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Adaptive Disturbance Rejection Using
ARMARKOV/Toeplitz Models

Ravinder Venugopal and Dennis S. Bernstéfiember, IEEE

Abstract—An adaptive disturbance rejection algorithm is devel- -~ on input—output data [17]. In addition, predictive control algo-
oped for the standard control problem. The multiple input-mul-  rithms such as the long range generalized predictive algorithm
tiple output (MIMO) system and controller are represented as AR- [12, pp. 353-362], [13] use windows of data. Predictive models
MARKOQOV/Toeplitz models, and the parameter matrix of the com- ' - . P -
pensator is updated on-line by means of a gradient algorithm. The &€ also used in [18]-[21] for model_|dent|f|cat|on within recur- _
algorithm requires minimal knowledge of the plant, specifically, Sive and batch least squares techniques. In these works predic-
the numerator of the ARMARKOV model of the transfer function  tive models are termeARMARKOV modelto emphasize the
from the control inputs to the performance v_ariables is r_equired. presence of Markov parameters in ARMA-type models. In [20]
No knowledge about the spectrum of the disturbance is needed. jt js shown that ARMARKOV models can be used to estimate
Experimental results demonstrating tonal and broadband distur- . .
bance rejection in an acoustic duct are presented. Markov parameters in the presence of persistent, but not neces-

sarily white, input signals. In [22] it is shown that least-squares
identification yields consistent estimates of the Markov param-
eters in the presence of persistent measurements.

Inthe present paper we develop an adaptive disturbance rejec-
NOMENCLATURE tion controller using ARMARKOV plant and controller models.
Our approach is distinct from predictive control techniques due

Index Terms—Active noise and vibration control, adaptive con-
trol, discrete-time systems, disturbance rejection.

Orsem { X m zero matrix. . . .
I I x 1 identity matrix. to the fact that the adaptation mechamsm we employ is based
L I % m ones matrix. upon past data rather than future predicted error. A gradient al-

T Ixml gorithm that minimizes a retrospective performance cost func-
Ixm [Il Il] c R . ) . -
tion is used to update the entries of the controller parameter ma-
trix. The update law uses an adaptive step size involving past
data and an ARMARKOQOV model of the secondary path transfer
function.
We begin in Section Il by formulating the disturbance
N important objective of control system design is to minrejection problem in terms of the standard two-input two-output
imize the effects of external disturbance signals. For afFITO) framework. In Section IV, we review ARMARKOV
plications such as active noise and vibration control, it is thmodels of discrete-time finite-dimensional linear time-invariant
primary focus. In cases where the system is time varying or difystems and derive the ARMARKOV model for TITO systems.
ficult to identify, adaptive methods such as the feedforward leddéxt, in Section V, we develop an adaptive algorithm for
mean square (LMS) and recursive LMS (RLMS) algorithms adisturbance rejection by representing the controller in terms
useful [1]-[7]. However, feedforward-type algorithms negleaf an ARMARKOV parameter matrix and deriving a gra-
the effect of the feedback path from control to measurement thilient-descent-based update law for this matrix corresponding
leading to poor performance and instability [8]. To remedy tht® the retrospective performance cost function. The algorithm
problem, robust variations of the classical LMS algorithm havequires performance measurement sensors which may also
been proposed; see, for example [9]. be used as feedback measurement sensors. However, addi-
Predictive models, which involve the Markov parameters ebnal feedback measurement sensors may be used to enhance
the system, are used in predictive control of systems with tinssed-loop performance. The algorithm does not require a
delays [10, pp. 169-179], [11, pp. 106-110], [12, pp. 331-36%lirect measurement of the disturbance. The Markov parameters
[13]-[16]. Markov-parameter-based representations of systearsl moving average coefficients that relate the performance
also provide a framework for direct controller synthesis baséal the control (the secondary path transfer function) need to
be known to implement the algorithm. These parameters are
obtained by using the time-domain identification algorithm
. . _ of [20] and [21]. Since ARMARKOV models are used for
Manuscript received August 25, 1997; revised August 3, 1998. Recom; = ... . . .
mended by Editor-in-Chief, M. Bodson. This work was supported in part d&'e”t'f'caﬂon and since the controller is based upon such a
the Air Force Office of Scientific Research under Grant F49620-98-1-0037. representation, the intermediate step of recovering a state-space
The authors are with the Department of Aerospace Engineering, TR frequency domain model of the system is eliminated. The last
University of Michigan, Ann Arbor, Ml 48109-2140 USA (e-mail: ds- . .
baero@engin.umich.edu). section presents experimental results for tonal and broadband
Publisher Item Identifier S 1063-6536(00)01787-5. disturbance rejection in an acoustic duct.

|- 12 Euclidean vector norm.
Il le Frobenius matrix norm.
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Fig. 1. Standard problem with fixed-gain controller. Fig. 2. Standard problem with performance assumption.
Il. STANDARD PROBLEM REPRESENTATION OFDISTURBANCE Unlike fixed-gain controller design methods, adaptive control
REJECTION techniques require on-line measurement(@f) for use in adap-

) ] . ) tation. If (k) is measured and used for control, we say that the
_Consider the linear discrete-time TITO system shown iferformance assumptida satisfied, as shown in Fig. 2. In the
Fig. 1. Thedisturbancew(k), the control u(k), the measure- ¢ase that(k) is not available as a measurement, a filter that es-
menty(k) and theperformancez(k) are inR™=, R™+, R, (imates,(k) based on available signals can be used. However, in
andR'=, respectively. The system can be written in state-spaggntrast to fixed-gain methods, adaptive methods [1]-[6] often
form as require that only the secondary path transfer maftix, be
known. Other adaptive methods [9] identif§,,, on-line but re-

ok +1) = Az(k) + Bu(k) + Dyw(k) (1) quire additional actuators and sensors.
. ARMARKOV M ODELS
#(k) = Eva(k) + Eyu(k) + Eow(k) ) In this section we derive the ARMARKOV representation of
a state space model. Consider thb-order discrete-time finite-
dimensional linear time-invariant system
y(k) = Cx(k) + Du(k) + Doyw(k) 3)
z(k+ 1) = Az(k) + Bu(k) @)
or equivalently in terms of transfer matrices
z = szw + quu (4)
y(k) = Ca(k) + Du(k) ®)
whereu(k) € R™« andy(k) € R'. The Markov parameters
Y = Gyuw + Gyuu. (5) H; e Rb>™« of this system are defined as
The controlleiG. generates the control sign&lk) based on the H; A D, j=—1 )

measuremeny(k), that is,

A i .

The objective of the standard problem [25] is to determine a =CA4’B, 720 (10)
controller G, that produces a control signa{k) based on the 54 satisfy
measuremeng(k) such that a performance measure involving
z(k) is minimized. In classical fixed-gaiH» and H., optimal
control theory, the performanegk) is not required to be mea-
sured, but rathef.,, andG,,,, are used analytically for off-line J

controller design (Fig. 1). Fixed-gain controller design methogigote that the Markov parameters are the impulse response coef-

for disturbance rejection generally require knowledge of all fogitients of the system. The transfer functi6iiz) can be equiv-
transfer matrices, namely, tpeimary pathG...,, thesecondary gjently represented as

path@., , thereference patld7,,, and thefeedback patliy,,,,, as

well as the spectrum of the disturbanggk). This terminology G(z) = 1

is standard in the noise control literature [2] and the feedforward 2zt 4 an

structure described therein assumesehat = 0 andG,,, = I. (Boz" + B12" '+ + By) (12)

G()2C(I-AT'B+D =Y Hpz 0. (1)
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where detzI — A) = 2"+4a;2""'+---+a, and model. Repeating this proceduse- 1 times yields thgl-AR-
B, € RW“X™« ¢ = 0,---,n. Equating (11) and (12) and MARKOVmodel of (7) and (8)
multiplying both sides by™ + a; 2" =% + - - - + a,, yields

n Iz
Bo H, 0 --- 0 I, y(k) = Z —aylk—p—j+1)+ Z Hy juk—ji+1)
. . . j=1 j=1
Bl . HO i . . al‘["l (13) n
S T : +Z Biu(k —p—j+1) (19)
Bn anl . HO Hfl an-lrn i=1
Lixmy 5 1 ...
which provides recursive expressions  in terms of H;, Wherea; € R andB; € R%>™, j=1,---,n. o
Now consider the ARMA representation of (12) given by Equation (19) is an input—output relation that explicitly in-
volvesp Markov parameters. Fqr > 1, (19) has the same
y(k) =—ary(k — 1) — - - - — any(k — n) + Bou(k) f103rr611 i;gtheuh_f,ltep arr:ead predictoisglo, PP }69—17931, [12, plp.
4t Boulk —n). (14) —139], while in the case = 1, (19) specializes to the usual

ARMA model. The coefficients:; and3; can be calculated re-
Replacingk with & — 1 in (14) and substituting the resultingCUrsively using (14) and (13). Equation (19) can be equivalently
relation back into (14) yields represented as tlERMARKOV transfer function
_ 1
- aitn—1 + alz"_l 4+ 4 ap
(Hoy 2 Hy 02+ B2 4 4B,
(20)

y(k) = (af — az2)y(k — 2) + (araz — az)y(k — 3) G(2)
+ o (a1 — a)y(k —n)
+arany(k—n—1)+Bou(k)+(B1 —a1Bo)u(k—1)

—|— (BQ — alBl)u(k — 2) . . . L i
4+ (By— a1 Bo_)u(k — n) This system representation is nonminimal, overparameterized,
Boulk 1 15 and constrained since the numerator and denominator of the
— auBnuk —n —1). (15 transfer function are polynomials of ordgr+ »n — 1, and the
A1 +n—2 n i H
Noting from (13) thatH , = By, Ho = Bi — a1Bo, and coefficients of the terms* throughz™ in the denominator

definin are zero. o .
g Now, letp be a positive integer and define teetended mea-
s 2 ga — as =1 m—1 surement vectot’ (k) € R and theARMARKOV regressor
2,4 : 144 141, =4, ) VeCtorQSyu(kJ) c Rly(p+n—1)+m,,,(u-l—p-l—n—l) by
A2 pn = A10n (16) _
y(k)
(k) = :
Bgﬂ‘éBH_l—alBi, i21,~~~,71—1 _y(k_p+1)
Byw 2 aiB, 17) [ yk - 2 ]
15) can be written as ) o
( ) dsyu(k) é y(k o U,(z) n 2) (21)
y(k) =o2ay(k = 2) + -+ azny(k —n — 1) :
+ H_lu(k) + H()U,(/{J — 1) + BQ71U(/€ — 2) ’
Lu(k—p—p—n+2)]
+ -+ Bypu(k—n—1). (18)
Using (19),Y (k) and®,,, (k) are related by
We note that (18) explicitly involves the first two Markov
parameterdd_; and Hy, and thus is called 2-ARMARKOV Y (k) = Wy, ®,.(k) (22)
A
Wy'u, =
—only, oo —apdy, 0 Oy, H, - H,o B - By Oyxm, -~ Oixm,
Oly . T . : Oly><rnu '
. . . Oly . . . . . .'. Olyxrnu
Oly Oly _al-[ly _anIly Olyxrn,, Olyxrn,, H—l H;L—Q Bl Bn

(23)
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where the block-ToeplitARMARKOV weight matrixV,,, < Next, define theextended performance vectdf(k), the
Rty X[y (pn—D4m. (utpin—1] s defined by (23) shown at the extended measurement vecié(k) and theextended control
bottom of the previous page. We note that a state-space reaetorU(k) by

ization of the system can be obtained from (19) by either con- _

structing a canonical form or using the eigensystem realization A #(k) A y(k)
algorithm (ERA) [20], [21]. Z(k) = ; , Y(k)= : ;
| 2(k—p+1) y(k—p+1)
IV. ARMARKOV/T OEPLITZMODEL OF TITO SYSTEMS r u(k)
We now develop the ARMARKOV/Toeplitz model of U(k) 2 : (30)
(1)—(3). Defining the Markov parameters of the system by ulk _b +1)
a A ; L
Hyu—1 =D, Hyu; =CA’B, 720 (24) wherep, éu+n+p—1, and theARMARKOV regressor vectors
&...(k) and®,..(k) by
Hyw 12Dy, Hyw; 2CAD;, >0  (25) [ 2(k =) T
A |lz2k—p—p—n+2
A A ; @-w(k) = ( uw(zlz') )
qu,—l = E27 qu,] = ElAij 7 2 0 (26)
Lw(k—p—p—n+2)d
Hoyo1 20, H.;2EAD, j>0  (27) [ vEmm

the ARMARKOV model of (1)—(3) is given by (k1 _:p S nt2)

A
. ®,.,(k) 2 e (31)
(k)= —ajalk = p—j+ 1) ;
Jj=1 :
n Lw(k—p—p—n+2)]
+ Z Hew j—2w(k =5 +1) Furthermore, define the block-ToepliZ#RMARKOV weight
J=1 matrices W.,, €  RPxl(vtp-DiA(utntp—1mu] gngd

Wyw € RPX(op=Dl+Gekmtp=1m.] by (32)—(35) shown

+2_ Bewguwlk—p—i+1) atthe bottom ofthe next page and the block-Toe pIRMARKOV

jjl control matricesB.,, € RP!=*Pem« andB,, € RPlv*Pel« py
+ Z Hojou(k —j+1) Then (28) and (29) can be written in the form
= Z(k) = W@ (k) + B., U (k) (36)
j=1
Y (k) = WyuPyuw(k) + B, U(k) (37)
y(k) = —ajylk—p—j+1) which is the ARMARKOV/Toeplitz model of (1)(3).
Flﬂ V. ADAPTIVE DISTURBANCE REJECTIONALGORITHM
+ Z Hypj2w(k —j+1) In this section we formulate an adaptive disturbance rejection
J=1 algorithm for the TITO system represented by (36) and (37). We
™ . use a strictly proper controller in ARMARKOV form of order
+ Z Byw juwlk —p—35+1) ne With 1. Markov parameters, so that, analogous to (19), the
]:1 controlu(k) is given by
+D ) Hyujooulk —j+1) e .
i=t u(k) = —ac(kyu(k — po — j+1)
n j=1
+ Bpujulk—p—j+1) (29) pemt
=1 + > Heja(ky(k—j+1)
j=1

whereo; € R, B.wj,How,j € RE>™e, B, ; H.,; €

g;; >>imu, Bywj Hyw; € RivXmw  and Byuj, Hyuj € + Z BCJ»(]{;)y(k —pe—Jj+1) (38)
y XMy =
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whereH.; € R™«*b j = 1,2, are the Markov param- where

261

eters of the controller. Next, define tlwontroller parameter _ w(k — o) _
block vectord(k) € R *nemutnetuc—L] py _
0(k) = [~ (k)m, -+ — e (k) Lm, Heo(k) B, (k)2 | e e +2) 42)
o 'HC,uc72(k) BC,l(k) T BC,nc(k)]- (39) Y .
i i —y(k_ﬂc_nc_pc+2)-
Now from (30) and (38) it follows that (k) andU (%) are given
by and where
0
A (i—1)my, Xy
L2 L, € Rpema X 43)
w(k) = O(k) Ry @y (k) (40) O(pe—iymu xma,
and whereR; is defined in (44) at the bottom of the next page with
a 2 ey andg. 2 (ne + pe — 1)l,. Thus, from (36) and (41)
» we obtain »
U(k) =" Lifi(k — i + 1) Ri®yy (k) (41)  Z(k) = Wou®u(k)+Bw 3 Lib(k—i+1)Ri®yy (k). (45)
=1 =1
WZ'IU é
_alll; _anII; Ol; Ol; sz7,1 sz,u72 Bzw,l Bzw,n Ol; XMy Ol; XMy
Ol; : Ol; XMy .
. 01: Ol; XMy
Ol; Ol; _al-[l; _anIl; Ol; XMy, Ol; XMy, sz,—l sz,p—Q Bzw,l Bzw,n
(32)
Wy =
_allly _anlly Oly Oly Hyw,fl Hyw,u72 Byw,l Byw,n Oly XMy Oly XMy
Oly : Oly X Moy .
’ . Oly Olyxrn“,
Oly Oly _al-[ly _anIly Oly X1, Ol; XMy Hyw,—l Hyw,p—? B’yw,l Byw,n
(33)
qu,,—l qu,,p—? Bzu,,l Bzu,,l Ol; X1y Ol; X1y
B, 2 | (34)
T Ol; XMy,
Ol: Xm., Ol: Xm., qu,,—l HZ'U,,M—Q Bzu,,l Bzu,,n
Hy'u,,—l Hy’u,,p—? By'u,,l By'u,,n Oly X1y Oly X1y
By, 2 | S (35)
Oly XMy
Oly XMy Oly XMy Hyu,—l Hyu,u—Q Byu,l Byu,n
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Next, we derive an update law for the controller parametand theerror matrix cost function
block vectorf(%). To do this, we consider a retrospective per-
formance cost function that evaluates the performance of the
current value off(k) based upon the behavior of the system
during the previoug, steps. Therefore, we define thegrospec-
tive performancé(k) by Our goal is to determine(k) such thal| E(k)||% is decreasing,
that is, 7 (k, n(k)) is negative. For convenience in stating the
following result, we define theptimal adaptive step size

Tk, (k) 2 | EG:+ DI} = |ER) (54)

2(k) & Woo®.0(k) + Beu ﬁ: Lib(k)Ri®,, (k)  (46)

=1
which has the same form as (45) but vAtlk —i+1) replaced by Nopt(K) = —aJ(k) 5 -
the current controller parameter block vecfdk). Using (46) EVTIRY
, ) . 99(k)
we define theetrospective performance cost function
J(k) = %ZT(k)Z(k). (47) Theorem 1: Consider the update law (50) and suppose As-

sumption 1 is satisfied. Furthermore, ket> 0 and assume that
Lemma 1: The gradient off (k) with respect t@(k) is given  (9.J(k)/d6(k)) # 0. Then

by
: J(k,n(k)) <0 (56)
a‘](k) _ : T nRT 7 T T
o0 2 L BLARLL, (MRS (48)
=t if and only if
Proof: See Appendix A. O
Sincew(k) is not available, which implies thék. (k) is un- 0 < n(k) < 2nept(k). (57)
known, Z(k) cannot be calculated from (46). However, it fol- _ o .
lows from (36) and (46) that In particular,n(k) = nop(k) minimizes7 (k, n(k)). Finally,
. Pe 4
Z(k) = Z(k) — B., <U(k) -> Lie(k)Ridiuy(k)> (49) T (s 1o (1)) = — ||€(/€)||22 ' (58)
i=1 H aJ (k)
which can be used to evaluate (48). 96(k)
The gradient (48) is used in the update law
Proof: See Appendix B. O
a1 (k ical | i i
ok + 1) = 8(k) — n(k) (k) (50) A geometrical interpretation of Theorem 1 is now presented.

ao(k) Using Fig. 3 for reference, the objective of the algorithm is

) ) ) ) . to move the controller parameter block vec&gk:) closer to
wherer)(k) is theadaptive step sizdo determine the adaptive yq ontimal controller parameter block vecédt The direction
step sizey(k), we make_ the f_ollovx_/lng assumption whichis analsy move is the negative of the gradienf(k)/9¢(k) given by
ogous to the ass.umpnon givenin [18; FiF[’n %?1:(3833 _1y,) (48)which s obtained from the retrospective performance cost

Assumption 1:There existg* € R ermeTnie=0 ¢ ohion (47). The distance to move is determined by the adap-
that mlmmlzes](k) for all k. Under Assumption 1, we define ;o step size)(k). Theorem 1 states that the step sigg. (k)
the desired performance moves#(k) to the point closest té* along the negative gra-

pe dient direction and, at this point, the vectaf%k + 1) and
Z5(k) 2 Wei®-io(k) + Beu, ST Lt Ry, (k) (51) —(9J(k)/08(k)) are atright angles.
i=1 In practicen.,. (k) given by (55) is not computable sinegk)

is not available. Hence, we define theplementable adaptive

theerror matrix step sizesy, (k), na (k), andys(k) by

E(k) = 67— 6(k) (52)
. 1
the performance error m (k) a — i (59)
e(k) 2 Z*(k) — Z(k) (53) 2_; || Ri®Puy(K)||25(BuLi)

R, a Oqlx(i—l)mu Iq1><q1 0q1><(pc—i)mu Oqlx(i—l)ly Ogy xqs 0q1><(pc—i)ly }
Oqzx(i—l)rnu 0(12><q1 Oqzx(pc—i)rnu Oqlx(i—l)ly qu Xq2 Oqzx(pc—i)ly
c R[ncmu+(nc+uc—l)1y1><[(nc-l—pc—l)mu+(nc+uc+pc—2)ly1 (44)
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Cost Contours 1) Obtain the matrixB.,, by using the identification algo-
rithm of [20], [21] or by calculation from an ARMA or a
state-space representation(ef, .
e T 2) Calculate the control signakk) from the controller pa-
P R rameter matrbd(k) and the vecto®,,, (k) using (40).
y / 3) Using the signala(k), (k) andy(k) update the vectors
e Z(k) and®,,, (k) as defined in (42) and (49).
- E(k)"/ A8 4) Calculate the gradiewt/(k)/060(k) using (48).

S ST - 5) Calculate the implementable adaptive step sjz€:),
Right Angle n2(k) or nz(k) from (59)—(61).

6) Update the controller parameter mat#{%) using (50).

Steps 1)-5) are performed at each time gtep

We observe that of the four transfer matri€gs,, G..,, Gy,
----- anddy,, in the multiple input—-multiple output (MIMO) standard
problem, the algorithm described above requires that we iden-
tify only the numerator of one transfer matrix, namely,,. The
signals that we require to be measurediie) and z(k).

L __E)J(k)
Direction = aWk)

Fig. 3. Cost contours fo (k). VII. EXPERIMENTAL RESULTS

Experimental demonstration of the ARMARKOV adaptive
disturbance algorithm is performed on an acoustic duct of cir-
1 cular cross section. The duct is 80 in long and has a diameter
5 (60) of 4 in. The disturbance speakér) is located at one end of
the duct and the measurement microphogeis located 4 in
in from the same end of the duct. The performance microphone
(z) is positioned 6 in in from the other end of the duct while
the control speakefu) is placed 16 in away from that end of
1 (61) the duct. The signals from the two microphones are amplified
PellBoulFl[Puy (B)]13 by a dbx 760x microphone preamplifier while the control signal
_ . . is amplified by an Alesis RA-100 amplifier. Both speakers are
Wher.eU(BZ“Li) denotes_the maximum singular value of th adio Shack 6-in woofers. The experimental setup is shown in
matrix B, L;. Note that if B.,, is known, theny, (&), n2(k) Fig. 4.

?r”n?’(.k) can tl)e tc}alcule;}ted a;fnd us;:d to émpllcfemen_t (50%' TheThe algorithm is tested on four types of disturbances, namely
oflowing result shows t a1 (k), n2(k), andns(k) satisfy the a single-tone disturbance (139.65 Hz), a two-tone disturbance
requirements of Th_eorem L We note that althougtk) < (135.74 Hz and 160.4 Hz), band-limited white noise (up to 390
n1(k), the computation oia (k) is less burdensome. Hz) and AM radio noise. The algorithm uses= 4 andy, = 12
Propositiop 1: The implementable step sizes(k), 72 (k), for the matrix 3., and;zc — 2 p = 10, p = 2, and the
andvs (k) satisfy step-sizejs (k) for the adaptive controller. The controller is im-
plemented on a dSPACE ds1102 real-time control board run-

(1L

n2(k)

Pc

1@y ()13 lz 7(BuLi)

i=1

113

n3(k)

0 < m3(k) < na(k) < m(k) < Nope(k)- (62) ning a TMS320C30 DSP processor at a sampling frequency
of 800 Hz. The microphone signals are processed through a
Proof: See Appendix C. 0 four-pole Ithaco low-pass filter model DL 4302 that rolls off

Finally, we show that the update law (50) with step sige&), at 315 Hz. The tonal and band-limited white noise disturbances
n2(k), andns(k) drivesZ (k) to Z* (k) ask tends to infinity if are generated by a Stanford Research Systems 770 FFT network
{@uy(k) 17, is bounded. analyzer and amplified by an Optimus STA-825 stereo receiver.
Proposition 2: Suppose Assumption 1 is satisfied, let Fig. 5 shows the open-loop and closed-loop frequency do-
(0J(k)/00(k)) # 0 forall k > 0and letn(k) = n.(k), n2(k)  main performance with a single-tone disturbance. Disturbance

ornz(k). If {®.,(k)}72, is bounded, then attenuation of over 40 dB is achieved with convergence in ap-
proximately 1 s. Although the disturbance signal is a pure tone,
lim e(k) =0. (63) speaker nonlinearities produce harmonics which appear on the
k—oo

frequency response plot along with ambient and measurement
noise. The algorithm provides the same level of attenuation
by adaptation when the frequency of the disturbance tone is
changed or swept while the algorithm is running.
Fig. 6 shows the open-loop and closed-loop performance
The steps involved in implementing the adaptive algorithmvith a two-tone disturbance. In this case, disturbance atten-
are as follows. uation over 35 dB is observed. Fig. 7 shows the open-loop

Proof: See Appendix D. O

VI. CONTROLLER IMPLEMENTATION
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Fig. 4. Experimental setup for noise suppression in an acoustic duct.
! ! ! ! ! ! ! ! J
OF: ,,,,,,,,, AAAAAAAA ’\ .......... .......... .......... - f)en-|00p AAAAAAA .
: : I : 5 : — Closed-loop
| . B :

Magnitude (dBV)

0 50 100 150 200 250 300 350 400 450 500
Frequency (Hz)

Fig. 5. Open-loop and closed-loop frequency domain performance with a single-tone disturbance at 139.65 Hz.

and closed-loop mangitude plots of the transfer function frothe filtered-u IIR LMS (FURLMS) [2]. A brief description of
disturbance to performance with a white noise disturbance, ahése algorithms is given in [26]. Each algorithm was tested on
noise suppression of up to 15 dB is observed over a frequenbg testbed described above with the following disturbances:
range from O to 300 Hz. Finally, Fig. 8 shows the open-loog single tone at 115 Hz, dual tones at 115 Hz and 125 Hz,
and closed-loop response with an AM radio disturbance. Noisand-limited white noise, and recorded fan noise. The parame-
reduction levels of up to 40 dB are observed over the frequenteys used for the algorithms are in Table I. The step sizes used
range 0 to 300 Hz. for the FXLMS and FURLMS algorithms were determined
The performance of the algorithm was also experimentalby trial and error to obtain the fastest convergence rate with
compared to the filtered-x FIR LMS algorithm (FXLMS) andconsistent stability. The ARMARKQOV/Toeplitz algorithm was
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Fig. 6. Open-loop and closed-loop frequency domain performance with a two-tone disturbance at 135.74 and 160.4 Hz.
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Fig. 7. Open-loop and closed-loop performance with band-limited white noise.

implemented usings (%) as the step size. All of the algorithmsmarized in Table Il, indicate that the ARMARKOV/Toeplitz
were successful in rejecting computer-generated single amdorithm has better stability and performance characteristics.
dual tones to varying degrees. Only the ARMARKQOV/Toeplitz
algorithm was capable of attenuating the computer-generated
band-limited white noise and the fan disturbance. Also, the
ARMARKOV/Toeplitz algorithm converged faster in general In this paper, we developed an adaptive disturbance rejec-
as a result of the use of an adaptive step size. The results, stion algorithm based on ARMARKQOV/Toeplitz models. The al-

VIIl. DISCUSSION
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Fig. 8. Open-loop and closed-loop performance with AM radio disturbance.

TABLE |
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ALGORITHM PARAMETERS

problem of active noise control in an acoustic duct, and experi-
mental results showed that the algorithm is effective in rejecting
both narrow-band and broad-band disturbances with minimal

Algorithm Free Step Type .
Parameters Size plant modeling.
FXLMS 30 i =107 (fixed) | FIR
FURLMS 58 =107 (fixed) | IIR APPENDIX A
ARM/T 14 i II .
[Toep 2utomatic R Proof of Lemma 1:From (46) and (47) it follows that
Pc
TABLE I JE) =L W@ (k) + Bow > Lib(K)Ri @, (k)T
DISTURBANCE ATTENUATION COMPARISON ( ) 2[ ( ) zz::l ! ( ) ! y( )]
Pc
Algorithm | Single Dual White Fan
Tone | Tones Noise Noise [Wew®ew (k) + Bau Z Lib(k)Ri@uy (k)] (64)
FXLMS | 29.3dB | 26.5 dB | unstable | unstable _ _ o =t
FURLMS | 56.3dB | 24.3dB | unstable | unstable Using matrix derivative formulas, it follows from (64) and (46)
ARM/Toep | 89.5 dB | 24.9dB | 6.5 dB (avg) | 60.2 dB that
aI(k) &

=" LIBLW..®..(k)®L, (k) R}
gorithm is gradient based with an adaptive step size. In coftt () =1

trast to LMS algorithms, the ARMARKOV/Toeplitz algorithm
has three distinctive features, namely, the use of ARMARKOV
system representations (36), (37); a retrospective performance
cost function obtained by using the current controller over a past
window of data (47); and an implementable adaptive step size
(61). The retrospective cost function allows the calculation of an
exact gradient for the system without resorting to prefiltering of
y(k) by G.,, as in filtered-x methods. This prefiltering, which

Dc P
+>° LTBLB.. | > Li6(k)R;
=1 j=1

Pc
=Y LIBY, | W.u®.u(k)
=1

is necessary to account fét,., in the gradient, limits the adap- Pe

tation rate and thus adversely affects the convergence of LMS + By Z L;0(k)R; @,y (k) QSEy(k)R;f
methods. The use of the implementable adaptive step size guar- j=1

antees that the updated contro#ék + 1) moves closer to the Pe .

desired controlleé* as stated in Theorem 1, thus removing the = Z L?BZT,uZ(k)@uTy(k)R;r. (65)
need to choose a step size based on trial and error as is done for i=1

LMS algorithms [2], [5], [7]. The algorithm was applied to the O
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APPENDIX B

Proof of Theorem 1:From (46), (51), and (53) it follows that

Pec
= Bzuz Lz

=1

Using (52), (66) can be written as

Pc
k)=B.,»  LiE(K)R
i=1

()] Ri@uy (K)-

B, (k).

267

Thus, (54), (71), and (72) imply that

2

8J (k)
Tk ) — Mle(k)2 2(7.

(honfh) = =200 eI + 20 |53 | - )
(66)

Now, from (73) it follows that7(k,n(k)) < 0if and only if

( ) w = Znol)t(k) (74)

5 I

(67)

which proves the first statement of the theorem.
To prove the second statement of the theorem we note from

By Assumption 16* minimizes.J (%), and thus it follows from (73) that

(48) that
I (k,n(k))
dJ (k) T RT S T _ =n?(k H_B](k) 2—2 e(B)||2n(k 75
T |y _; LB Z* (k)L (k)Rf =0. (68) (k) 900 . lle(k)1zn(k) (75)
Subtracting (68) from (48) and substitutin@t) from (53) into 0. (k) 2
the resulting equation yields = W(k) — 277(]§)770pt(]§)] H_ (76)
6(k) ||
AI(k) & R
i) = 2o MIBLZ 2 00, (1T 2 oo
= = [0 - )" = 2] | G| - D
=— r[B L 69
Z LI Bk, (VIR (69) Since the quadratic functiorn(k) — nope (k))* — 02, (k)
achieves its minimum af(k) = nopt(k), it follows from (77)
Next, using (50) and (52) we obtain that 7 (p, n(k)) is minimized byn(k) = nept(k). Substituting
(55) into (73) yields (58). O
aJ(k
E(k+1) = E(k) + U(’f)%(k)) (70) APPENDIX C
Proof of Proposition 1: First, from (69) we note that
and thus
aJ (k) yr
G+ 1)~ [E ) B H S R 19097 B ™
= 2 (k 0J(k)
= 2n(k)tx <E< ) 500h )
H I]j (71) = Z [ Ri®uy(R)e(k) " BeuLil| (79)
Using (67) and (69) we obtain < Z Ry ()12l (k) |25 Bau L) (80)
aJ(k) "
tr <E(k)W )
= [le(k ||2Z | Ri@uy (F)||27(BzuLi) (81)
<E Z Ri®,, (k)T (k)B., L )
==Y (k) Beu LiE(k) R, (k) < le(k)||2|| @y (k)]|2 Z 7(B..Li) (82)
i=1 i=1
= ¢ < wZLE YR, k))
< [le(m)l2[Puy (F)l2 Z [ Bzullr- (83)

(72)
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Thus, from (81)—(83) it follows that

1
Erl Y
8(k) (k)13 Z | Ry (K)||27(B.u L)
1
> — . (85)
e3Py (k)13 [Z (B.uLi)
=1
> : (86)
= pelle(k)|31|Puy ()31 Bl |2
and hence
lle(k || 1
2 . (87)
H Z | Ri® .y (k)||27(B.u L)
1
> — . (88)
By (5113 [Z 7(B.uLi)
=1
! (89)

> .

= pelle(®) B3[Py (B3I Bzl

Using (55), (59)—(61), and (87)—(89) it follows that k), 72 (k)

andns(k) satisfy (62). O
APPENDIX D

Proof of Proposition 2: Let j = 1,2,3 and define

AR L 90
O= o )
Then, from (84)—(86) it follows that
a.J(k)

15 = etiaace. (o1)

Now (59)—(61), (73), and (91) imply that

le(®)II3 | lle(R)IZAK)?

T(k,n;(k)) < -2 A(k)22 + A(Z)“ (92)
Ll 03

Using (54) and (93) we obtain

k 2
g6+ Dl - 126 < -5 e
Next
IEOIE > B = 186+ 1}
Z 1B~ B+ DIR) . (99)
Substituting (94) into (95) yields
" el
> L@ < IOk (96)

Since{®,,(k)}72 0is assumed to be bounded, there exists
0 such thatA(k)? < B, k > 0, and thus it follows from (96)
that

Mz < B2IEO)IE. (97)

Z le(k

Lettingr — oo, (97) implies thaty "2, [ls(k)]|3 < oo, and

thus we obtain (63). O
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