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Abstract

In this paper, we derive sufficient conditions for stable compen-
sators with closed-loop Hy and H, performance criteria. We first
generalize prior results in which Ha-suboptimal stable compensators
were considered. Then using two different approaches, we derive con-
ditions for constructing mixed-norm Hy/H, stable compensators.
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1 Introduction

It was shown in [10] that a system is stabilizable by means of a stable
compensator if and only if the real, unstable poles and zeros of the Sys-
tem satisfy the parity interlacing property. Consequently, certain plants
can only be stabilized by unstable compensators. Issues related to strong
stabilization were further studied by many authors, for example, [2] and
[3]. In [7] and [8], the authors modified the closed-loop Lyapunov equation
along with parameter optimization to guarantee controller stability. In this
a priori approach controller stability is guaranteed prior to carrying out the
optimization. An a posteriori approach, given in [5] and [9] is based upon
the modified LQG Riccati equations to yield a stable compensator.

In this paper, we first generalize the results in [9] by using the a pos-
teriori approach for H, strong stabilization. Specifically, we show that
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there exist several modifications to the LQG result that yield a stable com-
pensator. Then using both the a priori and a posteriori approaches, we
derive sufficient conditions for constructing stable compensators with the
closed-loop system satisfying Hy and H,, performance constraints.

It is important to note that the conditions given in this paper for sta-
ble stabilization are sufficient. The more difficult problem of determining
conditions for stable stabilization that are both necessary and sufficient in
the context of H; and Hy/H, control objectives remains an open problem
for future research.

2 Hj-Suboptimal Strong Stabilization

In this section, we generalize the a posteriori approach of [9]. Consider the
nth-order plant
i(t) = Az(t) + Bu(t) + Diw(t), (2.1)

y(t) = Cz(t) + Dyw(t), (2.2)
with performance variables
2(t) = Erz(t) + Equ(t), (2.3)

where w(t) is a standard white noise process. Using the n.th-order dynamic
compensator

T(t) = Aczc(t) + ch(t), (2.4)
u(t) = Cezc(t), (2.5)
we obtain the closed-loop system
i(t) = AZ(t) + Dw(t), (2.6)
2(t) = Ei(t), (2.7)
where
oA z(t) ~a| A BC =a | D
x(t)_[zc(t)]’A_[BcC A, ]’D—[ch ]
EL[ B EC.].
The performance index is given by
J(Ac, B, Ce) = lim ElzT (t)Ryz(t) + uT (t)Rou(t)), (2.8)

where ‘€’ denotes expectation and R, = ETEi, R, £ ETE, > 0. For
convenience, we define V; 2 DyDT, V, = D;DT >0, and & £ BR;'BT,

>l
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by 2 C’TVZ_IC. For simplicity, we assume R; = ETE;, = 0 and Vi 2
Dng = V.

The H; optimal control problem can be stated as follows: minimize the
H; performance criterion given by (2.8), or, equivalently,

J(Ac,B.,C.) = |E(sI - A)7'D|)? = tr R, (2.9)
subject to o .
0=AQ+ QAT +V, (2.10)
where
pAETEH_ | B 0 S A s | W 0
R=FE= [ 0 CTR,C, ]  V=DD" = [ 0 B.V,BT ]

Throughout the paper we make the standard assumptions that both (A, B)
and (A, D;) are stabilizable and both (C, A) and (E;, A) are detectable.
In this case, it is well known that there exist nonnegative-definite matrices
Q, P satisfying

0=ATP + PA+R, - PSP, (2.11)
0=AQ + QAT +V; - Q%Q, (2.12)
such that the optimal full-order controller is given by
A=A+ BC. - B.C, (2.13)
B. = QCTV; Y, (2.14)
C.=-R;'BTP. (2.15)

Although LQG controllers minimize the H, performance criterion (2.8)
and guarantee closed-loop asymptotic stability, the resulting compensator
is not necessarily either stable in the sense of Lyapunov or asymptotically
stable. Hence, in this section we derive sufficient conditions that guarantee
that the compensator is asymptotically stable along with suboptimal H,
closed-loop performance.

For the full-order case n. = n, Theorem 2.1 gives sufficient conditions
for constructing stable controllers.

Theorem 2.1 Let Ry > 0 and let Q(P, P) > 0 satisfy
(A+EP)TP+ P(A+SP) + Q(P,P) >0, (2.16)

for all n x n nonnegative-definite matrices P and P. Furthermore, suppose
there exist n x n nonnegative-definite matrices Q, P, and P satisfying

0=AQ + QAT +V; - Q=Q, (2.17)
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0= ATP + PA+ R, +Q(P,P) — PEP, (2.18)
=(A-QE)TP + P(A- Q%) + PEP, (2.19)

and let (A, B.,C.) be given by (2.13)-(2.15). Then A, and A are asymp-
totically stable.

Proof: Adding (2.18) to (2.19) and using (2.16) and R; > 0 yields ATP +

PA, < 0. Hence A, is asymptotically stable. Now defining R, = R, +
Q(P, P) > 0, it can be seen that (2.17) and (2.18) are in the form of the
standard LQG Riccati equations. Thus A is asymptotically stable. O

Note that by letting Q(P, P) = 0, we recover the standard LQG result
where A, is not necessarily stable. Since the ordering induced by the cone
of nonnegative-definite matrices is only a partial ordering, there does not
exist a unique function Q(,-) satisfying (2.16). The next result gives nine
such functions.

Proposition 2.1 For arbitrary o, B > 0, the following matriz functions
Q(P, P) satisfy (2.16) for all nonnegative-definite matrices P, P:

(i) QP,P)=0a(A+3P)T(A+3P)+a2P?,

(i) QP,P)=[a(A+ZP) - o P|T{a(A + SP) — a1 P,

(i13) P, P) = [a(A + SP) — o~ |TPla(A + ZP) — a7},
(iv) QP,P)=0o?ATA+a 2P? + 2PE2P + §2P?,

(v) QP P) =a?ATA4 (a2 + 87 2)P2 + ,82P22P

(vi) Q(P,P)=o?ATA+a 2P? + (BP - B P)S(P - 671 P),

(vii) QP,P)=(cd-o 'I)TP(ad —a™'I)+ f?PY2P + B~ 2p2
(viti) QP, If’) =(aA—a ' )TP(aA —a 1)+ B2PS2P + B~ 2P2
(iz) Q(P,P)=(ad—-a)TP(ad —a™'I)

+ (8P — B~1P)T(BP — B~1P).

Proof: The proof involves straightforward matrix manipulations and hence
is omitted. O

For reduced-order dynamic compensation n. < n, we recall from [6] the
necessary conditions for Hy optimality.

Theorem 2.2 Let n, < n and suppose (A.,B.,C.) minimizes
J(Ac, B, Cc). Then there exist n X n nonnegative-definite matrices Q,
Q, P, P such that A., Be, C. are given by

A, =T(4A - QL -TP)G", (2.20)
B, =TQCTV, ™, (2.21)
C.=-R;'BTPGT, (2.22)
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where Q, Q, P, P,Tand G satisfy

0=A4Q+QA" +V, - QL£Q + 7.QLQ~T, (2.23)
0=(A-ZP)Q+QA-3P)T +QSQ - r,Q5Q-T, (2.24)
0=A"P+PA+R, - PSP+ rIPEPr,, (2.25)
0=(A-QL)"P+ P(A~ Q)+ PP - rTPSPr,, (2.26)
rank Q = rank P = rank QP = n,, (2.27)

QP =G"™MT, TGT =1, , M e Rrxne, (2.28)

r& G'T, . 2 I, — T, (2.29)

Q=70Q, P=Pr. (2.30)

Next, we modify Theorem 2.2 to construct reduced-order stable con-
trollers.

Theorem 2.3 Let Ry > 0 and let Q(P, P) > 0 satisfy (2.16) for alln xn
nonnegative-definite matrices P, P. Suppose there ezist n x n nonnegative-
definite matrices Q, Q, P, P satisfying (2.27)-(2.30) and

0=A4Q+QAT +V; - QE£Q + 7. QEQ~T, (2.31)
0=(A-ZP)Q+ QA -2P)T +QSQ - 7, Q5Q-T, (2.32)
0=A"P+ PA+R, + P, P) - PSP + 1T PEPr|, (2.33)
0=(A-QE)TP + P(A- Q%)+ PLP - 1T PSPr, . (2.34)

Furthermore, let (A.,B.,C.) be given by (2.20)-(2.22) and assume that
(A4,V) is stabilizable and (C,, A.) is observable. Then Ac and A are asymp-
totically stable.

Proof: Adding (2.33) to (2.34) yields
0=(A-QE)"P+P(A-QE)+ A"P+ PA+ R, + (P, P),
which can be written as

0=(A-QE-SP)TP+ P(A- QS -SP)+R,
+ (A+ZP)TP + P(A + =P) + Q(P, P).

Since (C., A.) is observable, it follows that P, 2 AGISGI: > 0 [6]. Using
(2.16) and P, > 0 with the fact that B; > 0 and Pr = P, it then follows
that

APy + P Ac = —G[Ri + (A+SP)TP + P(4 + =P) + Q(P, P)GT <o,
185
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which implies that A, is asymptotically stable. Now since (A, V) is stabi-
lizable, it follows that A is asymptotically stable. O

Remark 2.1 Setting G =T = 7 = I in Theorem 2.3, which corresponds
to n. = n, we recover Theorem 2.1 for constructing full-order stable com-
pensators.

Remark 2.2 Note that the modification Q(P, P) for constructing stable
compensators involves equations (2.18) and (2.33) for P and P as shown in
both Theorem 2.1 and Theorem 2.3. By duality, we can similarly modify
the @ and Q equations to obtain stable compensators.

3 Mixed-Norm H:/H.-Suboptimal Strong Stabiliza-
tion

In this section, we generalize the results in the previous section to the
case of Hy/H.-suboptimal stable stabilization. The goal is to obtain an
asymptotically stable compensator dynamics matrix A. such that

(3) the closed-loop system (2.6), (2.7) is asymptotically stable;
A |D
Ex | O

turbance w(t) to performance variables z(t) = E100Z(t) + E2oou(t),
satisfies the constraint

(i7) the closed-loop transfer function Goo(s) ~ [ } from the dis-

| Goo(8) oo < s (3.1)

where 4 > 0 is a given constant and Ew 2 [Bico E200Ce] ; and

(44i) the Hy performance measure (2.8) is minimized.

Following the a posteriori approach discussed in the previous section,
we state the main result for reduced-order mixed-norm Hj;/H,, stable

e e . . A
stabilization. For notational convenience, we define Ri = E;FOOEIOO,

A A A .
Roso = EX Ejoo = kRy and S = (I + k7~ 2QP)™!, where k > 0 is a
given constant.

Theorem 3.1 Let Ry > 0 and let (Q,Q, P, P) > 0 satisfy

(A + 7 2(Q+Q)R10o) P + PIA + 7 2(Q + Q) Rico)
+ STPELP + PSPS + 8(Q,Q, P, P) > 0, (3.2)

for all n x n nonnegative-definite matrices Q, Q, P, P. Suppose there exist

~

n X n nonnegative-definite matrices Q, Q, P, P satisfying (2.27)-(2.30)
186



H,/H,, STRONG STABILIZATION

and

0 = AQ+QAT + Vi +772QR1Q — QSQ + 7, QEQ+T, (3.3)
0 = (A-EPS+772QR10)Q + Q(A — TPS 4+ v 2QR;100)T

+ QZQ - 71QZQTT + ¥ 2Q(Ri0o + kSTPIPS)0, (3.4)
0 = [A+77%Q+ Q)Rioo]"P + P[A + 7 %(Q + Q) R1co]

+ R+ ®(Q,Q,P,P) — STPLPS + rTSTPEPST, (3.5)
0 = (A-QZ+77°QR10)"P + P(A ~ QF + v 2QR100)

+ STPYPS —7TSTPEPST,. (3.6)

Furthermore, let

Ac = T(A- QL -~ £PS ++72QR,,)GT, (3.7)
B. = IQC™v, 1, (3.8)
C. = —R;'BTPSGT, (3.9)

and assume that (A, V) is stabilizable and (C., A.) is observable. Then A
and A are asymptotically stable, and || Goo(s)[|oo< .
Proof: Defining

R2 R +9(Q,Q,PP) >0,
it can be seen that (3.3)-(3.6) correspond to the standard reduced-order
H;/He controller [1] with Ry replaced by R in (3.5) and hence || G oo (8) || 0o <
7 is immediately satisfied. Using the fact that (4, V) is stabilizable, it fol-

lows that A is asymptotically stable. To show that A is asymptotically
stable, add (3.5) to (3.6) to obtain

0 = (A-QZ-ZPS+77%QR15)TP + P(A— QS - £PS +7~2QR,.,)
+ B+ [A+77%(Q + Q)Rico] TP + P[A + v %(Q + Q)R1c]
+ STPEP + PEPS + ®(Q,Q, P, P).

Since (CC,AC) is observable, it can be shown that P, = GPGT > 0 [1].
Using (3.2), Pr = P, and P, > 0, it follows that

APy + PyA. = —G{Ry + [A+ 77 %(Q + Q)R1oo] " P+
P[A+77%Q + Q)Ric] + STPEP + PSPS + 8(Q,0, P, P)}GT < 0,

which implies that A. is asymptotically stable. O

Propgsitiqn 3.1 For arbitrary a, 8 > 0, the following matriz fupctioqs
®(Q,Q, P, P) satisfy (3.2) for all nonnegative-definite matrices Q,Q, P, P:
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(i)  ¥(Q,Q,P,P)=a’[A+7(Q+Q)Ric) [A+77%(Q + Q)Rioo]+
o ?P? 4+ 32STPY?PS + B2P?, )

(i) @(Q,Q,P,P)=0a’[A+72(Q+Q)Rio]T[A+77%Q + Q)Ricc]+
~ a7*P?4(BPS - B7IP)TE(BPS - 1 P),

(i) 2(Q,Q,P,P) = [a(A+7*(Q+Q)Rixs) ~a  I]T Pla(A+772(Q+
 Q)Ric) —a '+ B2STPE2PS + 872 P2,

(w) ¥(Q,Q,P,P)=[a(A+72(Q+Q)Rico)—a T Pla(A+772(Q+

Q)Rico) — a1} + (BPS — B~ P)TS(BPS — B~ P).

Proof: The proof involves straightforward matrix manipulations and hence
is omitted. O

Next, we specialize Theorem 3.1 to full-order dynamic compensation.

Corollary 3.1 (Full-Order Hy/H,, Strong Stabilization) Let R; >

0 and let 8(Q, Q, P, P) > 0 satisfy (3.2). Suppose there exist n x n
nonnegative-definite matrices Q, Q, P, P satisfying

0 = AQ+ QAT + Vi +772QR1,Q — QZQ, (3.10)
0 = (A—ZPS+772QR10)Q + Q(A — ZPS + 7 2QR1)T + QSQ
+ 77 2Q(R1oo + kSTPEPS)Q, (3.11)
0 = [A+77%(Q+Q)Rico|TP+ P[A+77%(Q + Q)Ricc] + R
+ &(Q,Q,P,P)- STPEPS, (3.12)
0 = (A-QE+7"2QR100)TP+ P(4 - QE + 7 2QR10o)
+ STPYPS. (3.13)
Furthermore, let
A. = A-QE ~ZPS+772QR;, (3.14)
B, = QCTv; Y, (3.15)
C. = —R;'BTPS. (3.16)

and assume that (A, V) is stabilizable and (C, A.) is observable. Then A
and A; are asymptotically stable and | Goo(s) ||eo< 7.

Proof: The result is a direct consequence of Theorem 3.1 by settingn, = n
sothat =T =G = I,,. 0

Remark 3.1 Note that by letting ¥ — oo in Theorem 3.1 and Corol-
lary 3.1, we recover the Hs results obtained in Section 2 for both full-
and reduced-order dynamic compensation. It is interesting to note that
in contrast to the full-order Hy case described in Section 2 and [9] which
involves three matrix equations for constructing stable controllers, the full-
order Hy/H,, problem involves four matrix equations for obtaining stable
controllers.
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Next, we use the cost modification approach proposed in [9] to design
H,/H, stable controllers. This approach seeks to minimize

J(A., B.,C.) = tr QR (3.17)
subject to 3 ~ ; 5
0=A40+ QAT + v 2QR,Q+ V + Q(Q), (3.18)
where
5 A Rl 0 5 A Rloo 0
k= [ 0 CTR.C, ] Roo = [ 0 CTRyC, ]
5o W 0
2[5 naim |

As shown in [1], minimizing (3.17) subject to (3.18) with Q(Q) = 0 guar-
antees closed-loop stability, H,, disturbance attenuation, and a worst-case
bound on H; performance. To also guarantee stability of the compensator
dynamics 4., we set Q(Q) to

%)= 9 gron | (3.19)

as in [9], where Q = [ Q% %12 ] Now using the fixed-structure opti-
12 2

mization approach outlined in [1] to minimize (3.17) subject to (3.18) with
(Q) given by (3.19) yields the following theorem.

Theorem 3.2 Suppose there ezist n x n nonnegative-definite Q, Q, P, P
satisfying (2.27)-(2.30) and

0 = AQ+ QAT+ Vi + 77 2QR1Q — QEQ + 1. QEQrT + @50,

(3.20)

0 = (A-EPS+72QR10)Q + Q(A — £PS + v 2QR15)T + QEQ
- 7.Q2Q7T — QEQ + v 2Q(R100 + kSTPEPS)Q, (3.21)

0 = [A+77%Q+ Q)Rioo]"P + PlA+77%(Q + Q)Rico] + Ry

+ PQY + £QP — STPEPS + 1T STPEPST,, (3.22)

0 = [A-(Q@+QE+7QR10]" P+ P[4~ (Q + Q)E + v 2QR1c]
+ STpLPS — +TSTPEPST,, (3.23)

and let

Ac = T[A— (Q+Q)S — =PS + 7 2QR;,)G", (3.24)
B, = IQCTv; !, (3.25)
C. = —-R;'BTPSGT. (3.26)
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If (Ac, B.) is stabilizable, (C., A.) is observable and Ry > 0, then A and
A, are asymptotically stable, || Goo(3) ||o< 7, and the Hy performance
satisfies the bound

J(A¢, B.,C.) < tr [(Q+ Q)R; + QSTPTPS). (3.27)

Proof: Since Q(Q) > 0, it can be seen from (3.18) that if there exist
nonnegative-definite Q and Q satisfying (3.18), then A is asymptotically
stable and || G'oo(8) ||loo < . Now applying the Lagrange multiplier method
to minimize (3.17) subject to (3.18), yields

AcQ2 + Q:A7 = -T[(Q+Q)E(Q + Q)
+772Q(R100 + STPEPS)QILT < 0,

which implies that A, is asymptotically stable. Equations (3.20)-(3.26)
follow from algebraic manipulations. See [1] for details of a similar proof.
]

Remark 3.2 In the full-order case, set n, =nsothat ' =G =7=1, to
obtain sufficient conditions for constructing stable Hy /H,, compensators
using the cost modification approach. Finally, relaxing the H,, constraint,
i.e., ¥ — 00, Theorem 3.2 specializes to Theorem 4.2 of [9].

4 Illustrative Numerical Examples

We now use the numerical procedure proposed in [9] to solve the coupled
matrix Riccati equations developed in the previous sections. This proce-
dure involves first-order parameter variations of @, Q, P and P and is
based upon Newton’s method.

Example 1 Consider the two-mass system shown in Figure 1, where

0 0 10 0
0 0 01 0

A= 0 1 ool B=1|; ,C=[1 00 0],
1 -1 00 0

with disturbance weighting matrices given by

0 0
D, = 8 8 , D,=[0 1],
68 0

and performance weighting matrices given by

_[r 010 _[ o
El‘[o 00 0]’E2‘[0.o1]'
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Figure 1: Two Mass System

Note that the results in [9] are based upon (vi) of Proposition 2.1 in
which Q(P, 13) involves two parameters « and 3. In this paper, we alterna-
tively choose (i) of Proposition 2.1 to guarantee the asymptotic stability of
A, while implementing Theorem 2.1. Since there is only one parameter o
preset in (7) of Proposition 2.1, the numerical procedure for obtaining an
asymptotically stable compensator is somewhat simpler. The closed-loop
poles are

{—97.6052, —1.0277+2.8161, —2.4941+31.1604, —0.9728, —0.0033+41.0}
while the eigenvalues of A, are
{—97.2507, —8.3768, —0.0003 + 71.0364}.

The modified cost is 264.4246 while the LQG optimal cost is 261.6534.
Hence the cost increment is 1.06%. Comparing to the cost increment 26.94
% of the modified design given in [9], we have a lower cost increment using
(%) of Corollary 2.1 while implementing Theorem 2.1. In general, the choice
of Q(P, P) in Corollary 2.1 which leads to the minimal cost increment is
problem dependent.

Our next example involves the design of a stable Hy /H, controller.

Example 2 Consider again the system given in Example 1 with plant
dynamics A, B, C, disturbance matrix D; and sensor noise matrix Dy
with the performance weightings

10 0 10 0 0
El‘[o 0 0 0]’E2—[0.1]’

and H, weighting matrices Ry = 0.05R; and Ry = 0. Applying Corol-
lary 3.1 with @ given by (i) in Proposition 3.1 and using the numerical
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Figure 2: Maximum Singular Value of G(s); LQG (Dotted Line) vs.
H,/H, strong stabilization (Solid Line)

algorithm developed in [9], we obtain controllers for Hy /H,, strong stabi-
lization. In the full-order case, the LQG cost of the Hz-optimal solution is
2.6165 x 10*. The LQG design places the closed-loop poles at {—99.985,
—2.4941 £ 31.1604, —1.0277 + 32.8161, —1.0001, —0.0035 + 1.0} while the
poles of A, are {—99.637, —8.399, .0003 % 71.0396} which yields an un-
stable LQG controller. Now choosing @ = 0.5 and 8 = 2 in Proposi-
tion 3.1, the resulting stable Hy/H,, controller has closed-loop poles at
{—96.3944, —5.575, —1.2085 + 32.5093, —2.6172, —1.0003, —0.0022 + 1.0}
with A, poles {—95.7916, —12.2165, —0.0005 + 71.0282}. The total cost is
3.5453 x 10%. Furthermore, the peak magnitude of the maximum singular
value G(s) = E(sI — A)~'D with the LQG gains is 49.368dB whereas the
peak magnitude of || G(s) ||l with the stable Hy/H,, gains is 47.62dB as
shown in Figure 2.

5 Conclusion

Several alternative modifications of the full- and reduced-order Hs optimal-
ity conditions have been shown to enforce the stability of the compensator.
The modification terms, once selected, involve free parameters whose values
can be determined by an iterative search.
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This paper considered both @ priori and @ posteriori approaches, dis-
cussed in [9], to derive results for strong stabilization with Hy and H,
performance measures. It is noted that in the full-order case with the a
posteriori approach, the stable controller is characterized by three modified
Riccati equations in the Hj setting whereas four modified Riccati equations
are needed to characterize the full-order stable mixed-norm H./H,, con-
troller.
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