k D w k0 2= + + � (2)

	 ( ) ( ) ( ) ( ),z k E x k E u k E w k1 2 0= + + � (3)

where ( )x k Rn!  is the state, ( )y k Rly!  is the measurement, 
( )u k Rlu!  is the control input, ( )w k Rlw!  is the exogenous 

input, and ( )z k Rlz!  is the performance variable. The plant 
(1)–(3) may represent a continuous-time, linear time-invari-
ant plant sampled at a fixed rate. The goal is to develop a 
feedback or feedforward controller that operates on y  to 
minimize z  in the presence of the exogenous signal .w  The 
components of w  can represent either a command signal r  
to be followed, an external disturbance d  to be rejected, 
and/or sensor noise v  that corrupts the measurement as 
determined by the choice of , ,D D1 2  and .E0  Depending on 
the application, components of w  may or may not be mea-
sured, and, for feedforward control, the measured compo-
nents of w  can be included in y  by suitable choice of C  and 

.D2  For fixed-gain control, z  need not be measured. For 
adaptive control, however, z  is assumed to be measured.

Using the forward-shift operator q, (1)–(3) can be 
rewritten as

	 ( ) ( ) ( ) ( ) ( ),q qz k G w k G u kzw zu= + � (4)

	 ( ) ( ) ( ) ( ) ( ),q qy k G w k G u kyw yu= + � (5)

where

	
( ) ( ) ,

( ) ( ) ,

q q

q q

G E I A D E

G E I A B E

zw

zu

1
1

1 0

1
1

2

= - +

= - +

9

9

-

- � (6)

	
( ) ( ) ,

( ) ( ) .

q q

q q

G C I A D D

G C I A B D

yw

yu

1
1 2

1
0

= - +

= - +

9

9

-

- � (7)

Furthermore, the discrete-time, linear, time-invariant con-
troller has the form

	 ( ) ( ) ( ) .qu k G y kc= � (8)

Note that q is a time-domain operator that accounts for ini-
tial conditions, and, although (6) and (7) are written as 
transfer functions, these expressions are convenient repre-
sentations of time-domain dynamics. For pole-zero analy-
sis, q can be replaced by the Z-transform complex variable 
z, in which case (4), (5), and (8) do not account for the initial 
conditions. Figures 1 and 2 illustrate (4)–(8).

The closed-loop transfer function from the exogenous 
signal w  to the performance variable z  is

	 ( ) .G G G G I G G Gzw zw zu yu yw
1

c c= + -
9 -u � (9)

The poles of Gzwu  are referred to as the closed-loop poles, 
and the transmission zeros of Gzwu  are the closed-loop zeros. 
In the case where , , ,y z u  and w  are scalar signals, (6), (7), 
and (9) can be written as

	 , , , ,G D
N G D

N G D
N

G D
N

zw
zw

zu
zu

yw
yw

yu
yu

= = = = � (10)

	 ( )
( )

,G
D
N

D DD N N
N N N N DD N N

zw
zw

zw

yu

zu yw zw yu

c c

c c c
= =

-
+ -u

u
u

� (11)

Gzw Gzu

GyuGyw

Gc

w z

yu

Figure 1  A block diagram representation of the standard problem 
with the controller .Gc

Gyw Gc Gzu

Gzw

Gyu

uw y z

Figure 2  An equivalent block diagram representation of the stan-
dard problem with the controller .Gc
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where

	 .G D
N

c
c

c= � (12)

It is assumed that D  and Dc  are monic. In the case where 
,y z=  that is, , , and ,C E D E D E1 0 2 2 0= = =  (10) and (11) can 

be written as

, , .G G D
N G G D

N G DD N N
N D

zw yw
w

zu yu
u

zw
u

w

c c

c= = = = =
-

u � (13)

In the case where w  is matched with ,u  that is, ,B D1=  
, and ,E DE D0 2 0 2= =  (10) and (11) can be written as

, , .G G D
N G G D

N
G DD N N

N D
zw zu

z
yw yu

y
zw

y

z

c c

c= = = = =
-

u � (14)

In the case where y z=  and w  is matched with ,u  (10) and (11) 
can be written as

   , .G G G G G D
N G DD NN

ND
zw yw zu yu zw

c c

c= = = = = =
-

9 u � (15)

For examples where y z=  and w  is matched with ,u G  is 
used to define the plant (1)–(3); otherwise, the state-space 
representation is used.

Servo Problem
As a special case of the standard problem, consider the 
discrete-time, linear, time-invariant plant

	 ( ) ( ) ( ) ( ),x k Ax k Bu k D d k1 1+ = + + r � (16)

	 ( ) ( ) ( ),y k Cx k D u k0 0= +r r � (17)

	 ( ) ( ) ( ),y k y k v k0n = + � (18)

	 ( ) ( ) ( ),e k r k y k0 0= - � (19)

	 ( ) ( ) ( ),e k r k y kn n= - � (20)

where ( )x k Rn!  is the state, ( )y k Rl
n

y!  is the measure-
ment, ( )u k Rlu!  is the control input, ( )d k Rld!  is the dis-
turbance, ( )r k Rly!  is the command, ( )v k Rly!  is the sensor 
noise, and ( )e k Rl

n
y!  is the performance variable. Equation 

(17) can be rewritten in terms of q as

	 ( ) ( ) ( ) ( ) ( ),q qy k G u k G d ku d0 = + � (21)

where

	 ( ) ( ) , ( ) ( ) .q q q qG C I A B D G C I A Du d
1

0
1

1= - + = -
9 9- -r r r r � (22)

Furthermore, the linear, time-invariant controller has 
the form

	 ( ) ( ) ( ) .qu k G e kc n= � (23)

The measured error signal en  is the difference between the 
command r  and the measurement ,yn  which may be cor-
rupted by noise. Since only the measured error is available 
for feedback, en  serves as the performance variable within 
RCAC. However, the true error signal ,e0  which is the dif-
ference between the command r  and the plant output ,y0  
provides a true measure of the command-following perfor-
mance. Since this signal is not available for feedback, it is 
used only as a diagnostic. If, however, the sensor noise  v  is 
absent, then en  and e0  are identical. Figure 3 illustrates 
(21)–(23). The servo problem is a special case of the stan-
dard problem with

	 , , ,w
r
d
v

y e z en n= = => H � (24)

and

	 [ ], , ,D D C E C D E D0 01 1 1 0 2 0= = =- = =-r r r � (25)

	 [ ], [ ],D I I E I0 0 0l l l2 0y y y= - = � (26)

	 [ ], ,G I G G G0zw l d zu uy= - =- � (27)

	 [ ], .G I G I G Gyw l d l yu uy y= - - =- � (28)

In the case where d  and u  are colocated, it follows that 
D B1 =r  and ,D 00 =r  and thus .G Gd u=  In this case, define 

.G G Gd u= =
9  However, w  is not necessarily matched with 

.u  Moreover, if r v 0= =  and d  and u  are colocated, then w  
is matched with .u  For examples where d  and u  are 

Gc
[Gd  Gu]u

d

r

−

en

e0

y0

v
yn

−

Figure 3  A block diagram representation of the servo problem. en  
is the measured error, and e0  is the true error.

This article focuses on retrospective cost adaptive control, which is  

a direct, discrete-time, adaptive control technique for stabilization,  

command following, and disturbance rejection.
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colocated, G  is used to define the plant (16)–(20); otherwise, 
the state-space representation is used.

Retrospective Cost adaptive  
Control Algorithm

Adaptive Standard and Servo Problems
Figure 4 shows the adaptive standard problem, which is the 
standard problem with an adaptive controller, while 
Figure  5 shows the adaptive servo problem, which is the 
servo problem with an adaptive controller. Note that, for 
the adaptive servo problem, it is desirable to minimize the 
true error .e0  However, since e0  is not available, RCAC min-
imizes the measured error ,en  which may be corrupted by 
noise, as shown in Figure 3. For the adaptive standard 
problem, .z en=

Controller Structure
Define the dynamic compensator

	 ( ) ( ) ( ) ( ) ( ),u k P k u k i Q k y k ii
i

n

i
i k

n

1

c

c

c

= - + -
= =

/ / � (29)

where ( )P k Ri
l lu u! #  and ( )Q k Ri

l lu y! #  are the controller co-
efficient matrices and .k 0c $  For controller startup, (29) is 
implemented as

	 ( )
,
( ) ( ),

,
,u k k k

k k
k k

0 w

w

1
$iU

= ) � (30)

where the regressor matrix ( )kU  is 

	 ( )

( )

( )
( )

( )

,k

u k

u k n
y k k

y k n

I

1

Rl
l lc

c

c

T

u
u7

h

h

!U =

-

-

-

-

#9 i

R

T

S
S
S
S
S
S
SS

V

X

W
W
W
W
W
W
WW

� (31)

where k nw c$  is an initial waiting period during which 
( )kU  is populated with data. The controller coefficient 

vector ( )ki  is

	 ( ) vec ( ) ( ) ( ) ( ) ,k P k P k Q k Q k Rn k n
l

1
T

c c cg g !i =
9 i6 @ � (32)

where ( ),l l n l l n k1u u y
2

c c c= + + -
9

i  “,” is the Kronecker 
product, and “vec” is the column-stacking operator. Note 
that k 0c =  allows an exactly proper controller, whereas 
k 1c $  yields a strictly proper controller of relative degree 
of at least .kc  All examples in this article use ,k 1c =  and, 
unless specified otherwise, .k nw c=  In terms of q, the time-
domain transfer function of the controller from y  to u  is 
given by

	
( ) ( ) ( )

( ) ( ) .
q q q

q

G I P k P k

Q k Q k
,k l

n n
n

k
n k

n

1
1 1

c u
c c

c

c
c c

c$

g

g

= - - -

+ +

- -

-

^
^ h

h
�

(33)

Note that the coefficients of G ,kc  are given by the compo-
nents of ( ),ki  which are time dependent, and thus G ,kc  is a 
linear, time-varying controller. Also, note that (33) is 
expressed in terms of the forward-shift operator q rather 
than the Z-transform variable z. Consequently, although 
(33) is written as a transfer function, this expression is 
merely a convenient representation of the time-domain 
operator represented by (29). If y  and u  are scalar signals, 
then G ,kc  is single-input, single-output (SISO), and (33) can 
be written as

	 ( )
( ) ( )

( ) ( )
.q

q q
q

G
P k P k

Q k Q k
,k n n

n

k
n k

n

1
1c c c

c

c
c c

c

g

g
=

- - -

+ +
-

-

� (34)

Note that (33) is an infinite impulse response (IIR) con-
troller. By removing ( ), , ( )u k u k n1 cf- -  from (29) and 

( ),kU  and by modifying the structure of ,i  an FIR control-
ler structure can be enforced, where

	 ( ) ( ) ( ) .u k Q k y k ii
i k

n

c

c

= -
=

/ � (35)

In this case, (33) becomes

	 ( ) ( ) ( ) .q
q

qG Q k Q k1
,k n k

n k
nc c c

c c
cg= + +-6 @ � (36)

Retrospective Performance Variable
The retrospective performance variable is defined as

	 ( , ) ( ) ( ) [ ( ) ( )],qz k z k G k u kfi iU= + -
9t t t � (37)

Gzw Gzu

GyuGyw

Gc,k

w z

yu

Gc,k

Figure 4  A block diagram representation of the adaptive standard 
problem with the adaptive controller .G ,kc

Gc,k
[Gd  Gu]u

d

r

−

en

e0

y0

v
yn

−

Figure 5  A block diagram representation of the adaptive servo 
problem with the adaptive controller .G ,kc
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where Rl!i it  and Gf  is an n nz u#  filter specified below. 
The rationale underlying (37) is to replace the control ( )ku  
with ( ) ,k *iU t  where *it  is the retrospectively optimized 
controller coefficient vector obtained by optimization 
below. The updated controller thus has the coefficients 

( ) .k 1 *i i+ = t  Consequently, the implemented control at 
step k 1+  is given by

	 ( ) ( ) ( ).u k k k1 1 1iU+ = + + � (38)

The filter Gf  is constructed in the “Virtual External Con-
trol Perturbation and Target Model Gf ” section based on the 
required modeling information. This filter has the form

	 ,G D N1
f f f=
9 - � (39)

where Df  is an l lz z#  polynomial matrix with leading coef-
ficient ,Ilz  and Nf  is an l lz u#  polynomial matrix. Gf  is 
referred to as the target model for reasons given below. By 
defining the filtered versions ( )k Rl l

f
z!U # i  and ( )u k Rl

f
z!  

of ( )kU  and ( ),u k  respectively, (37) can be written as

	 ( , ) ( ) ( ) ( ),z k z k k u kf fi iU= + -t t t � (40)

where

	 ( ) ( ) ( ), ( ) ( ) ( ) .q qk G k u k G u kf f f fU U= =
9 9 � (41)

Note that implementation requires ( , ),maxk n nw c f$  where 
nf  is the McMillan degree of .Gf

Retrospective Cost
Using the retrospective performance variable ( , )z k it t  
defined by (37), the cumulative retrospective cost function 
is defined as

( , ) [ ( , ) ( ) ( , ) ( ( ) ) ( ) ( ) ]

( ( )) ( ( )),

J k z i R i z i i R i i

R0 0

k i

i

k

z u

k
1

T
f

T
f

T

i m i i i i

m i i i i

U U= +

+ - -

9

i

-

=

t t t t t t t

t t

/

� (42)

where ( , ]0 1!m  is the forgetting factor, R Rl l! #
i

i i  is positive 
definite, and, for all , ( )i R i1 Rz

l lz z$ ! #  is positive definite 
and ( )R i Ru

l lz z! #  is positive semidefinite. The performance-
variable and control-input weighting matrices ( )R iz  and 

( )R iu  are time dependent and thus may depend on present 
and past values of , ,y z  and .u  For example, choosing ( )R iu  
to be a function of ( ) ( )z i z iT  can help prevent unstable pole-
zero cancellation in the case of unmodeled NMP zeros [70]. 
The recursive minimization of (42) is used to update the con-
troller coefficient vector .it  The following result uses recur-
sive least squares to obtain the minimizer of (42).

Proposition

Let ( )P R0 1= i
- , and, for all ,k 1$  let *it  be the unique global 

minimizer of the retrospective cost function (42). Then, *it  
is given by

* ( ) ( ) ( ) ( )
[ ( ) ( ) ( ) ( ) ( ) ( ( ) ( ))],
k P k k k

k k R k R k R k z k u kz u z

1

1

f
T

f f$

i i

i

U Y

U

= -

+ + -

-

-

t

^ h �
(43)

where

	 ( ) ( ) ( ) ( ) ( ) ( ) ( )P k P k P k k k k P k1 1 1 1
f
T

f
m m

U Y U+ = - - � (44)

and

	 ( ) ( ) ( ) ( ) ( ) ( ).k R k R k k P k kz u
1

f f
T

mY U U= + +
9 -6 @ � (45)

Setting ( ) * ,k 1i i+ = t  (43) yields the recursive controller-
coefficient update equation

( ) ( ) ( ) ( ) ( )
[ ( ) ( ) ( ) ( ) ( ) ( ( ) ( ))].

k k P k k k

k k R k R k R k z k u k

1

z u z

1

1

f
T

f f$

i i

i

U Y

U

+ = -

+ + -

-

-^ h
� (46)

If ,1m =  then the covariance ( )P k  decreases monotoni-
cally, and thus the rate of adaptation decreases. To main-
tain adaptation in cases where the plant or exogenous 
signals are changing, the covariance can be reset using 
suitable logic. Alternatively, choosing the forgetting factor 

11m  prevents monotonic decrease of ( )P k  but can lead to 
instability in the presence of noise and in the absence of 
persistency [71], [72]. Yet another approach is to include an 
additional positive-semidefinite term ( )kQ  on the right-
hand side of (44) of the form

	 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),P k P k P k k k k P k Q k1 1
f
T

fU Y U+ = - +- � (47)

where 1m =  in (45). Note that (47) is the discrete-time 
Kalman predictor, Riccati error-covariance update equa-
tion with the dynamics matrix ,A Il= i  output matrix 

( ) ( ),C k kfU=  process-noise covariance ( ),kQ  and sensor-
noise covariance ( ) [ ( ) ( )]R k R k R kz u

1= + -  [73]. Consequently, 
persistency in (47) is determined by the observability of 
the time-varying pair ( , ),Il fUi  and the corresponding 
state-estimate update is given by (43). An alternative is to 
use the discrete-time Kalman filter, Riccati error-covari-
ance update equation

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),P k P k P k k k k P k Q k1 1 11
f
T

fU Y U+ = - + + +-

� (48)

where the corresponding state-estimate update is

	
( ) ( ) ( ) ( ) ( )

[ ( ) ( ) ( ) ( )
( ) ( ( ) ( ))] .

k k P k k k

k k R k R k

R k z k u k

1 1 1
1

1 1
· z u

z

1

1

f
T

f

f$

i i

i

U Y

U

+ = - + +

+ + +

+ - +

-

-^ h �
(49)

Note that,  in (49),  the est imate ( )k 1i +  depends on 
( ).z k 1+  Therefore, implementation of (49) requires in

stantaneous update of the controller coefficient vector. 



OCTOBER 2017 «  IEEE CONTROL SYSTEMS MAGAZINE  35

In contrast, in (46), ( )k 1i +  depends on ( ),kz  and thus (46) 
is implementable.

In practice, ( )0i  can be chosen based on an initial design, 
if one is available. However, for all examples in this article, 
the initialization ( )0 0i =  is used to reflect the absence of 
additional prior modeling information. Furthermore, for 
all ,i 1$  ( ) .R i Iz lz=  Note that RCAC can use batch least-
squares optimization instead of recursive minimization.

Virtual External Control Perturbation  
and Target Model Gf

The target model Gf  is a key feature of RCAC. In [38], Gf  is 
viewed as a model of Gzu  that captures the sign of the lead-
ing coefficient of Nzu  along with the NMP zeros of .Gzu  In 
[39], the analysis of RCAC involves an ideal filter ,Gfr  which 
is a closed-loop transfer function involving an ideal feed-
back controller .Gcr  These insights lead to an alternative 
interpretation of Gf  as a target model for a specific closed-
loop transfer function, as demonstrated below.

Using (30), the retrospective performance variable (37) 
can be written as

	 ( , ) ( ) ( ) [ ( ) ( ) ].qz k z k G u k kfi iU= - -t t t � (50)

It can be seen from (50) that minimizing the cumulative ret-
rospective cost function (42) determines the controller coef-
ficient vector it  that best fits ( ) [ ( ) ( ) ]qG u k kf iU- t  to the 
performance data ( ).z k  In terms of the optimal controller 
coefficient vector * ,it  (50) can be written as

	 ( , *) ( ) ( ) [ ( ) ( ) *].qz k z k G u k kfi iU= - -t t t � (51)

For convenience, define

	 ( ) ( ) * ,*u k k iU=
9 t � (52)

	 ( ) ( ) ( ),*u k u k u k= -
9u � (53)

so that

	 ( ) ( ) ( ).*u k u k u k= + u � (54)

With this notation, (51) can be written as

	 ( , *) ( ) ( ) ( ).qz k z k G u kfi = -t t u � (55)

Using (54) to replace u  in U  by * ,u u+ u  it follows from (29)–
(31) and (52) that *u  satisfies

	 ( ) ( ) ( ) ( ).* *u k P u k i P u k i Q y k i* * *
i

i

n

i
i

n

i
i k

n

1 1

c c

c

c

= - + - + -
= = =

u/ / / � (56)

Note that the actual input to the plant at step k  is ( ),u k  
which, in (54), is written as the sum of the pseudocontrol 
input ( )*u k  and the virtual external control perturbation ( ).u ku  
Although the signals *u  and uu  are not explicitly used by 
RCAC, it is now shown that they are crucial to understanding 
the role of .Gf  From (56) it follows that

	 ( ) ( ) [( ( )) ( ) ( ) ( )],* q q q qu k D I D u k N y k* * *n
l

1
c c cu

c= - +- u � (57)

where

	 ( ) ,q q qD I P P* * *n
l

n
n

1
1c u

c c
cg= - - -

9 - � (58)

	 ( ) ,q qN Q Q* * *n k
k nc

c c
c cg= + +

9 - � (59)

	 .G D N* * *1
c c c=
9 - � (60)

The special closed-loop transfer function from uu  to z  arises 
from the way in which RCAC updates the controller coef-
ficients. This controller update can be interpreted as a vir-
tual external control perturbation uu  that is injected 
internally to the control update, which is called intercalated 
injection. Figures 6 and 7 show the equivalent transfer func-
tion representations of (54) and (57) with uu  represented as 
an external input. Figure 6 illustrates the intercalated injec-
tion of uu  inside the control update.

It follows from (4), (5), (54), and (57) that

( ) ( ) ( ) ( )
[ ( ) [( ( )) ( ) ( ) ( )] ( )],

q q

q q q q

z k G w k G

D I D u k N y k u k* * *

zw zu

n
l

1
c c cu

c$

= +

- + +- u u

� (61)

( ) ( ) ( ) ( )
[ ( ) [( ( )) ( ) ( ) ( )] ( )].

q q

q q q q

y k G w k G

D I D u k N y k u k* * *

yw yu

n
l

1
c c cu

c$

= +

- + +- u u

� (62)

Solving (62) for ( )y k  and substituting ( )y k  into (61) yields

	 ( ) ( ) ( ) ( ) ( ),q qz k G w k G u k* *
zw zu= +u u uu � (63)

z (k)

y (k)u (k)

w (k)

u (k)~

qnc Dc    (q)∗–1

Nc (q)∗Dc    (q)∗–1

Gzw(q)  Gzu(q)
Gyw(q)  Gyu(q)

Figure 7  An equivalent block diagram representation of (54) and 
(57) with uu  represented as an external input. In this representa-
tion, the inner feedback loop in Figure 6 is replaced by a prefilter.

z (k)

y (k)
q–nc N  (q)∗ u ∗ (k) u (k)

w (k)

u (k)~

q–nc Dc (q)∗Ilu –

Gzw(q)  Gzu(q)
Gyw(q)  Gyu(q)

c

Figure 6  A block diagram representation of (54) and (57) with the 
virtual external control perturbation uu  represented as an external 
input. The inner feedback loop, which represents (57), illustrates 
the intercalated injection of uu  inside the control update.
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where G*
zwu  is given by (9) with Gc  replaced by ,G*

c  that is,

	 ( ) ,G G G G I G G G* * *
zw zw zu yu yw

1
c c= + -

9 -u � (64)

and where
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u u
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(65)

Now assume that , ,y z  and u  are scalar signals. Using the 
notation in (10), (65) can be written as
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(66)

	
( ) ( ) ( ) ( )

( )
.

q q q q
q q

D D N N
N

* *
yu
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n

c c

c

=
-

� (67)

It can be seen from (55) that ( , *) ( ) ( ) ( )qz k z k G u kfi = -t t u  is 
the residual of the fit between z  and the output of the target 
model Gf  with input .uu  However, (63) shows that ,G*

zuu u  whose 
coefficients are given by * ,it  is the actual transfer function 
from ( )u ku  to ( ).kz  Therefore, minimizing the retrospective 
cost function (42) yields the value ( ) *k 1i i+ = t  of ,it  and 
thus the controller ,G ,k 1c +  that provides the best fit of Gf  by 
the transfer function G ,zu k 1+u u  from uu  to .z  In other words, 
RCAC determines G ,k 1c +  so as to optimally fit G ,zu k 1+u u  to .Gf

The intercalated closed-loop transfer function G ,zu k 1+u u  is 
distinct from the closed-loop transfer function G ,zu kr  from 
an external control-input perturbation ur  to the perfor-
mance variable .z  In the case where , ,y z  and u  are scalar 
signals, G ,zu kr  is given by

	 .G DD N N
N D

,
, ,

,
zu k

k yu k

zu k

c c

c
=

-
r � (68)

The difference between (67) and (68) is that the numerator 
of (67) has the fixed polynomial qnc  in place of the time-
varying polynomial D ,kc  in the numerator of (68). This dis-
tinction implies that the only NMP zeros in (67) are those 
arising from ,Gzu  unlike (68), which includes “time-vary-
ing” zeros arising from .D ,kc

Modeling Information Required for Gf

This section specifies the modeling information required 
by RCAC. For the standard problem, this information 
includes the relative degree, the leading numerator coeffi-
cient, and all of the NMP zeros of .Gzu  For the adaptive 
servo problem, it follows from (28) that this information is 
obtained from .G Gu zu=-  The discussion in this section is 
confined to the case where z  and u  are scalar signals. Note, 
however, that y  may be a vector signal, and thus the con-
trollers based on Gf  as specified below may be multiple 
input, single output.

Relative Degree
Since G ,zu k 1+u u  approximates ,Gf  it is advantageous to choose 
the relative degree of Gf  to be equal to the relative degree of 

.G ,zu k 1+u u  It follows from (67) that the relative degree of G ,zu k 1+u u  
is equal to the relative degree of .Gzu  The relative degree of  
Gf  is thus chosen to be equal to the relative degree of .Gzu  
This choice requires knowledge of the relative degree dzu  
of Gzu  [39].

Nonminimum-Phase Zeros
In [39], the target model Gf  is chosen such that the roots of 
Nf  include the NMP zeros of .Gzu  As can be seen from (67), 
a key feature of G ,zu k 1+u u  is the factor Nzu  in its numerator. 
This means that, since RCAC adapts G ,kc  so as to match 
G ,zu k 1+u u  to ,Gf  RCAC may cancel NMP zeros of Gzu  that are 
not included in the roots of Nf  to remove them from .G ,zu k 1+u u  
This observation motivates the need to include all of the 
NMP zeros of Gzu  in .Nf  As an aside, Example PP1 shows 
that RCAC cancels all of the minimum-phase zeros of Gzu  
that are not included in the roots of Nf  to remove them 
from .G ,zu k 1+u u

Markov Parameters
In [37] and [38], Gf  is based on the Markov parameters of 

.Gzu  In particular, for each complex number z whose abso-
lute value is greater than the spectral radius of ,A  it follows 
that Gzu  has the Laurent expansion

	 ( ) ( ) ,z z
z

G E I A B H
zu i

i

i
1

1

dzu

= - =
3

-

=

/ � (69)

where H E0 2=
9  and, for all ,i 1$  the ith  Markov parameter 

of Gzu  is given by

	 .H E A Bi
i

1
1=

9 - � (70)

As shown in [38], a sufficiently large number n dzu2r  of 
Markov parameters in a truncation of (69) yields an FIR 
target model ( ) /G Hz zi

n
i

i
f dzuR= =

r ^ h whose zeros approxi-
mate the NMP zeros of Gzu  with absolute value greater 
than the spectral radius of .A  In addition, every truncation 
of (69) with n dzu$r  has the correct relative degree, that is, the 
relative degree of .Gzu  Note that, since /DG Nzu zu=  and D  
is monic, Hdzu  is the leading numerator coefficient of .Gzu

Finite Impulse Response Target Model
In the case where Gzu  is minimum phase, the FIR target model 
is defined to be

	 ( ) .q
q

G H
f d

d
zu

zu=
9 � (71)

This choice of Gf  requires knowledge of the relative degree 
dzu  of Gzu  and the first nonzero Markov parameter Hdzu  of 

.Gzu  Note that, for the adaptive servo problem, since 
,G Gzu u=-  it follows that ,H Hd dzu u=-  where Hdu  is the first 

nonzero Markov parameter of .Gu
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In the case where Gzu  is NMP, the FIR target model is 
defined to be

	 ( )
( )

,q
q

q
G

H N
( )
,

deg N
zu

f d
d u

,zu zu

zu

u
=
9

+ � (72)

where the roots of the monic polynomial N ,zu u  are the NMP 
zeros of .Gzu  This choice of Gf  requires knowledge of the 
relative degree dzu  of ,Gzu  the first nonzero Markov 
parameter Hdzu  of ,Gzu  and the NMP zeros of .Gzu  In both 
cases, the relative degree of Gf  is equal to the relative 
degree of .Gzu

Adaptive Pole Placement
This section considers adaptive pole placement for the 
adaptive standard problem and the adaptive servo problem 
using RCAC. The first step is to define the IIR target model 
for pole placement.

Infinite Impulse Response Target Model  
for Pole Placement
Since Gzuu u  approximates ,Gf  RCAC attempts to place the 
poles of Gzuu u  at the locations of the poles of .Gf  It can be seen 
from (11) and (67) that the denominator of Gzuu u  is equal to 
the denominator of the closed-loop transfer function .Gzwu  
Consequently, RCAC attempts to place the closed-loop 
poles at the locations of the poles of .Gf  To use Gf  for pole 
placement, let Dp  be a monic polynomial of degree np  
whose roots are the desired closed-loop pole locations. 
Then, in the case where Gzu  is minimum phase, the IIR 
target model is defined to be

	 ( ) ( ) ,q q
q

G D
H n

f
p

d
d

zu
zup

=
9

-

� (73)

and, in the case where Gzu  is NMP, the IIR target model is 
defined to be

	 ( ) ( )
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.q q
q q

G D
H N( )

,
degn N

zu
f

p

d
d

u
,

zu
zu zup u

=
9

- -

� (74)

The target models (71) and (73) for minimum-phase Gzu  
along with the target models (72) and (74) for NMP Gzu  rep-
resent the modeling information required by RCAC.

In the case where ,n n np c1 +  RCAC attempts to place 
np  closed-loop poles at the locations of the poles of .Gf  The 
remaining n n nc p+ -  closed-loop poles are placed either at  
the locations of the minimum-phase zeros of Gzu  that are 
not included in the roots of Nf  so that Gzuu u  approximates Gf  
or at zero.

Example PP1: Pole Placement  
for the Adaptive Servo Problem
Consider the unstable, minimum-phase plant

	 ( )
( . ) ( . . )

. .
.q

q q q
q q

G
1 05 1 6 0 89

1 4 0 85
2

2

=
- - +

- +
� (75)

Let r  be a unit step command, and let .d v 0= =  To place 
five closed-loop poles at 0.3, 0.4, 0.6, and . ,0 1! .  the IIR 
target model (73) is used with

	 ( ) ( . ) ( . ) ( . ) ( . ) .q q q q qD 0 3 0 4 0 6 0 012
p = - - - + � (76)

Let , ,RR I10 0ul
20= =i
-

i  and .n 4c =  RCAC asymptotically 
follows the step command and places five closed-loop poles 
near the locations of the roots of ,Dp  as shown in Figure 8. 
Note that the remaining two closed-loop poles cancel the 
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Figure 8  Example PP1: Pole placement for the adaptive servo problem. With ,R I10 l
20=i
-

i  retrospective cost adaptive control places 
five closed-loop poles near the locations of the roots of .Dp  The closed-loop poles and zeros are shown at step .k 100=
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minimum-phase zeros of ,G  which are not included in the 
target model (73).

Next set .R I10 l
40=i -

i  Figure 9 shows the locations of the 
closed-loop poles. Note that RCAC places the closed-loop 
poles closer to the desired locations because Ri  is decreased 
and thus ( )P 0  is increased.� ■

Example PP2: Pole Placement  
for the Adaptive Standard Problem
Consider the unstable NMP plant

	 ( ) ( . ) ( )
.

.q q q
q

G 1 1 2
1 2

=
- -
-

� (77)

Let w  be a unit step. RCAC is applied with ,R I10 l
30=i -

i  
,R 0u =  and .n 3c =  To place five closed-loop poles at 0.1, 0.3, 

0.5, and . ,0 75! .  the IIR target model (74) is used with

	 ( ) ( . ) ( . ) ( . ) ( . ).q q q q qD 0 1 0 3 0 5 0 56252
p = - - - + � (78)

Note that the NMP zero of (77) lies between the two unstable 
poles. It follows from root-locus analysis and the parity 
interlacing property [74] that stabilization of (77) requires 
the controller to be unstable [21]. RCAC places five closed-
loop poles near the locations of the roots of ,Dp  as shown 
in  Figure 10. As expected, G ,kc  converges to an unstable 
controller.� ■

The examples in this section show how RCAC can be 
used to assign a subset of the closed-loop poles, which can 
be viewed as partial pole placement. Example PP2 demon-
strates this objective for an unstable plant that requires an 
unstable controller for stabilization. The “Effect of Sensor 

Noise”  section investigates the effect of sensor noise on the 
ability to achieve pole placement.

Adaptive Harmonic Command Following  
and Disturbance Rejection
This section demonstrates the ability of RCAC to develop 
internal models of commands and disturbances by consid-
ering two examples of adaptive harmonic command fol-
lowing and disturbance rejection. In the first example, 
RCAC is used to follow harmonic commands with an IIR 
feedback controller as well as with combined feedback-
feedforward control. Next, for harmonic disturbance rejec-
tion, the ability of RCAC to readapt to changing disturbance 
frequencies is investigated.

Example H1: Harmonic Command Following for the 
Adaptive Servo Problem
Consider the asymptotically stable, minimum-phase plant

	 ( ) ( . ) ( . )
.

.q q q
q

G 0 95 0 99
0 8

=
- -

-
� (79)

Let r  be the harmonic command ( ) ,cosr k k~=  where 
.0 5~ =  rad/sample, and let .d v 0= =  RCAC is applied 

with . , ,RR I0 2 0ul= =i i  ,n 5c =  and the FIR target model 
(71). G ,kc  is restricted to be an FIR controller of the form (35) 
and (36). Since RCAC cannot develop an internal model of 
the command r  due to the FIR structure of ,G ,kc  the com-
mand-following performance is severely restricted, as 
shown in Figure 11. The closed-loop system is instanta-
neously unstable at most time steps up to k = 500.

Next, G ,kc  is an IIR controller of the form (29) and (34). In 
this case, RCAC automatically develops an internal model 
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Figure 9  Example PP1: Pole placement for the adaptive servo problem. With ,R I10 l
40=i
-

i  retrospective cost adaptive control places 
the closed-loop poles closer to the target locations than in Figure 8.
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in the form of controller poles located on the unit circle at 
the command frequency ~  and asymptotically follows the 
harmonic command, as shown in Figure 12.

Finally, the feedback-feedforward control is combined 
with decentralized adaptation, as shown in Figure 13, 
where the feedback controller is FIR and the feedfor-
ward controller is IIR. Both controllers are of order 

.n 5c =  In this case, since the controller is feedback-feed-
forward, RCAC asymptotically follows the harmonic 
command without developing an internal model, as 
shown in Figure 14.� ■

Example H2: Two-Tone Harmonic Disturbance Rejection 
for the Adaptive Servo Problem Using an IIR Controller 
Consider the asymptotically stable plant

	
. .
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1
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-

= =r> > >H H H � (80)

	 [ . . ], ,C D0 78 1 18 1 00= - =r r � (81)

where Gu  is NMP.  Let r v 0= =  and ( ) [ ] ,cos cosd k k k1 2
T~ ~=  

where /81~ r= ^ h rad/sample and /122~ r= ^ h rad/sample. 
RCAC is applied with , . , ,Rk R I50 0 01 0ulw = = =i i  ,n 12c =  
and the FIR target model (72) with an IIR controller. RCAC 
automatically develops an internal model of the harmonic 
disturbance and thus rejects the harmonic disturbance, as 
shown in Figure 15.

Next, let ( ) , ,cosr k k v 01~= =  and ( ) [ ] ,cosd k k 1 T
2~=  

where /151~ r= ^ h rad/sample and /52~ r= ^ h rad/sample 
for ,k1 2000# #  and where /82~ r= ^ h rad/sample for 

.k2000 40001 #  RCAC automatically develops internal 
models of the command and disturbance and thus asymp-
totically follows the harmonic command and rejects the 
step and harmonic disturbances, as shown in Figure 16. 
Note that, after the disturbance frequency changes at step 

,k 2000=  RCAC readapts and rejects the disturbance.� ■

The examples in this section show that, for harmonic 
command following and harmonic disturbance rejection, 
RCAC has the ability to automatically develop an internal 
model of the command and disturbance without knowledge 
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of the spectrum of these signals. In “Adaptive PID Con-
trol,” RCAC is applied to step-command following using 
an adaptively tuned PID controller. In “RCAC for Model 
Reference Adaptive Control,” RCAC is compared to a con-
tinuous-time MRAC method for minimum-phase and 
NMP plants.

Adaptive Control with Stochastic w and d
RCAC is applied to the adaptive standard problem in the 
case where the exogenous signal w  is stochastic as well 
as to the adaptive servo problem in the case where the 
disturbance d  is stochastic. The closed-loop frequency 
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Figure 11  Example H1: Harmonic command following for the adaptive servo problem using a finite impulse response (FIR) controller. 
Since retrospective cost adaptive control cannot develop an internal model of the command r due to the FIR structure of ,G ,kc  the 
command-following performance is severely restricted. Note that the controller coefficients do not converge, and the closed-loop system 
alternates between asymptotic stability and instability.
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Figure 13  A block diagram representation of combined feedback-
feedforward control with decentralized adaptation for the adaptive 
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response and the H2  cost of RCAC are compared  
to high-authority LQG, presented in “Discrete-Time 
LQG Control.”

H2 Cost of Strictly Proper Controllers
For the plant (1)–(3), the H2  cost of an arbitrary stabilizing
strictly proper controller

 	 ~
A
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B
G 0c

c

c

c; E

 is computed by first defining

	 , .D
D
B D V DD

1

2c

T= =
9u u u u; E � (82)
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Figure 14  Example H1: Harmonic command following for the adaptive servo problem using feedback-feedforward control with decen-
tralized adaptation. Retrospective cost adaptive control asymptotically follows the command without developing an internal model.

0 100 200 300 400 500

0 100 200 300 400 500

0 100 200 300 400 500

–4
–2
0
2
4

–5

0

5

–1.5

–1

–0.5

0

0.5

1

1.5

Im
ag

in
ar

y 
A

xi
s

Im
ag

in
ar

y 
A

xi
s

y 0
(k

)
θ

(k
)

u
(k

)

–2
–1.5

–1
–0.5

0
0.5

1
1.5

2
2.5

–3 –2 –1 0 1
Real AxisTime Step

Time Step
–3 –2 –1 0 1

Real Axis

–1.5

–1

–0.5

0

0.5

1

1.5

Gc

~
Gzw

y0, OL y0

e ω
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Then, the H2  cost is given by

	 ( , , ) ( ) ( ) .J A B Q R Q C R CC tr tr1 1 2 2c c c c
T

c= + � (83)

,Q QR Rn n n n
1 2

c c! !# #  satisfy

	 ,Q
Q
Q

Q
Q

1

12

12

2
T=u ; E � (84)

and Q Rn n n nc c! #+ +u  is the solution of the discrete-time 
Lyapunov equation

	 ,Q AQA VT= +u u u u u � (85)

where Au  is defined in (S24).

High-Authority LQG Target Model
Since RCAC tends to match Gzuu u  to ,Gf  Gf  is chosen with the 
numerator ( )q qNzu

nc  and the closed-loop denominator 
DHAu  of high-authority LQG to construct the high-authority 
LQG target model

	 ( )
( )

( )
( ) ( ) ( )

( )
,q

q
q q

q q q
q q

G
D
N

N N N
H N

, , ,

,zu
n

zu yw yw

m
zu

1 1f
HA u s u

d uzu
c

= = - -u � (86)

where .m n d dzu yuc= - -
9  Note that m  may be negative. The 

target model (86) is based on (S29). By choosing (86), the 

goal is to compare the performance of RCAC with the 
performance of high-authority LQG in the case .n nc =  
Note that using (86) as the target model requires knowl-
edge of DHAu  in addition to the modeling information 
required by (71) and (72). The use of (86) is thus only for 
conceptual illustration. To avoid using knowledge of ,DHAu  
the following uses the FIR target models (71) and (72), but 
with .n nc 2

All examples in this section, unless specified otherwise, 
use , ,R I k10 50l

10
w= =i

-
i  and .R 0u =

Example SD1: Adaptive Control with Stochastic w  
for the Adaptive Standard Problem
Consider the asymptotically stable plant
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Figure 16  Example H2: Harmonic command following and step-plus-harmonic disturbance rejection for the adaptive servo problem. Note 
that, after the disturbance frequency changes at step ,k 2000=  retrospective cost adaptive control (RCAC) readapts and rejects the dis-
turbance. RCAC automatically develops an internal model of the command and disturbance signals by placing controller poles on the unit 
circle at the command frequency and the two disturbance frequencies. The internal-model poles of the controller are evident in the form of 
five closed-loop zeros on the unit circle, which are shown by the red plus signs. The closed-loop poles and zeros are shown at step .k 105=
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[ . . . . . ],
, ,

C

D D

0 7298 0 3954 0 3605 0 4003 0 1447
0 00 2

= - -

= =
�

(88)

	
[ . . . . . ],
, ,

E

E E

0 1717 0 3351 0 5294 0 4476 0 6145
0 0

1

0 2

= - -

= =
�

(89)

where , , ,G G Gzu z uw y  and Gyw  are NMP. The H2  cost of the 
LQG controller is 1.059. The exogenous signal w  is zero-
mean Gaussian white noise with standard deviation 0.1. 
RCAC is applied with n nc =  and the high-authority LQG 
target model (86). RCAC places the closed-loop poles near 
the high-authority LQG closed-loop poles and approxi-

mates the closed-loop frequency response of high-authori-
ty LQG, as shown in Figure 17. The H2  cost of the RCAC 
controller is 1.0591.

The next example shows that, for sufficiently large 
,n nc 2  RCAC approximates the performance of the high-

authority LQG controller using the FIR target model (72), 
which uses knowledge of , ,Hdzu dzu  and the NMP zeros of 
Gzu  but no other modeling data and no knowledge of .DHAu  
RCAC is applied with n n4 20c = = . In this case, RCAC 
approximates the closed-loop frequency response of high-
authority LQG, as shown in Figure 18, and the H2  cost of 
the RCAC controller is 1.061.� ■

Adaptive PID Control

P roportional-integral-derivative (PID) control is likely the 

most widely used feedback control technique [S1]–[S3]. 

Adaptive PID control is considered in [S4]. This sidebar con-

siders the discrete-time PID controller structure

	 ( ) ( ) ( ) ( ),u k u k u k u kP I D= + + � (S1)

where

	 ( ) ( ) ( ),u k K k y k 1P P= - � (S2)

	 ( ) ( ) ( ),u k K k k 1I I c= - � (S3)

	 ( ) ( ) [ ( ) ( )],u k K k y k y k1 2D D= - - - � (S4)

and the integrator state c  satisfies

	 ( ) ( ) ( ) .k k y k1 1c c= - + - � (S5)

Note that the PID controller (S1)–(S5) is strictly proper. RCAC 

is used to adaptively tune , ,K KP I  and .KD

Example PID1: Step Command Following for the Adaptive 

Servo Problem Using Adaptive PID Control

Consider the asymptotically stable, NMP plant

	 ( )
( . ) ( . . )

( . ) ( . )
,q

q q q
q q

G
0 99 1 6 0 965

0 975 1 2
2=

- - +

- -
� (S6)

let r be a step command with height two, let d be a step distur-

bance with height –1.1, and let .v 0=  RCAC is applied to the 

adaptive PID controller (S1)–(S5) with R I10 l
4=i i  and .R 0u =  

RCAC rejects the step disturbance and asymptotically follows 

the step command, as shown in Figure S1.� ■
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RCAC for Model Reference Adaptive Control

The model reference adaptive control (MRAC) problem is 

shown in Figure S2. This problem is a special case of the 

adaptive standard problem with

	 , , , ,w
r
d
v

y
r
y

y G r z y y
n

m m m n= = = = -> ;H E � (S7)
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zw d l zu u

yw
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d l
yu u

m z

r

z

= - - =-

= =; E � (S8)

where r R lr!  and Gm  is the reference model. Since y includes 

the command r, the controller includes both feedback and 

feedforward action. Note that the role of the target model Gf  

used by RCAC is distinct from the role of the reference model 

Gm  used in MRAC.

The MRAC problem is widely studied, and numerous tech-

niques have been developed [11], [12], [14], [17], [78]. The 

MRAC controllers in [11, pp. 343–371] are compared below to 

RCAC for continuous-time plants. These controllers require 

knowledge of the relative degree of the plant as well as the 

leading coefficient of the plant numerator. The form of the con-

troller depends on the relative degree of the plant, and the ap-

proach is confined to minimum-phase plants. An extension to 

NMP plants is given in [12].

Example MRAC1: MRAC for a Minimum-Phase Plant

Consider the continuous-time unstable, minimum-phase triple 

integrator

	 ( ) . .G s
s

s 0 1
3= +r � (S9)

Let r be an alternating sequence of step commands with 

heights ±1, let ,d v 0= =  and let Gmr  be the continuous-time 

reference model ( ) / ( ) .G s s1 1m = +r  The MRAC algorithm is the 

one given in [11, p. 355] for plants with relative degree two. Fig-

ure S3 shows the closed-loop response. Next, the plant (S9) 

and reference model Gmr  are discretized with the sampling pe-

riod h = 0.01 s, yielding

	 ( )
( )

( . )
, ( ) .

. .q
q

q q
q qG G

1
10 5 0 0067 5

0 99
0 01

3

5 2

m=
-

+ -
=
-

-

� (S10)

Table S1 T he performance metric f  for the model 
reference adaptive controller given in [11, p. 355] and 
retrospective cost adaptive control (RCAC). Note that 
RCAC yields better performance in the case where d = 0 
as well as in the presence of a constant disturbance.

Method d f

[11, p. 355] 0 216 

RCAC 0 132 

[11, p. 355] –0.2 3667 

RCAC –0.2 153 

Gm

[Gd  Gu]u
dr

ym

yn

−
z

y0

z0

v

−

Gc,k

Figure S2  A block diagram representation of the model refer-
ence adaptive control problem with the adaptive controller .G ,kc
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Figure S3  Example MRAC1: Application of retrospective cost adaptive control (RCAC) to the model reference adaptive control 
(MRAC) problem for the minimum-phase triple integrator (S9). (a) shows the MRAC controller from [11, p. 355], and (b) shows the 
RCAC controller; both follow the output of the reference model.
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RCAC is applied to the MRAC problem with R I10 l
10=i
-

i , 

,R 0u =  and .n 10c =  Twenty Markov parameters are used to 

construct the target model. RCAC asymptotically follows the 

output of the reference model, as shown in Figure S3. Table S1 

shows the value of the performance metric ( )z k
k

2
1

20000
f =
9

=
/  for 

the MRAC controller given in [11, p. 355] and for RCAC.

Finally, let the disturbance d be a step with height –0.2. Fig-

ure S4 shows the command-following performance for the MRAC 

controller given in [11, p. 355] and RCAC. Table S1 shows the value 

of the performance metric for the MRAC controller and RCAC.� ■

Example MRAC2: MRAC for an NMP Plant

Consider the continuous-time unstable, NMP double integrator

	 ( ) . .G s
s

s 0 0952
2= -r � (S11)

Let r be a sequence of step commands with sign-alternating 

heights, let d v 0= = , and let Gmr  be the continuous-time refer-

ence model ( ) ( . ) / ( ) .G s s s s0 0952 30 12
m = - + +r  Note that Gr  

and Gmr  have the same NMP zero. Attempting to use the MRAC 

algorithm given in [11, p. 345] yields an unstable closed-loop 

system (not shown). The plant (S9) and the reference model 

( ) / ( )G s s s1 30 12
m = + +r  are discretized with the sampling pe-

riod h 1=  s, yielding

	 ( )
( )

.
, ( )

.
. .

.q
q
q

q
q q

q
G G

1
1 1

0 9672
0 03174 0 001078

2 2m=
-

-
=

-

+
� (S12)

RCAC is applied to the MRAC problem with . ,R I0 002 l=i i  

,R 0u =  ,n 6c =  and the FIR target model (72). RCAC asymp-

totically follows the output of the reference model, as shown in 

Figure S5.� ■
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Figure S4  Example MRAC1: Application of retrospective cost adaptive control (RCAC) to the model reference adaptive control 
(MRAC) problem for the minimum-phase triple integrator (S9) in the presence of a step disturbance. (a) shows the response of 
the MRAC controller from [11, p. 355], and (b) shows the response of RCAC.
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Discrete-Time LQG Control

D iscrete-time linear-quadratic-Gaussian (LQG) is not as 

widely used as the continuous-time version [S5], [S6]; the 

relevant equations for discrete-time LQG can be found in [79, 

p. 878], and a complete derivation in a more general context is 

given in [S7]. Solutions of the discrete-time Riccati equations 

are discussed in [S8]. Here the focus is on the high-authority 

LQG solution.

For the standard problem (1)–(3), define

, , ,R E E R E E R E ER R Rn n n l l l
1 1 1 12 1 2 2 2 2

T T Tu u u! ! != = =# # #9 9 9

� (S13)

, , .V D D V D D V D DR R Rn n n l l l
1 1 1 12 1 2 2 2 2

T T Ty y y! ! != = =# # #9 9 9

� (S14)

Assuming that w is zero-mean Gaussian white noise with 

covariance ,Ilw  the nth-order strictly proper LQG controller

~G
A
C

B
0c

c

c

c; E minimizes

	 ( , , ) ( ) ( )limJ A B C k z i z i1E
k i

k

0
c c c

T=
"3

9

=

= G/ � (S15)

and is given by

	 ,A A BC B C B D C0c c c c c= + - - � (S16)

	 ( ) ( ) ,B AQC V V CQC12 2
1

c
T T= + + - � (S17)

	 ( ) ( ),C R B PB R B PA2
1

12c
T T T=- + +- � (S18)

where the positive-semidefinite matrices P Rn n! #  and Q Rn n! #  

are solutions of the discrete-time algebraic Riccati equations

	 ( ) ,P A PA A PB R B PB B PA RT
2

1
1R R R

T T T
R= - + +-t t t t t � (S19)

	 ( ) ,Q A QA A QC V CQC CQA V2
1

1E E
T

E
T T

E
T= - + +-t t t t t � (S20)

where

	 , ,A A BR R R R R R R2
1

12 1 1 12 2
1

12R
T T= - = -

9 9- -t t � (S21)

	 , .A A V V C V V V V V12 2
1

1 1 12 2
1

12E
T= - = -

9 9- -t t � (S22)

The eigenvalues of the closed-loop system are given by

	 ( ) ( ) ( ),A A BC A B Cmspec mspec mspecc c,= + -u � (S23)

where

	 A
A

B C
BC

A B D C0c

c

c c c
=

+
9u ; E� (S24)

and “mspec” denotes the spectrum of a matrix including eigen-

value multiplicity. Under the assumptions

•	 (A, B) is stabilizable

•	 ( , )A R1R
tt  has no unobservable eigenvalues on the unit 

circle

•	 (A, C) is detectable

•	 ( , )A V1E
tt  has no uncontrollable eigenvalues on the unit 

circle,

it then follows that (S19) and (S20) have unique positive-semi-

definite solutions P and Q, and, furthermore, Au  is asymptoti-

cally stable.

Note that the LQG controller is independent of .E0  This 

is because, since LQG is based on the assumption that w 

is zero-mean Gaussian white noise, the contribution of E w0  

to ( , , )J A B Cc c c  is not affected by the choice of ,Ac  ,Bc  and 

.Cc  However, for the servo problem shown in Figure 3, E0  is 

not zero, and the command ,r  which is a component of ,w  

is not Gaussian white noise. Likewise, in some applications, 

the disturbance d  in the servo problem is not Gaussian white 

noise, and thus the exogenous signal w  in the standard prob-

lem is not Gaussian white noise. Therefore, in these cases, 

the LQG controller is not necessarily optimal. Nevertheless, 

the LQG controller is used for comparison with RCAC in these 

cases without modification. Examples SD1–SD3 compare the 

closed-loop frequency response and H2  cost of RCAC to high-

authority LQG.
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Figure S6  Example LQG1: The closed-loop transfer function Gzw
u  has one pole at each zero of Gzu  and Gyw  as well as two poles 

at zero.
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Properties of Discrete-Time High-Authority LQG
This section reviews properties of high-authority LQG, 

that is, the case where R 02 =  and .V 02 =  In this case, 

, , ,A A R R A A1 1R E= = =t t t  and .V V1 1=t  The properties of dis-

crete-time high-authority LQG are analogous to the properties of 

continuous-time high-authority LQG given in [S5, pp. 281–289].

For simplicity, assume that y, z, u, and w are scalar signals. 

Consider the factorizations of the numerators Nzu  and Nyw  of 

Gzu  and ,Gyw  respectively, given by

	 ,N H N N, ,zu zu zud s uzu= � (S25)

	 ,N H N N, ,yw yw ywd s uyw= � (S26)

where 0dzu $  is the relative degree of ,Gzu  Hdzu  is the first 

nonzero Markov parameter of ,Gzu  0dyw $  is the relative de-

gree of ,Gyw  Hdyw  is the first nonzero Markov parameter of ,Gyw  

the roots of the monic polynomials N ,szu  and N ,syw  are the 

minimum-phase zeros of Gzu  and ,Gyw  respectively, and the 

roots of the monic polynomials N ,zu u  and N ,yw u  are the NMP 

zeros of Gzu  and ,Gyw  respectively. Note that Hdzu  is the lead-

ing nonzero coefficient of ,Nzu  and Hdyw  is the leading nonzero 

coefficient of .Nyw  With this notation it follows that

	 ( ) ( ( ) ( )),z z zA BC N Nmspec mzeros , ,zu zu
1

c
d

s u
zu+ = - � (S27)

	 ( ) ( ( ) ( )),z z zA B C N Nmspec mzeros , ,yw yw
1

c
d

s u
yw- = - � (S28)

where mzeros  denotes the multiset of zeros of a rational func-

tion including multiplicity. Note that the zeros of ( )zN ,zu
1

u
-  are 

the reflections across the unit circle (that is, the reciprocals) of 

the NMP zeros of .Gzu  For example, if ( ) . ,z zN 1 2,zu u = -  then 

.( ) ( . ) /z z zN 1 1 2,zu
1

u = --  It follows from (S27) and (S28) that 

the closed-loop poles of high-authority LQG control are the 

zeros of

	 .( ) ( ) ( ) ( ) ( )z z z z z zD N N N N, , , ,zu zu yw yw
1 1

HA
d d

s u s u
zu yw= + - -u � (S29)

It thus follows from (S23) that .( ) ( )A Dmspec mzeros HA=u u  Similar 

observations are made for continuous-time systems in [S5] and for 

discrete-time systems in [42]. A surprising aspect of high-authority 

LQG control is that the poles and zeros of ,Gyu  which is present in 

the feedback loop and thus determines the gain and phase mar-

gins, do not affect the locations of the closed-loop poles.

Example LQG1: High-Authority LQG Control for the Standard 

Problem with y ≠z, with Stochastic w Not Matched with u, 

and with Minimum-Phase Gzu, Gzw, Gyu, and Gyw

Consider the asymptotically stable, minimum-phase plant
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[ . . . . ], , ,C D D0 4456 0 0832 0 332 0 8272 0 00 2= - - = =

� (S31)

[ . . . . ], , .E E E0 274 0 2625 0 3241 0 8666 0 01 0 2= - = =

� (S32)

The open- and closed-loop poles are shown in Figure S6. Note 

that ( )A BCmspec c+  consists of the zeros of Gzu  as well as 

zero with multiplicity one, while ( )A B Cmspec c-  consists of 

the zeros of Gyw  as well as zero with multiplicity one. This ex-

ample illustrates (S27) and (S28), which relate the closed-loop 

spectrum to the zeros of Gzu  and .Gyw � ■

Example LQG2: High-Authority LQG Control for the 

Standard Problem with y≠z, with Stochastic w Not 

Matched with u, and with NMP Gzu, Gzw, Gyu, and Gyw,  

All of Which Have Different NMP Zeros
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Figure S7  Example LQG2: The closed-loop transfer function Gzw
u  has one pole at the reciprocal of each NMP zero of Gzu  and 

Gyw  as well as two poles at zero.

(continued)
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Example SD2: Adaptive Control with Nonzero-Mean, 
Stochastic w  for the Adaptive Standard Problem
Consider the Lyapunov-stable, NMP plant

	 ( )
( ) ( . ) ( . . )

( . ) ( . . )
,q

q q q q
q q q

G
1 0 9 1 62 0 81

0 5 1 92 1 44
2

2

=
- - - +

- - +
� (90)

and let w  be Gaussian white noise with mean 0.1 and stan-
dard deviation 0.05. The H2  cost of the LQG controller is 
28.96. RCAC is applied with n n5 20c = =  and the FIR target 
model (72), which uses no knowledge of .DHAu  RCAC approx-
imates the closed-loop frequency response of high-authority 
LQG except for the internal model of the disturbance bias, 
which has the form of a notch at dc, as shown in Figure 19. 

Consider the asymptotically stable, NMP plant

.
. . .

.
, ,

.

.

.
,A B D

0 81
0 1539
0

1
0 81
0

0
0 6998
0 5

0
0
1

0 1841
0 1074
0 9770

1= - = => > >H H H � (S33)

[ . . . ], , ,C D D0 9280 0 1102 0 3558 0 00 2= = = � (S34)

[ . . . ], , .E E E0 4531 0 3513 0 8193 0 01 0 2= - = = � (S35)

The open- and closed-loop poles are shown in Figure  S7. 

Note that ( )A BCmspec c+  consists of the reciprocals of the 

NMP zeros of Gzu  as well as zero with multiplicity one, while 

( )A B Cmspec c-  consists of the reciprocals of the NMP zeros of 

Gyw  as well as zero with multiplicity one. This example illustrates 

(S27) and (S28) in the case where both G uy  and G wz  are NMP. 

This example also shows that the NMP zeros of G wz  and G uy  

have no effect on the closed-loop poles.� ■
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Note that RCAC automatically develops an internal model of 
the disturbance bias. The H2  cost of the RCAC controller 
is 35.79.� ■

Example SD3: Harmonic Command Following  
and Stochastic Disturbance Rejection  
for the Adaptive Servo Problem
Consider the asymptotically stable, minimum-phase plant

	 ( )
( . ) ( . . ) ( . . )

( . . ) ( . . )
.G

0 5 1 8 0 97 1 4 0 98
1 7 0 785 1 4 0 85

q
q q q q q

q q q q
2 2

2 2

=
- - + - +

- + - +
� (91)

The H2  cost of the LQG controller is 1.072. Let r  be the har-
monic command ( ) ,cosr k k~=  where .0 8~ =  rad/sample; 
let d  be zero-mean Gaussian white noise with standard devi-
ation 0.01, and let .v 0=  RCAC is applied with n n8 40c = =  
and the FIR target model (71), which uses no knowledge of 

.DHAu  RCAC asymptotically follows the harmonic command 
and approximates the closed-loop frequency response of 
high-authority LQG except at the command frequency due to 

the internal model of the command, which has the form of a 
notch at the command frequency, as shown in Figure 20. As 
in Example SD2, RCAC automatically develops an internal 
model in response to the harmonic command. The H2  cost of 
the RCAC controller is 1.15.� ■

The examples in this section show that, as G ,kc  adapts, 
the frequency response of Gzuu u  tends to the frequency 
response of .Gf  It is also shown that, for sufficiently large 

,n nc 2  the frequency response of the closed-loop transfer 
function Gzwu  obtained from RCAC with the FIR target 
models (71) and (72) approximates the closed-loop fre-
quency response and H2  cost of high-authority LQG. In 
addition, for command following and disturbance rejection, 
RCAC matches the frequency response of high-authority 
LQG at nearly all frequencies, apart from the command fre-
quency, where RCAC places an internal model.

Effect of Sensor Noise
In all of the examples considered so far, the measurement y  
is not corrupted by noise. In contrast, the examples in this 
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section consider the adaptive servo problem with stochas-
tic sensor noise .v  Difficulties arising from sensor noise in 
adaptive control systems are considered in [40] and [75].

Example SN1: Pole Placement for the Adaptive  
Servo Problem with Sensor Noise
Consider the unstable, minimum-phase plant

	 ( )
( . ) ( . . )

. .
.q

q q q
q q

G
1 1 1 8 1 06

1 4 0 85
2

2

=
- - +

- +
� (92)

Let r  be the harmonic command ( ) ,cosr k k~=  where 
.0 3~ =  rad/sample, and let .d v 0= =  RCAC is applied 

with , ,RR I10 0ul
10= =i
-

i  and .n 6c =  To place four closed-
loop poles at 0, 0.5, . ,0 1! .  the IIR target model (73) is 
used with

	 ( ) . . . .q q q q qD 0 5 0 01 0 0054 3 2
p = - + - � (93)

RCAC places closed-loop poles near the locations of the 
roots of ,Dp  as shown in Figure 21. Now let v  be zero-mean 
Gaussian white noise with standard deviation .v  For 

. ,0 1v =  RCAC fails to place closed-loop poles near the loca-
tions of the roots of Dp  but stabilizes the plant at step 

.k 500=  For . ,0 2v =  RCAC fails to place closed-loop poles 
near the locations of the roots of ,Dp  and the closed-loop 
system is unstable at step k 500=  (not shown).� ■

Example SN2: Stochastic Disturbance Rejection  
for the Adaptive Servo Problem with Sensor Noise
Consider the asymptotically stable, minimum-phase plant
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 [ . . . . . ],
, .

C E

D E E D

0 1596 0 3991 0 2405 0 2672 0 8283
0 1

1

0 0 2 2

= = - -

= = = =
 

�
(95)

Let d  and v  be zero-mean Gaussian white noise signals 
with standard deviation .1v =  RCAC is applied with 

, , ,Rk R I50 10 0ul
20

w = = =i
-

i  ,n n4 20c = =  and the FIR target 
model (71). Instead of approximating the closed-loop fre-
quency response of high-authority LQG, RCAC approxi-
mates the closed-loop frequency response of the LQG 
controller designed for the actual sensor noise level, namely, 

,V 12 =  as shown in Figure 22.� ■

Example SN3: Step Command Following  
and Stochastic Disturbance Rejection for the  
Adaptive Servo Problem with Sensor Noise 
Consider the asymptotically stable, minimum-phase plant
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 [ . . . . . ]. .C D0 2158 0 4234 0 3861 0 3449 0 7115 00= - - =r r � (97)

Let r  be a unit step command, let d  be zero-mean Gaussian 
white noise with standard deviation 0.05, and let v  be zero-
mean Gaussian white noise with standard deviation 0.025. 
To account for the standard deviation of the sensor noise, it 
follows from (26) that

. . [ ] [ ] . .V D D0 025 0 025 1 0 1 1 0 1 0 052 2 2
T T= = - - = � (98)

RCAC is applied with , ,RR I10 0ul
10= =i
-

i  ,n n8 40c = =  and 
the FIR target model (71). RCAC asymptotically follows the 
step command and approximates the closed-loop frequency 
response of LQG except at dc due to the internal model of the 
command, which has the form of a notch at dc, as shown in 
Figure 23. For this example, RCAC approximates the closed-
loop frequency response of the LQG controller designed for 
the actual sensor noise level, namely, . .V 0 052 = � ■

The examples in this section investigate the effect of 
sensor noise on the closed-loop performance of RCAC. 
Example SN1 shows that, as the level of the sensor noise 
increases, RCAC fails to place closed-loop poles near the 
target locations but does stabilize the system. Examples SN2 
and SN3 show that RCAC approximates the closed-loop fre-
quency response of LQG in the presence of sensor noise.

Robustness to Erroneous and  
Unmodeled Nonminimum-Phase Zeros
As shown by the construction of Gf  given by (71)–(74), the  
modeling information required by RCAC is , ,Hdzu dzu  and the 
NMP zeros of .Gzu  This section investigates the effect of errone-
ous and unmodeled NMP zeros by considering four examples. 
The first example considers erroneous estimates of real and com-
plex NMP zeros for the adaptive servo problem. Next, we con-
sider an unmodeled change in the location of the NMP zero 
during operation. The third example considers unmodeled 
NMP sampling zeros for a sampled-data system. The final exam-
ple considers an unstable plant with an unmodeled NMP zero.

Example NMP1: Erroneous NMP-Zero Estimates  
for the Adaptive Servo Problem
Consider the unstable, NMP plant

	 ( )
( . ) ( . ) ( . . )

( . ) ( . ) ( . )
.q

q q q q
q q q

G
0 99 1 01 1 4 1 13

0 95 0 975 1 1
2=

- - - +

- - -
� (99)
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Figure 21  Example SN1: Pole placement for the adaptive servo problem (a) and (b) without sensor noise as well as with zero-mean 
Gaussian white sensor noise v with .0 1v =  (c) and (d) and .0 2v =  (e) and (f). In the case where ,v 0=  retrospective cost adaptive 
control (RCAC) places closed-loop poles near the locations of the roots of .Dp  For .0 1v = , RCAC fails to place closed-loop poles near 
the locations of the roots of Dp  but stabilizes the plant. For . ,0 2v =  RCAC fails to place closed-loop poles near the locations of the roots 
of ,Dp  and the closed-loop system is unstable at step .k 500=  The closed-loop poles and zeros are shown at step .k 500=
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Let r  be the harmonic command ( ) ,cosr k k~=  where 
.0 01~ =  rad/sample, and let .d v 0= =  The target model 

( ) ( . )/q q qG H 1 265 2
f dzu= -  is used, where the estimate 

1.265 of the NMP zero 1.1 is erroneous by 15%, and set 
. , ,RR I0 1 0ul= =i i  and n 12c = . Figure 24 shows the com-

mand-following performance. Figure 25 shows the NMP-
zero estimates for which RCAC asymptotically follows the 
harmonic command as well as the NMP-zero estimates for 
which the closed-loop system becomes unstable. Figure 25 
shows that, for the plant (99), RCAC is more robust to over-
estimation of the NMP zero than underestimation.

Next, let d be zero-mean Gaussian white noise with stan-
dard deviation 0.5. Figure 25 also shows the NMP-zero 
estimates for which RCAC asymptotically follows the har-
monic command as well as the NMP-zero estimates for 
which the closed-loop system becomes unstable. Figure 25 
shows that, for the plant (99), RCAC is less robust to errone-
ous NMP-zero estimates in the case of stochastic distur-
bances than in the case of harmonic commands.

Next, consider the asymptotically stable plant with 
complex NMP zeros given by

	 ( )
( . ) ( . . )

. .
.q

q q q
q q

G
0 999 1 9 0 9125

2 1 1 1125
2

2

=
- - +

- +
� (100)

Let r  be the harmonic command ( ) ,cosr k k~=  where 
.0 01~ =  rad/sample, and let .d v 0= =  The target model 

( ) ( ) ( )/q q q qG H 1 2
2

f dzu p p= - -t t  is used, where 1pt  and 2pt  
are estimates of the NMP zeros . . .1 05 0 1! .  Figure 26 shows 
the locations of the NMP-zero estimates for which RCAC 
asymptotically follows the harmonic command as well as 
the NMP-zero estimates for which the closed-loop system 
becomes unstable.� ■

Example NMP2: Unmodeled Change in the NMP Zeros  
for the Adaptive Standard Problem
Consider the asymptotically stable, minimum-phase plant

	 ( )
( . ) ( . ) ( . . )

( . ) ( . . )
,q

q q q q
q q q

G
0 35 0 6 0 8 0 32

0 5 1 92 1 44
2

2

=
- - - +

- - +
� (101)

and let w  be zero-mean Gaussian white noise with stan-
dard deviation 0.01. RCAC is applied with ,R I10 l

5=i -
i  

–50

0

50

100

0 200 400 600 800 1000

0 200 400 600 800 1000

Time Step
0 200 400 600 800 1000

Time Step

–2

–1

0

1

–40

–30

–20

–10

0

10

20

30

–10
–5
0
5

10

–180

–90

0

90

180

0

20

40

–180
–90

0
90

180

M
ag

ni
tu

de
 (

dB
)

M
ag

ni
tu

de
 (

dB
)

P
ha

se
 (

°)

P
ha

se
 (

°)

y 0
(k

)
θ

(k
)

u
(k

)

0 π /4 π /2 3π /4 π

0 π /4 π /2 3π /4 π
Frequency (rad/sample)

0 π /4 π /2 3π /4 π

0 π /4 π /2 3π /4 π
Frequency (rad/sample)

~
~Gzu

Gf

y0, OL y0

~
Gzw , RCAC
~
Gzw , LQG  (V2 = 1)

~
Gzw , LQG (V2 = 0)

Gzw

Figure 22  Example SN2: Stochastic disturbance rejection for the adaptive servo problem with zero-mean Gaussian white sensor noise. 
Retrospective cost adaptive control approximates the closed-loop frequency response of the linear-quadratic-Gaussian controller for 
V 12 = . In addition, the frequency response of G ,zu k

u
u  approximates the frequency response of .Gf  The frequency-response plots are 

shown at step .k 105=
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Figure 23  Example SN3: Command following and stochastic disturbance rejection for the adaptive servo problem with zero-mean 
Gaussian white sensor noise. Retrospective cost adaptive control (RCAC) approximates the closed-loop frequency response of linear-
quadratic Gaussian (LQG) for V 22 =  except at dc due to the internal model. The internal model has the form of a notch at dc correspond-
ing to the closed-loop zero at .z 1=  For this example, RCAC approximates the closed-loop frequency response of LQG in the presence 
of sensor noise. The frequency-response plots and closed-loop poles and zeros are shown at step .k 105=
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Figure 24  Example NMP1: Erroneous nonminimum-phase (NMP)-zero estimates for the adaptive servo problem. Retrospective cost 
adaptive control automatically develops an internal model of the command and asymptotically follows the command despite a 15% error 
in the estimate of the NMP zero used by .Gf
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. , ,R z n0 1 4u
2

c= =  and the IIR target model (74) with the 
roots of ( )qDp  chosen as the closed-loop poles of high-
authority LQG. RCAC approximates the closed-loop fre-
quency response of high-authority LQG, as shown in 
Figure 27. At step ,k 5000=  the plant dynamics change so 
that the NMP zeros move from . .0 96 0 72! .  to . . .0 99 1 38! .  
If G ,kc  is fixed to be ,G ,5000c  then the closed-loop system 
becomes unstable. However, under continued adaptation, 
the plant is restabilized, and RCAC approximates the 
closed-loop frequency response of high-authority LQG for 
the modified plant, as shown in Figure 27.� ■

Example NMP3: Unmodeled NMP Sampling Zero  
for the Adaptive Servo Problem
Consider the asymptotically stable, continuous-time plant 

( ) ( ) ( ),T s s T s0K=  where

	 , ,s
s s

T s s15 2 15 2
229

1
2

0
. .

K =
- + - -

=
+

^ ^ ^ ^h h h h � (102)

where ( )sK  represents unmodeled high-frequency dynam-
ics [40]. Since the relative degree of ( )T s0  is one, the dis-
crete-t ime sampled-data plant ( )zG0  obtained by 
discretizing ( )T s0  does not yield any sampling zeros [76]. 
However, since the relative degree of ( )T s  is three, the dis-
crete-time, sampled-data plant ( )zG  obtained by discretiz-
ing ( )T s  possesses two sampling zeros due to ( ).sK  It is 
shown in [41] that, if the sampling period . ,h 0 2K  then one 
of the sampling zeros is NMP. Since ( )sK  represents 
unmodeled dynamics, neither the presence nor the location 
of this NMP zero can be assumed to be known. The param-
eter choice .h 0 1=  results in G  having an NMP sampling 

zero at –2.1481 and a minimum-phase sampling zero at 
–0.0672. Let r  be the harmonic command ( ) ,cosr k k~=  
where .0 2~ =  rad/sample, and let .d v 0= =  RCAC is 
applied with , . , ,R I R z n10 0 1 10l u

2
c= = =i i  and the mini-

mum-phase FIR target model (71). RCAC avoids unstable 
pole-zero cancellation and asymptotically follows the 
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Figure 25  Example NMP1: Erroneous nonminimum-phase (NMP)-zero estimates for the adaptive servo problem. In the case where  
d = 0 and the command is harmonic, (a) shows the NMP-zero estimates for which retrospective cost adaptive control (RCAC) asymp-
totically follows the harmonic command as well as the NMP-zero estimates for which the closed-loop system becomes unstable. In the 
case where the command is harmonic and d is zero-mean Gaussian white noise with standard deviation 0.5, (b) shows the NMP-zero 
estimates for which RCAC asymptotically follows the harmonic command as well as the NMP-zero estimates for which the closed-loop 
system becomes unstable. Note that RCAC is less robust to erroneous NMP-zero estimates in the case of stochastic disturbance rejec-
tion than in the case of harmonic commands following. For this example, RCAC is more robust to overestimation of the NMP zero than 
it is to underestimation. 
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Figure 26  Example NMP1: Erroneous nonminimum-phase (NMP)-
zero estimates for the adaptive servo problem. In the case where 
the NMP zeros are complex, this plot shows the NMP-zero esti-
mates for which retrospective cost adaptive control (RCAC) asymp-
totically follows the harmonic command as well as the NMP-zero 
estimates for which the closed-loop system becomes unstable. For 
this example, RCAC is more robust to overestimation of the NMP 
zeros than underestimation.
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command without knowledge of the unmodeled NMP 
zero, as shown in Figure 28.� ■

Example NMP4: Unmodeled NMP Zero  
for the Adaptive Servo Problem
Consider the unstable, NMP double integrator

	 ( )
( )

.
.q

q
q

G
1

1 15
2=

-

-
� (103)

Let r  be the harmonic command ( ) ,cosr k k~=  where 
.0 55~ =  rad/sample, and let .d v 0= =  RCAC is applied 

with , ,R I R z10 l u
4 2= =i i  and .n 6c =  Assuming that  

the NMP zero of G  is unmodeled, the FIR target model 
(71) is used. Figure 29 shows the command-following 
performance. As z  becomes unbounded, the term 

( ) ( ) ( )i R i ii
k k i

u1
T

f
T

fm i iR U U=
- t t  in (42) dominates the remain-

ing terms, and u  converges to zero. Therefore, the closed-
loop system reverts to the unstable open-loop plant, and 
RCAC does not follow the harmonic command. For this 
unstable plant, RCAC is not robust to unmodeled NMP ze-
ros, despite using the performance-dependent control 
weighting .R zu

2= � ■
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Figure 27  Example NMP2: Unmodeled change in the nonminimum-phase (NMP) zeros for the adaptive standard problem. At step 
,k 5000=  the NMP zeros move to . .0 99 1 38! . . If G ,kc  is fixed to be ,G ,5000c  then the closed-loop system becomes unstable. With con-

tinued adaptation, however, the plant is restabilized. LQG1 is the high-authority linear-quadratic-Gaussian (LQG) controller for G with 
NMP zeros at . .0 96 0 72! .  whereas LQG2 is the high-authority LQG controller for G with NMP zeros at . .0 99 1 38! . . RCAC1 and 
RCAC2 are the corresponding retrospective cost adaptive control (RCAC) controllers.
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Figure 28  Example NMP3: Unmodeled nonminimum-phase (NMP) sampling zero for the adaptive servo problem. Retrospective cost 
adaptive control (RCAC) automatically develops an internal model of the harmonic command signal by placing controller poles at the 
command frequency, and Gzw

u  is asymptotically stable at step 000, .k 10=  The internal-model poles of the controller are evident in the 
form of two closed-loop zeros on the unit circle at the command frequency, which are shown by the red plus signs. For this example,  
the performance-dependent control weighting Ru  allows RCAC to asymptotically follow the command for a sampled-data plant with an 
unmodeled NMP zero. The closed-loop poles and zeros are shown at step k 104= .
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The examples in this section investigate the robustness of 
RCAC to modeling errors in the target model. For Example 
NMP1, RCAC is less robust to erroneous NMP-zero estimates 
in the case of stochastic disturbance rejection than in the case 
of harmonic command following. For Example NMP2, where 
the NMP zeros are uncertain, performance-dependent cost 
regularization, that is, choosing Ru  to be a function of ,z  
improves the robustness of RCAC to uncertainty in the loca-
tion of the NMP zero. For Rohrs’s counterexample involving 
unmodeled dynamics [40], Example NMP3 shows that, with 
performance-dependent regularization, RCAC stabilizes the 
closed-loop system. Example NMP4 shows that unstable 
plants with uncertain NMP zeros are difficult for RCAC 
to control.

Robustness to Erroneous Relative  
Degree and Unmodeled Delay
This section investigates the effect of erroneous relative 
degree and unmodeled delays by considering three exam-
ples that involve critical changes in the plant during opera-
tion. The first example considers the effect of erroneous 
estimates of the relative degree of .Gzu  The next example 
considers unmodeled time delays both in the initial model-
ing of the system and during operation. Finally, RCAC is 
applied to a plant with limited achievable delay margin, 
and the effect of unmodeled time delays exceeding the 
delay margin is investigated. In all cases, design guidelines 
for each type of modeling error are provided.

Example DM1: Erroneous dzu  for the  
Adaptive Servo Problem
Consider the asymptotically stable, minimum-phase plant

	 ( )
( . ) ( . . )

.
.q

q q q
q

G
0 85 1 5 0 985

0 95
2=

- - +

-
� (104)

Let r  be the harmonic command ( ) ,cosr k k~=  where 
.0 15~ =  rad/sample, and let .d v 0= =  RCAC is applied 

with , ,RR I10 0ul= =i i  and .n 6c =  For G  given by (104), 
.2dzu =  The FIR target model (71) is used, but with dzu  

replaced by ,dzu
t  where dzu

t  is an estimate of .dzu  Figure 30 
shows the command-following performance for ,1dzu =t   

,3dzu =t  and .4dzu =t  For 3dzu =t  and ,4dzu =t  RCAC asymp-
totically follows the harmonic command. For ,1dzu =t  how-
ever, RCAC does not follow the harmonic command, and the 
plant output y0  diverges. RCAC asymptotically follows the 
command for .2 4dzu# #t  Moreover, by using ,R zu

2=  
RCAC asymptotically follows the command for .1 10dzu# #t  
For this example, RCAC is more robust to overestimation of 
dzu  than underestimation of .dzu  Note that d dzu zu2t  
accounts for an unmodeled time delay of d dzu zu-t  steps in 
the sense that, if the plant experiences an unmodeled time 
delay of d dzu zu-t  steps, then dzu

t  is the true relative degree. 
The next example considers time delay directly.� ■

Example DM2: Unmodeled Time Delay  
for the Adaptive Servo Problem
Consider the asymptotically stable, minimum-phase plant 

,G G G0TD=  where

	 ( ) , ( )
( . ) ( . . )

.
,q q q

q q q
q

G G
0 95 1 6 0 89

0 9k
0 2TD

d= =
- - +

-9 - � (105)

and GTD  represents an unmodeled time delay of kd  steps. 
Let r  be the harmonic command ( ) ,cosr k k~=  where 

.0 1~ =  rad/sample, and let .d v 0= =  RCAC is applied 
wit h , . ,R I R z100 0 1l u

2= =i i  a nd .n 10c =  Si nce GTD  i s 
unmodeled, the FIR target model (71) based on G0  is used. 
Figure 31 shows the command-following error e0  for 

,k 1d =  ,k 2d =  ,k 3d =  and .k 4d =  RCAC asymptotically 
follows the harmonic command in each case.
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Figure 29  Example NMP4: Unmodeled nonminimum-phase (NMP) zero for the adaptive servo problem. Retrospective cost adaptive 
control (RCAC) does not follow the harmonic command, and, as z becomes unbounded, the closed-loop system tends to the unstable 
open-loop plant. For this unstable example, RCAC is not robust to unmodeled NMP zeros, despite using the performance-dependent 
control weighting .R zu
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Next, let ( ) ,cosr k k~=  where .0 5~ =  rad/sample, and 
let .d v 0= =  RCAC is applied with . , . ,R I R z0 1 0 1l u

2= =i i  
,n 15c =  and the FIR target model (71). At step ,000,k 15=  

an unmodeled one-step time delay is inserted into the loop. 
At step ,000,k 30=  an additional unmodeled two-step time 
delay is inserted, and, at step ,000,k 60=  an additional 
unmodeled six-step time delay is inserted. Table 1 shows 
the magnitude crossover frequency ,mco~  the phase margin 
(PM), and the delay margin (DM) prior to each insertion of 
additional delays, where

	 DM PM ,180mco~
r= � (106)

where the units of PM are degrees and the units of mco~  are 
rad/sample. Note that each time delay exceeds the delay 
margin at the time step of insertion. In each case, RCAC 
readapts and restabilizes the closed-loop system, as shown 
in Figure 32. After the third time delay is inserted into the 
loop at ,000,k 60=  RCAC restabilizes the closed-loop 
system at step 000,k 100=  (not shown).� ■

Example DM3: Limited Delay Margin  
for the Adaptive Standard Problem
Consider the unstable, minimum-phase, continuous-time 
plant given by [77]

	
.
.
.

.

.
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.
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.
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-
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-

= =

-

-> >H H � (107)

	 , .C E D0 1 0 01 2= = - =6 @ � (108)

This plant has an unstable pole at 0.1081. It is shown in [77] 
that the maximum achievable delay margin for this plant is 
18.51 s. For the standard problem, (107) and (108) are dis-
cretized with the sampling period . .sh 0 1=  Using the 
controller given by (23) in [77] and discretizing the contin-
uous-time plant with the sampling period . ,sh 0 1=  the 
delay margin of the discrete-time closed-loop system is 
6.07 steps.

Next, RCAC is used with the adaptive standard prob-
lem to stabilize (107) and (108). RCAC is applied with 
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Figure 30  Example DM1: Effect of erroneous relative degree on command-following performance for the adaptive servo problem. For 
(a) 3dzu =t  and (b) 4dzu =t , retrospective cost adaptive control (RCAC) asymptotically follows the harmonic command. For (c) 1dzu =t , 
RCAC does not follow the harmonic command, and the plant output y0 diverges. However, by using the performance-dependent control 
weighting (d) R zu

2= , RCAC asymptotically follows the harmonic command, although the transient response is poor. For this example, 
RCAC is robust to overestimation of dzu  but is less robust to underestimation of .dzu
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, . , ,R I R z n100 0 1 3l u
2

c= = =i i  and the FIR target model (71). 
The delay margin of the closed-loop system at step k 3000=  
using RCAC is 0.31 steps, as shown by Table 2. Figure 33 
shows the closed-loop responses for the initial condi-
tion ( ) [ . . . ]x 0 0 1 0 1 0 1 T=  for both RCAC and the control-
ler given by [77] discretized with the sampling period 

. .sh 0 1=  At step ,k 3000=  an unmodeled seven-step 
time delay is inserted into the loop, which destabilizes 
both closed-loop systems. Under continued adaptation, 
RCAC restabilizes the closed-loop system at time step 

, .k 11 800= � ■

Robustness to Erroneous Plant Gain
This section investigates the effect of the estimate of the 
plant gain as determined by the leading numerator coeffi-
cient by considering three examples that involve either 
erroneous estimates of the plant gain or unmodeled 
changes in the plant gain. The first example considers erro-
neous estimates of Hdzu  for the adaptive servo problem. The 
gain margin of RCAC is compared to high-authority LQG, 
and an unmodeled change in the plant gain is considered. 
Finally, a plant with limited achievable gain margin is con-
sidered for both high-authority LQG and RCAC, and the 
effect of unmodeled changes in the plant gain for this 
system is investigated.

Example GM1: Erroneous Hdzu  for the Adaptive  
Servo Problem
Consider the asymptotically stable, minimum-phase plant 
(104), let r  be a unit step command, and let .d v 0= =  RCAC 
is applied with , ,RR I10 0ul= =i i  and .n 5c =  The FIR target 
model (71) is used with Hdzu  replaced by ,Hdzu

t  where Hdzu
t  is 

an estimate of the true value .H 1dzu =  Figure 34 shows the 
command-following performance for , . ,H H1 0 1d dzu zu=- =t t  
and .H 10dzu =t  RCAC asymptotically follows the command 
for .H 0 1dzu =t  and ,H 10dzu =t  but not for .H 1dzu =-t  For this 
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Figure 31  Example DM2: Unmodeled time delay for the adaptive servo problem. For (a) k 1d = , (b) k 2d = , (c) k 3d = , and (d) k 4d = , 
retrospective cost adaptive control asymptotically follows the harmonic command.

Table 1 E xample DM2: Unmodeled time-varying time delay 
for the adaptive servo problem. The values of magnitude 
crossover frequency ( mco~ ), phase margin (PM), and delay 
margin (DM) are determined prior to the insertion of additional 
time delays into the loop. Each additional time delay inserted 
at time step k exceeds the DM at time step k.

k 
mco~  (rad/

sample) PM (°)
DM 
(steps)

Additional Unmodeled 
Delay Inserted (steps)

15,000 1.8872 19.0799 0.1765 1 

30,000 1.4003 86.1123 1.0733 2 

60,000 0.5742 181.7065 5.5233 6 
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example, RCAC is robust to errors in the magnitude of the 
estimate of ,Hdzu  but is not robust to errors in the sign of .Hdzu

� ■

Example GM2: Unmodeled Change in the Static Gain  
for the Adaptive Standard Problem
Consider the asymptotically stable, NMP plant

	 ( )
( . ) ( . . ) ( . . )

( . . ) ( . . )
,q

q q q q q
q q q q

G
0 5 1 8 0 97 1 4 0 98

1 7 0 785 1 4 0 85
2 2

2 2

=
- - + - +

- + - +
� (109)

and let w  be zero-mean Gaussian white noise with stan-
dard deviation 0.01. RCAC is applied with ,R I10 l

5=i -
i  

,R 0u =  ,n 10c =  and the FIR target model (72). Figure 35 
shows that RCAC approximates the closed-loop frequency 

response of high-authority LQG. At step ,k 5000=  the 
closed-loop system has a gain margin of 1.8105 at the 
phase crossover frequency 0pco~ =  rad/sample. At step 

,k G5000=  is replaced by . ,G2 9  where the additional gain 
2.9 is unmodeled. If G ,kc  is fixed to be ,G ,5000c  then the 
closed-loop system becomes unstable. However, under con-
tinued adaptation, the plant is restabilized, and RCAC 
approximates the closed-loop frequency response of LQG 
for the modified plant, as shown in Figure 35.� ■

Example GM3: Severely Limited Gain Margin for the 
Adaptive Standard Problem
Consider the unstable, minimum-phase, continuous-time 
plant from [9] given by

	 , , ,A B D
1
0

1
1

0
1

1
11= = =; ; ;E E E � (110)

	 , .C E D1 1 11 2= = =6 @ � (111)

For the standard problem, (110) and (111) are discretized 
with the sampling period . .sh 0 1=  RCAC is applied with 

,R I10 l
10=i -

i  ,R 0u =  ,n 6c =  and the FIR target model 
(72). Figure 36 shows that RCAC approximates the closed-
loop frequency response of high-authority LQG. The LQG 
controller yields a gain margin of 0.04, and the RCAC con-
troller yields a gain margin of 0.0012. Hence both control-
lers yield small gain margins. At step , ,k 10 000=  G  is 
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Figure 32  Example DM2: Unmodeled time-varying time delay for the adaptive servo problem. At step ,000,k 15=  an unmodeled one-
step time delay is inserted into the loop. At step ,000,k 30=  an additional unmodeled two-step time delay is inserted, and at step 

,000,k 60=  an additional unmodeled six-step time delay is inserted. With G ,kc  fixed, each inserted time delay is destabilizing. Under 
continued adaptation, however, retrospective cost adaptive control readapts and restabilizes the closed-loop system.

Table 2 M argins for the controller from [77] and the ret
rospective cost adaptive control (RCAC) controller at step  
k = 3000. Note that the RCAC controller has significantly 
smaller phase margin (PM) and delay margin (DM) than the 
optimized controller given in [77].

Controller mco~  (rad/s) PM (°) DM (steps)

[77] 0.3708 129.12 6.07 

RCAC 2.1834 38.83 0.31 



OCTOBER 2017 «  IEEE CONTROL SYSTEMS MAGAZINE  61

0 5000 10,000 15,000 0 5000 10,000 15,000

0 5000 10,000 15,000 0 5000 10,000 15,000

100

105

RCAC
[77]

–15
–10
–5
0
5

10
15
20

Time Step Time Step

–0.8
–0.6
–0.4
–0.2

0
0.2
0.4
0.6
0.8

1
1.2

0.995

1

1.005

1.01

1.015

1.02

1.025

z
(k

)
θ

(k
)

u
(k

)
S

pe
ct

ra
l R

ad
iu

s

~
Gzw

Figure 33  Example DM3: Limited delay margin for the adaptive standard problem. These plots show the closed-loop responses with 
the initial condition ( ) [ . . . ]x 0 0 1 0 1 0 1 T=  for the controller given by [77] as well as for retrospective cost adaptive control (RCAC). At 
step ,k 3000=  an unmodeled seven-step time delay is inserted into the loop, which destabilizes both closed-loop systems. Under con-
tinued adaptation, RCAC restabilizes the closed-loop system.
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Figure 34  Example GM1: Effect of erroneous Hd  on command-following performance for the adaptive servo problem. Command-
following performance for (a) .H 0 1dzu =t , (b) H 10dzu =t , (c) H 1dzu =-t , and (d) H 1dzu =-t  with performance-dependent control weighting 

.R zu
2=  Retrospective cost adaptive control (RCAC) asymptotically follows the command for .H 0 1dzu =t  and H 10dzu =t . For H 1dzu =-t , 

RCAC causes instability in the case where ,R 0u =  but the closed-loop system remains asymptotically stable at step k 0005=  by using 
Ru  (not shown). For this example, RCAC is robust to errors in the magnitude of the estimate of Hdzu  but is not robust to errors in the sign 
of the estimate of .Hdzu
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replaced by . ,G1 1  where the additional gain 1.1 is unmod-
eled. If G ,kc  is fixed to be ,G , ,10 000c  then the closed-loop 
system becomes unstable. However, under continued adap-
tation, the plant is restabilized, as shown in Figure 36.� ■

In this section and the previous section, RCAC was 
applied to a collection of examples involving plants that are 
practically impossible to control using fixed-gain controllers 
due to extremely small gain and PMs. Plants of this type are 
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Figure 35  Example GM2: Unmodeled change in the static gain for the adaptive standard problem. At step ,k 5000=  the gain margin is 
1.8105, and G is replaced by . G2 9 , where the gain 2.9 is unmodeled. If G ,kc  is fixed to be ,G ,5000c  then the closed-loop system becomes 
unstable. Under continued adaptation, however, retrospective cost adaptive control (RCAC) restabilizes the closed-loop system. LQG1 
is the high-authority linear-quadratic-Gaussian  (LQG) controller for G, and LQG2 is the high-authority LQG controller for . G2 9 . RCAC1 
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Figure 36  Example GM3: Discretized plant from [9] with severely limited gain margin. At step ,000,k 10=  the gain margin is 1.0034, 
and G is replaced by . ,G1 1  where the gain 1.1 is unmodeled. If G ,kc  is fixed to be ,G , ,10 000c  then the closed-loop system becomes 
unstable. Under continued adaptation, however, retrospective cost adaptive control restabilizes the closed-loop system.
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Application to Control Saturation

The most common nonlinearity encountered in practice is 

control saturation, which can lead to integrator windup 

and possibly instability. Since control magnitude and rate 

saturation affect all real-world control systems, it is not sur-

prising that an extensive literature is devoted to this problem 

[S9]–[S14].

The performance of RCAC is now investigated in the pres-

ence of control magnitude and rate saturation, as shown in 

Figure S8. The output of RCAC is the requested control ( ),ku  

and the input to the plant is the actual control .( )u ka  In all ex-

amples, the regressor ( )kU  contains .( )u ka  This means that 

either the nonlinearity is known or its output is measured. The 

case where the nonlinearity is unknown and its output is not 

measured is considered in [46].

Example SAT1: Control Magnitude and Rate Saturation for 

the Adaptive Servo Problem

Consider the unstable, NMP triple integrator

	 ( )
( )

( . ) ( . )
.q

q
q q

G
1

1 075 0 95
3=

-

- -
� (S36)

Let r be the ramp command ( ) .r k k=  RCAC is applied with and 

,R I10 l
3=i i  ,R 0u =  n 10c = , and the FIR target model (72). 

The control u is magnitude-saturated at ±50, and rate-saturated 

(that is, control-change-saturated) at ±60. The rate-saturation 

limit of ±60 prevents bang-bang behavior but allows the control 

u to change sign when it reaches the magnitude limit. Despite 

the magnitude and rate saturation, Figure S9 shows that RCAC 

asymptotically follows the command. Stabilization and tracking 

for a chain of integrators in the presence of control saturation is 

considered in [S15] and [S16] under full-state feedback.� ■
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Figure S9  Example SAT1: Control magnitude and rate saturation for the adaptive servo problem. (a) shows the closed-loop 
response, where the green line shows the response in the presence of magnitude saturation and the blue line shows the response 
in the presence of magnitude and rate saturation. (b) shows the requested and actual control signals in the presence of magnitude 
saturation. (c) shows the requested and actual control signals in the presence of magnitude and rate saturation. (d) shows the 
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rate saturation, retrospective cost adaptive control asymptotically follows the command.
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Figure S8  Adaptive servo problem with control magnitude and 
rate saturation, where u  is the requested control and ua is the 
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viewed in [8] as potentially problematic for adaptive control as 
well. At convergence, the closed-loop systems possess small 
gain or PM, as expected, and thus the insertion of additional 
gain or time delay caused instability. For these examples, 
however, RCAC was able to restabilize the closed-loop system.

Discussion
This expository article presented a self-contained descrip-
tion of the RCAC algorithm for adaptive control. Control 

objectives include stabilization, command following, and 
disturbance rejection. RCAC is based on a recursive least-
squares procedure for updating the coefficients of a linear 
controller for feedback or feedforward control, where all 
signals are vectors.

A key contribution of this article is the demonstration 
that retrospective cost optimization updates the controller 
coefficients so as to match the intercalated closed-loop 
transfer function G ,zu ku u  to the target model .Gf  It was shown 

Example SAT2: Control Magnitude Saturation for the 

Adaptive Servo Problem with Adaptive PID Control

Consider the asymptotically stable, minimum-phase plant

	 ( )
( . ) ( . )
( . ) ( . )

.q
q q q

q q
G

0 5 0 9
0 09 0 8

2=
- + -

- -
� (S37)

Let r be a sequence of step commands with heights ±0.4 and 

±1, and let .d v 0= =  The PID controller structure (S1) is used 

with .R I0 1 l=i i  and .R 0u =  The control u is saturated at ±0.2. 

This saturation level allows the controller to follow step com-

mands with height ±0.4 but not with height ±1. Figure S10 

shows the response of the adaptive PID controller. For step 

commands with height ±0.4, the adaptive PID controller uses 

integral action to follow the step command. However, for step 

commands with height ±1, the adaptive PID controller drives 

the integral gain K i  to zero. The reduction in K i  allows RCAC 

to avoid integrator windup.� ■
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Application to Control Saturation (Continued )



OCTOBER 2017 «  IEEE CONTROL SYSTEMS MAGAZINE  65

Application to Nonlinear Oscillators
side from nonlinearity due to control saturation, it is inter-

esting to apply RCAC to plants with nonlinear dynamics 

and observe the resulting response. For illustration, consider 

the Van der Pol and Duffing oscillators, which possess limit-

cycle and bistable dynamics, respectively.

Example NLO1: Harmonic Command Following  

for the Van der Pol Oscillator

Consider the discretized Van der Pol oscillator

( ) ( ) ( ),x k x k hx k1 11 1 2= - + - � (S38)

( ) ( ) [( ( ) ) ( ) ( )

( )],

x k x k h x k x k x k

u k

1 1 1 1 1

1
2 2 1

2
2 1= - + - - - - -

+ -
�

(S39)

where . ,sh 0 01=  ( ) ( ),y k x k0 2=  and ( ) ( ) ( ) .z k r k y k0= -  Let 

r be the harmonic command ( ) ,cosr k k~=  where .0 002~ =  

rad/sample, and let .d v 0= =  RCAC is applied with ,R I1 l=i i  

,R 0u =  ,n 10c =  and the FIR target model (71). Figure S11 

shows the command-following performance.

Next, consider the harmonic command ( ) ,cosr k k10 ~=  

where .0 0008~ =  rad/sample, and let .d v 0= =  RCAC is 

applied with ,R I100 l=i i  ,R 0u =  ,n 20c =  and the FIR target 

model (71). Figure S12 shows the command-following perfor-

mance. Note that, in both cases, the resulting trajectory is har-

monic in both states despite the nonlinearities.� ■

Example NLO2: Harmonic Command  

Following for the Duffing Oscillator

Consider the discretized Duffing oscillator with constant 

disturbance

	 ( ) ( ) ( ),x k x k hx k1 11 1 2= - + - � (S40)

	
,

( ) ( ) ( ) ( )

( ) ( )

x k x k h x k x k

x k u k

1 4
1 1 4 1

1 1 1

2 2 2 1

1
3

= - + - - + -

- - + - + B

8
�

(S41)

where . .h 0 01 s=  The open-loop plant has asymptotically 

stable equilibria ( . , )1 86 0-  and ( . , )2 11 0 . Let ( ) ( ),y k x k0 2=

( ) ( ) ( ),z k r k y k0= -  let r be a unit-amplitude harmonic com-

mand with frequency .0 0025~ =  rad/sample, and let .v 0=  

The plant is linearized about the equilibrium [ ] ,x 0 0e
T=  

and ten Markov parameters of the linearized model are used 

to construct the FIR target model. RCAC is applied with 

,R I10 l=i i  ,R 0u =  and n 10c = . Figure S13 shows the har-

monic command-following performance for the initial condition 

.( ) [ . . ]x 0 0 1 0 1 T=  In the open-loop case with zero command, 

the open-loop plant approaches the equilibrium ( . , ) .2 11 0  The 

state x2  of the closed-loop system asymptotically follows the 

harmonic command.� ■
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Figure S11  Example NLO1: Harmonic command following for the Van der Pol oscillator (S38)–(S39) with a harmonic command 
whose phase portrait is inside the limit cycle. The open-loop plant approaches the limit cycle, and retrospective cost adaptive 
control asymptotically follows the harmonic command.
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that G ,zu ku u  is the transfer function from the virtual external 
controller perturbation uu  to the performance variable .z  
The special nature of G ,zu ku u  is due to the fact that uu  enters the 
feedback loop through intercalated injection, which means 
that uu  is injected internally to the controller as opposed to 
being added to the control input.

The target model Gf  is selected by the user, and the 
choice of Gf  is guided by its role in the controller adapta-
tion. In particular, since RCAC tends to match G ,zu ku u  to the 
target model and, since the target model possesses the 
NMP zeros of ,Gzu  the NMP zeros must be reproduced in 
the target model; otherwise, RCAC may cancel them, 
resulting in a hidden instability. This modeling informa-
tion, along with the relative degree of Gzu  and its leading 
numerator coefficient, constitutes the basic modeling infor-
mation required by RCAC. These statements apply to the 
case where Gzu  is SISO.

The role of the target model was examined from various 
angles. First, it was shown that, in the absence of sensor 
noise and control weighting ,Ru  RCAC tends to match the 
closed-loop frequency response of the high-authority LQG 
controller. This connection is surprising in view of the fact 
that RCAC uses extremely limited modeling information 
relative to LQG. In effect, RCAC uses data to compensate for 
missing or erroneous modeling information. In addition to 
matching closed-loop properties of the LQG controller, 
RCAC can be used for adaptive pole placement by choosing 
the poles of the target model as the desired closed-loop 
spectrum. For the adaptive servo problem, RCAC is used to 
follow step and harmonic commands as well as to reject 
step, harmonic, and broadband disturbances.

For some adaptive control algorithms, sensor noise may 
produce bursting and gain divergence [75]. To assess the 
performance of RCAC in the presence of sensor noise, it was 
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Figure S12  Example NLO1: Harmonic command following for the Van der Pol oscillator (S38)–(S39) with a harmonic command 
whose phase portrait is outside the limit cycle. The open-loop plant approaches the limit cycle, and retrospective cost adaptive 
control asymptotically follows the harmonic command.

Application to Nonlinear Oscillators (Continued )
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shown that RCAC matches the closed-loop frequency 
response of the LQG controller synthesized for the actual 
sensor-noise variance. Stabilization, command-following, 
and disturbance-rejection problems were also considered 
with broadband sensor noise with and without bias. For 
several examples, especially involving plants that are not 
asymptotically stable, the level of sensor noise was increased 
until RCAC failed to either follow the command or stabilize 
the plant. In all examples, no bursting was observed.

The performance of RCAC was then examined in the 
case where the NMP zeros, relative degree, or leading 
numerator coefficient are uncertain. In the case where 
the  NMP zeros are uncertain, it was shown that perfor-
mance-dependent cost regularization, that is, choosing Ru  
to be a function of ,z  improves the robustness of RCAC to 
uncertainty in the location of the NMP zero. Likewise, in 
the case where the relative degree is uncertain, it was 

shown that performance-dependent cost regularization 
improves the robustness of RCAC. This uncertainty was 
related to uncertain time delay, that is, unknown latency in 
the feedback loop. Additional numerical examples given in 
“Application to Control Saturation” investigate the perfor-
mance of RCAC under saturation, while examples given in 
“Application to Nonlinear Oscillators” investigate the per-
formance of RCAC for classical nonlinear plants.

The examples in this article provide insight and guide-
lines for the application of RCAC. In particular, Example 
PP1 shows that RCAC can be used to assign a subset of the 
closed-loop poles and that the remaining closed-loop poles 
may cancel unmodeled minimum-phase zeros. This exam-
ple also shows that the accuracy of pole placement depends 
on the choice of ,Ri  which initializes the RLS covariance. 
Example H2 shows that, for harmonic command following 
and harmonic disturbance rejection, RCAC can develop an 
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Figure S13  Example NLO2: Harmonic command following for the Duffing oscillator (S40)–(S41). (d) shows the phase portraits of 
the open-loop limit cycle and the closed-loop response. The open-loop plant approaches the equilibrium ( . , ),2 11 0  and retrospec-
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internal model of the command and disturbance without 
knowledge of the spectrum of the exogenous dynamics. 
Under stochastic disturbances, Example SD1 shows that, by 
choosing ,n nc 22  RCAC tends to match the closed-loop 
frequency response of high-authority LQG. For Example 
NMP1, RCAC is less robust to erroneous NMP-zero esti-
mates in the case of stochastic disturbance rejection than in 
the case of harmonic command following. For Exam-
ple  NMP3, which is a counterexample involving unmod-
eled dynamics [40], RCAC with performance-dependent 
cost regularization stabilizes the closed-loop system. Exam-
ple NMP4 shows that unstable plants with uncertain NMP 
zeros are especially difficult for RCAC to control. For a 
plant with severely limited delay margin, Example DM3 
illustrates the ability of RCAC to readapt in the case where 
the margin is exceeded due to the introduction of an unmod-
eled time delay. Example GM3 illustrates the corresponding 
property in the case of limited gain margin. The ability of 
RCAC to restabilize the plant after unmodeled destabilizing 
time delays and gains are inserted into the loop suggests 
that the views expressed in [8] quoted in the opening sec-
tion of this article may be unduly pessimistic.
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