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Adaptive Disturbance Rejection Using
ARMARKOV/Toeplitz Models

Ravinder Venugopal and Dennis S. Bernstein, Member, IEEE

Abstract—An adaptive disturbance rejection algorithm is devel-
oped for the standard control problem. The multiple input–mul-
tiple output (MIMO) system and controller are represented as AR-
MARKOV/Toeplitz models, and the parameter matrix of the com-
pensator is updated on-line by means of a gradient algorithm. The
algorithm requires minimal knowledge of the plant, specifically,
the numerator of the ARMARKOV model of the transfer function
from the control inputs to the performance variables is required.
No knowledge about the spectrum of the disturbance is needed.
Experimental results demonstrating tonal and broadband distur-
bance rejection in an acoustic duct are presented.

Index Terms—Active noise and vibration control, adaptive con-
trol, discrete-time systems, disturbance rejection.

NOMENCLATURE

zero matrix.
identity matrix.

ones matrix.
.

Euclidean vector norm.
Frobenius matrix norm.

I. INTRODUCTION

A N important objective of control system design is to min-
imize the effects of external disturbance signals. For ap-

plications such as active noise and vibration control, it is the
primary focus. In cases where the system is time varying or dif-
ficult to identify, adaptive methods such as the feedforward least
mean square (LMS) and recursive LMS (RLMS) algorithms are
useful [1]–[7]. However, feedforward-type algorithms neglect
the effect of the feedback path from control to measurement thus
leading to poor performance and instability [8]. To remedy this
problem, robust variations of the classical LMS algorithm have
been proposed; see, for example [9].

Predictive models, which involve the Markov parameters of
the system, are used in predictive control of systems with time
delays [10, pp. 169–179], [11, pp. 106–110], [12, pp. 331–365],
[13]–[16]. Markov-parameter-based representations of systems
also provide a framework for direct controller synthesis based
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on input–output data [17]. In addition, predictive control algo-
rithms such as the long range generalized predictive algorithm
[12, pp. 353–362], [13] use windows of data. Predictive models
are also used in [18]–[21] for model identification within recur-
sive and batch least squares techniques. In these works predic-
tive models are termedARMARKOV modelsto emphasize the
presence of Markov parameters in ARMA-type models. In [20]
it is shown that ARMARKOV models can be used to estimate
Markov parameters in the presence of persistent, but not neces-
sarily white, input signals. In [22] it is shown that least-squares
identification yields consistent estimates of the Markov param-
eters in the presence of persistent measurements.

In the present paper we develop an adaptive disturbance rejec-
tion controller using ARMARKOV plant and controller models.
Our approach is distinct from predictive control techniques due
to the fact that the adaptation mechanism we employ is based
upon past data rather than future predicted error. A gradient al-
gorithm that minimizes a retrospective performance cost func-
tion is used to update the entries of the controller parameter ma-
trix. The update law uses an adaptive step size involving past
data and an ARMARKOV model of the secondary path transfer
function.

We begin in Section III by formulating the disturbance
rejection problem in terms of the standard two-input two-output
(TITO) framework. In Section IV, we review ARMARKOV
models of discrete-time finite-dimensional linear time-invariant
systems and derive the ARMARKOV model for TITO systems.
Next, in Section V, we develop an adaptive algorithm for
disturbance rejection by representing the controller in terms
of an ARMARKOV parameter matrix and deriving a gra-
dient-descent-based update law for this matrix corresponding
to the retrospective performance cost function. The algorithm
requires performance measurement sensors which may also
be used as feedback measurement sensors. However, addi-
tonal feedback measurement sensors may be used to enhance
closed-loop performance. The algorithm does not require a
direct measurement of the disturbance. The Markov parameters
and moving average coefficients that relate the performance
to the control (the secondary path transfer function) need to
be known to implement the algorithm. These parameters are
obtained by using the time-domain identification algorithm
of [20] and [21]. Since ARMARKOV models are used for
identification and since the controller is based upon such a
representation, the intermediate step of recovering a state-space
or frequency domain model of the system is eliminated. The last
section presents experimental results for tonal and broadband
disturbance rejection in an acoustic duct.

1063–6536/00$10.00 © 2000 IEEE
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Fig. 1. Standard problem with fixed-gain controller.

II. STANDARD PROBLEM REPRESENTATION OFDISTURBANCE

REJECTION

Consider the linear discrete-time TITO system shown in
Fig. 1. Thedisturbance , the control , the measure-
ment and theperformance are in
and , respectively. The system can be written in state-space
form as

(1)

(2)

(3)

or equivalently in terms of transfer matrices

(4)

(5)

The controller generates the control signal based on the
measurement , that is,

(6)

The objective of the standard problem [25] is to determine a
controller that produces a control signal based on the
measurement such that a performance measure involving

is minimized. In classical fixed-gain and optimal
control theory, the performance is not required to be mea-
sured, but rather and are used analytically for off-line
controller design (Fig. 1). Fixed-gain controller design methods
for disturbance rejection generally require knowledge of all four
transfer matrices, namely, theprimary path , thesecondary
path thereference path and thefeedback path , as
well as the spectrum of the disturbance This terminology
is standard in the noise control literature [2] and the feedforward
structure described therein assumes that and

Fig. 2. Standard problem with performance assumption.

Unlike fixed-gain controller design methods, adaptive control
techniques require on-line measurement of for use in adap-
tation. If is measured and used for control, we say that the
performance assumptionis satisfied, as shown in Fig. 2. In the
case that is not available as a measurement, a filter that es-
timates based on available signals can be used. However, in
contrast to fixed-gain methods, adaptive methods [1]–[6] often
require that only the secondary path transfer matrix be
known. Other adaptive methods [9] identify on-line but re-
quire additional actuators and sensors.

III. ARMARKOV M ODELS

In this section we derive the ARMARKOV representation of
a state space model. Consider theth-order discrete-time finite-
dimensional linear time-invariant system

(7)

(8)

where and The Markov parameters
of this system are defined as

(9)

(10)

and satisfy

(11)

Note that the Markov parameters are the impulse response coef-
ficients of the system. The transfer function can be equiv-
alently represented as

(12)
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where det and
Equating (11) and (12) and

multiplying both sides by yields

...

...
.. .

...
...

. ..
. . .

...
(13)

which provides recursive expressions for in terms of
Now consider the ARMA representation of (12) given by

(14)

Replacing with in (14) and substituting the resulting
relation back into (14) yields

(15)

Noting from (13) that , , and
defining

(16)

(17)

(15) can be written as

(18)

We note that (18) explicitly involves the first two Markov
parameters and and thus is called a2-ARMARKOV

model. Repeating this procedure times yields theµ-AR-
MARKOVmodel of (7) and (8)

(19)

where and ,
Equation (19) is an input–output relation that explicitly in-

volvesµ Markov parameters. For (19) has the same
form as the step ahead predictor [10, pp. 169–179], [12, pp.
136–139], while in the case , (19) specializes to the usual
ARMA model. The coefficients and can be calculated re-
cursively using (14) and (13). Equation (19) can be equivalently
represented as theARMARKOV transfer function

(20)

This system representation is nonminimal, overparameterized,
and constrained since the numerator and denominator of the
transfer function are polynomials of order , and the
coefficients of the terms through in the denominator
are zero.

Now, let be a positive integer and define theextended mea-
surement vector and theARMARKOV regressor
vector by

...

...

...

(21)

Using (19), and are related by

(22)

...
...

. . .
...

. . .
. . .

. . .
. ..

. . .
...

...
. . .

. . .
. . .

...
. . .

. . .
. . .

. . .
. . .

(23)
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where the block-ToeplitzARMARKOV weight matrix
is defined by (23) shown at the

bottom of the previous page. We note that a state-space real-
ization of the system can be obtained from (19) by either con-
structing a canonical form or using the eigensystem realization
algorithm (ERA) [20], [21].

IV. ARMARKOV/T OEPLITZ MODEL OFTITO SYSTEMS

We now develop the ARMARKOV/Toeplitz model of
(1)–(3). Defining the Markov parameters of the system by

(24)

(25)

(26)

(27)

the ARMARKOV model of (1)–(3) is given by

(28)

(29)

where , ,
, , and

Next, define theextended performance vector , the
extended measurement vector and theextended control
vector by

...
...

... (30)

where , and theARMARKOV regressor vectors
and by

...

...

...

...

(31)

Furthermore, define the block-ToeplitzARMARKOV weight
matrices and

by (32)—(35) shown
at thebottomof thenextpageandtheblock-ToeplitzARMARKOV
controlmatrices and by

Then (28) and (29) can be written in the form

(36)

(37)

which is the ARMARKOV/Toeplitz model of (1)–(3).

V. ADAPTIVE DISTURBANCE REJECTIONALGORITHM

In this section we formulate an adaptive disturbance rejection
algorithm for the TITO system represented by (36) and (37). We
use a strictly proper controller in ARMARKOV form of order

with Markov parameters, so that, analogous to (19), the
control is given by

(38)
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where , are the Markov param-
eters of the controller. Next, define thecontroller parameter
block vector by

(39)

Now from (30) and (38) it follows that and are given
by

(40)

and

(41)

where

...

...

(42)

and where

(43)

where is defined in (44) at the bottom of the next page with
and Thus, from (36) and (41)

we obtain

(45)

...
...

.. .
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
. . .

. . .
. . .

. ..
. . .

(32)

...
...

.. .
...

. . .
. . .

. . .
. . .

. ..
...

...
. . .

. . .
. . .

...
. . .

. . .
. . .

. . .
. ..

(33)

...
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

(34)

...
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

(35)
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Next, we derive an update law for the controller parameter
block vector To do this, we consider a retrospective per-
formance cost function that evaluates the performance of the
current value of based upon the behavior of the system
during the previous steps. Therefore, we define theretrospec-
tive performance by

(46)

which has the same form as (45) but with replaced by
the current controller parameter block vector Using (46)
we define theretrospective performance cost function

(47)

Lemma 1: The gradient of with respect to is given
by

(48)

Proof: See Appendix A.
Since is not available, which implies that is un-

known, cannot be calculated from (46). However, it fol-
lows from (36) and (46) that

(49)

which can be used to evaluate (48).
The gradient (48) is used in the update law

(50)

where is theadaptive step size. To determine the adaptive
step size , we make the following assumption which is anal-
ogous to the assumption given in [10, pp. 281–282].

Assumption 1:There exists
that minimizes for all Under Assumption 1, we define
thedesired performance

(51)

theerror matrix

(52)

theperformance error

(53)

and theerror matrix cost function

(54)

Our goal is to determine such that is decreasing,
that is, is negative. For convenience in stating the
following result, we define theoptimal adaptive step size

(55)

Theorem 1: Consider the update law (50) and suppose As-
sumption 1 is satisfied. Furthermore, let and assume that

Then

(56)

if and only if

(57)

In particular, minimizes Finally,

(58)

Proof: See Appendix B.
A geometrical interpretation of Theorem 1 is now presented.

Using Fig. 3 for reference, the objective of the algorithm is
to move the controller parameter block vector closer to
the optimal controller parameter block vector The direction
to move is the negative of the gradient given by
(48) which is obtained from the retrospective performance cost
function (47). The distance to move is determined by the adap-
tive step size Theorem 1 states that the step size
moves to the point closest to along the negative gra-
dient direction and, at this point, the vectors and

are at right angles.
In practice given by (55) is not computable since

is not available. Hence, we define theimplementable adaptive
step sizes , , and by

(59)

(44)
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Fig. 3. Cost contours forJ(k):

(60)

(61)

where denotes the maximum singular value of the
matrix Note that if is known, then
or can be calculated and used to implement (50). The
following result shows that , , and satisfy the
requirements of Theorem 1. We note that although

, the computation of is less burdensome.
Proposition 1: The implementable step sizes , ,

and satisfy

(62)

Proof: See Appendix C.
Finally, we show that the update law (50) with step sizes ,

, and drives to as tends to infinity if
is bounded.

Proposition 2: Suppose Assumption 1 is satisfied, let
for all and let

or If is bounded, then

(63)

Proof: See Appendix D.

VI. CONTROLLER IMPLEMENTATION

The steps involved in implementing the adaptive algorithm
are as follows.

1) Obtain the matrix by using the identification algo-
rithm of [20], [21] or by calculation from an ARMA or a
state-space representation of

2) Calculate the control signal from the controller pa-
rameter matrix and the vector using (40).

3) Using the signals and update the vectors
and as defined in (42) and (49).

4) Calculate the gradient using (48).
5) Calculate the implementable adaptive step size

or from (59)–(61).
6) Update the controller parameter matrix using (50).

Steps 1)–5) are performed at each time step
We observe that of the four transfer matrices , , ,

and in the multiple input–multiple output (MIMO) standard
problem, the algorithm described above requires that we iden-
tify only the numerator of one transfer matrix, namely, The
signals that we require to be measured are and

VII. EXPERIMENTAL RESULTS

Experimental demonstration of the ARMARKOV adaptive
disturbance algorithm is performed on an acoustic duct of cir-
cular cross section. The duct is 80 in long and has a diameter
of 4 in. The disturbance speaker is located at one end of
the duct and the measurement microphoneis located 4 in
in from the same end of the duct. The performance microphone

is positioned 6 in in from the other end of the duct while
the control speaker is placed 16 in away from that end of
the duct. The signals from the two microphones are amplified
by a dbx 760x microphone preamplifier while the control signal
is amplified by an Alesis RA-100 amplifier. Both speakers are
Radio Shack 6-in woofers. The experimental setup is shown in
Fig. 4.

The algorithm is tested on four types of disturbances, namely
a single-tone disturbance (139.65 Hz), a two-tone disturbance
(135.74 Hz and 160.4 Hz), band-limited white noise (up to 390
Hz) and AM radio noise. The algorithm uses and
for the matrix , and , , , and the
step-size for the adaptive controller. The controller is im-
plemented on a dSPACE ds1102 real-time control board run-
ning a TMS320C30 DSP processor at a sampling frequency
of 800 Hz. The microphone signals are processed through a
four-pole Ithaco low-pass filter model DL 4302 that rolls off
at 315 Hz. The tonal and band-limited white noise disturbances
are generated by a Stanford Research Systems 770 FFT network
analyzer and amplified by an Optimus STA-825 stereo receiver.

Fig. 5 shows the open-loop and closed-loop frequency do-
main performance with a single-tone disturbance. Disturbance
attenuation of over 40 dB is achieved with convergence in ap-
proximately 1 s. Although the disturbance signal is a pure tone,
speaker nonlinearities produce harmonics which appear on the
frequency response plot along with ambient and measurement
noise. The algorithm provides the same level of attenuation
by adaptation when the frequency of the disturbance tone is
changed or swept while the algorithm is running.

Fig. 6 shows the open-loop and closed-loop performance
with a two-tone disturbance. In this case, disturbance atten-
uation over 35 dB is observed. Fig. 7 shows the open-loop



264 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 8, NO. 2, MARCH 2000

Fig. 4. Experimental setup for noise suppression in an acoustic duct.

Fig. 5. Open-loop and closed-loop frequency domain performance with a single-tone disturbance at 139.65 Hz.

and closed-loop mangitude plots of the transfer function from
disturbance to performance with a white noise disturbance, and
noise suppression of up to 15 dB is observed over a frequency
range from 0 to 300 Hz. Finally, Fig. 8 shows the open-loop
and closed-loop response with an AM radio disturbance. Noise
reduction levels of up to 40 dB are observed over the frequency
range 0 to 300 Hz.

The performance of the algorithm was also experimentally
compared to the filtered-x FIR LMS algorithm (FXLMS) and

the filtered-u IIR LMS (FURLMS) [2]. A brief description of
these algorithms is given in [26]. Each algorithm was tested on
the testbed described above with the following disturbances:
a single tone at 115 Hz, dual tones at 115 Hz and 125 Hz,
band-limited white noise, and recorded fan noise. The parame-
ters used for the algorithms are in Table I. The step sizes used
for the FXLMS and FURLMS algorithms were determined
by trial and error to obtain the fastest convergence rate with
consistent stability. The ARMARKOV/Toeplitz algorithm was
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Fig. 6. Open-loop and closed-loop frequency domain performance with a two-tone disturbance at 135.74 and 160.4 Hz.

Fig. 7. Open-loop and closed-loop performance with band-limited white noise.

implemented using as the step size. All of the algorithms
were successful in rejecting computer-generated single and
dual tones to varying degrees. Only the ARMARKOV/Toeplitz
algorithm was capable of attenuating the computer-generated
band-limited white noise and the fan disturbance. Also, the
ARMARKOV/Toeplitz algorithm converged faster in general
as a result of the use of an adaptive step size. The results, sum-

marized in Table II, indicate that the ARMARKOV/Toeplitz
algorithm has better stability and performance characteristics.

VIII. D ISCUSSION

In this paper, we developed an adaptive disturbance rejec-
tion algorithm based on ARMARKOV/Toeplitz models. The al-
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Fig. 8. Open-loop and closed-loop performance with AM radio disturbance.

TABLE I
ALGORITHM PARAMETERS

TABLE II
DISTURBANCE ATTENUATION COMPARISON

gorithm is gradient based with an adaptive step size. In con-
trast to LMS algorithms, the ARMARKOV/Toeplitz algorithm
has three distinctive features, namely, the use of ARMARKOV
system representations (36), (37); a retrospective performance
cost function obtained by using the current controller over a past
window of data (47); and an implementable adaptive step size
(61). The retrospective cost function allows the calculation of an
exact gradient for the system without resorting to prefiltering of

by as in filtered-x methods. This prefiltering, which
is necessary to account for in the gradient, limits the adap-
tation rate and thus adversely affects the convergence of LMS
methods. The use of the implementable adaptive step size guar-
antees that the updated controller moves closer to the
desired controller as stated in Theorem 1, thus removing the
need to choose a step size based on trial and error as is done for
LMS algorithms [2], [5], [7]. The algorithm was applied to the

problem of active noise control in an acoustic duct, and experi-
mental results showed that the algorithm is effective in rejecting
both narrow-band and broad-band disturbances with minimal
plant modeling.

APPENDIX A

Proof of Lemma 1:From (46) and (47) it follows that

(64)

Using matrix derivative formulas, it follows from (64) and (46)
that

(65)
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APPENDIX B

Proof of Theorem 1:From (46), (51), and (53) it follows that

(66)

Using (52), (66) can be written as

(67)

By Assumption 1, minimizes and thus it follows from
(48) that

(68)

Subtracting (68) from (48) and substituting from (53) into
the resulting equation yields

(69)

Next, using (50) and (52) we obtain

(70)

and thus

(71)

Using (67) and (69) we obtain

tr

tr

(72)

Thus, (54), (71), and (72) imply that

(73)

Now, from (73) it follows that if and only if

(74)

which proves the first statement of the theorem.
To prove the second statement of the theorem we note from

(73) that

(75)

(76)

(77)

Since the quadratic function
achieves its minimum at , it follows from (77)
that is minimized by Substituting
(55) into (73) yields (58).

APPENDIX C

Proof of Proposition 1: First, from (69) we note that

(78)

(79)

(80)

(81)

(82)

(83)
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Thus, from (81)–(83) it follows that

(84)

(85)

(86)

and hence

(87)

(88)

(89)

Using (55), (59)–(61), and (87)–(89) it follows that
and satisfy (62).

APPENDIX D

Proof of Proposition 2: Let and define

(90)

Then, from (84)–(86) it follows that

(91)

Now (59)–(61), (73), and (91) imply that

(92)

(93)

Using (54) and (93) we obtain

(94)

Next

(95)

Substituting (94) into (95) yields

(96)

Since is assumed to be bounded, there exists
such that and thus it follows from (96)

that

(97)

Letting (97) implies that and
thus we obtain (63).
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