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Abstract
In recent work, ARMARKOV representations have

been proposed as an extension of ARMA representa-
tions of �nite-dimensional linear time-invariant systems.
ARMARKOV representations have the same form as
ARMA representations, but explicitly involve Markov pa-
rameters. This paper generalizes ARMA least-squares
time-domain identi�cation to ARMARKOV representa-
tions. The ARMARKOV/least-squares identi�cation al-
gorithm is used to estimate the Markov parameters of a
linear time-invariant system from measurements of the in-
puts and outputs. The eigensystem realization algorithm
is then used to construct a minimal realization. A numer-
ical example involving a second-order lightly damped sys-
tem illustrates the decreased sensitivity of the eigenvalues
to the Markov parameters of a perturbed ARMARKOV
representation compared to the Markov parameters of a
perturbed ARMA representation. Finally, using experi-
mental data, the dynamics of an acoustic duct are iden-
ti�ed using the ARMA/least-squares identi�cation algo-
rithm to obtain a transfer function representation and the
ARMARKOV/least-squares identi�cation algorithm with
ERA to obtain a minimal realization.

1. Introduction
Time-domain identi�cation of linear time-invariant

�nite-dimensional discrete-time systems using a
least-squares algorithm has traditionally used an ARMA
representation [7, pp. 176-178] [8, pp. 60-63]. We refer
to this algorithm as the ARMA/LS identi�cation algo-
rithm. In this paper we propose to use the least-squares
algorithm with the ARMARKOV representation �rst
introduced by Hyland [2]. We refer to this algorithm as
the ARMARKOV/LS identi�cation algorithm. The AR-
MARKOV representation relates the current output of a
system to past outputs as well as current and past inputs.
While the ARMARKOV representation has the same
form as an ARMA representation, the ARMARKOV
representation explicitly contains Markov parameters of
the system. For details on ARMARKOV representations
see [1]. When the ARMARKOV representation contains
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more than one Markov parameter, the ARMARKOV
representation can be viewed as an overparameterized
and structurally constrained ARMA representation.

A widely used identi�cation technique is the eigen-
system realization algorithm (ERA) [4] [5, pp. 133-137]
which uses Markov parameters to obtain a state space re-
alization of the system. Estimates of the Markov param-
eters are used to construct a block-Hankel matrix whose
singular value decomposition provides an estimate of the
system order and which is used to construct state space
realizations.

The ARMARKOV/LS identi�cation algorithm
uses vectors comprised of input-output data with a
least-squares criterion to estimate a weight matrix
containing a speci�ed number of Markov parameters of
the system. This algorithm provides the �rst-step in a
two-step identi�cation algorithm, where ERA is used
as the second-step to construct a minimal realization
from the estimated Markov parameters. The estimated
Markov parameters are extracted from the estimated
weight matrix and used to construct a Markov block
Hankel matrix which in turn is used within ERA to
obtain a minimal realization. We refer to this two-step
algorithm as the ARMARKOV/LS/ERA identi�cation
algorithm.

The ARMARKOV/LS/ERA identi�cation algorithm
has three advantages compared to the ARMA/LS iden-
ti�cation algorithm. First, as shown in Section 5, the
eigenvalues are less sensitive to the Markov parameters
of a perturbed ARMARKOV representation than to the
Markov parameters of a perturbed ARMA representation.
Second, the singular value decomposition of a block Han-
kel matrix constructed from the estimated Markov param-
eters provides an e�cient model order indicator [4] [5, p.
139]. Third, the ARMA representation requires selection
of the relative degree which is not required with the AR-
MARKOV representation. Note that only the Markov pa-
rameters obtained from the ARMARKOV/LS identi�ca-
tion algorithm are used by ERA to construct a state space
realization. Therefore, errors in the remaining parameters
of the ARMARKOV representation have no e�ect on the
identi�ed model.

While the ARMARKOV/LS/ERA identi�cation al-
gorithm in this paper is developed for single-input
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single-output (SISO) systems, it can be used to iden-
tify multi-input multi-output (MIMO) systems. For
MIMO systems the ARMARKOV/LS identi�cation algo-
rithm is used to estimate the Markov parameters of every
input-output pair. These SISO Markov parameters are
then assembled into the MIMO Markov parameters which
are used within ERA to construct a MIMO state space
realization.

Section 2 gives a brief review of ARMARKOV rep-
resentations of linear �nite-dimensional discrete-time sys-
tems which include ARMA representations as a special
case. Section 3 introduces the ARMARKOV/LS identi-
�cation algorithm. Section 4 provides a brief review of
the ERA algorithm. In Section 5 the sensitivity of the
eigenvalues of a second-order SISO system to Markov pa-
rameters of perturbed ARMARKOV representations and
perturbed ARMA representations is illustrated. In sec-
tion 6 the ARMA/LS identi�cation algorithm and the
ARMARKOV/LS/ERA identi�cation algorithm are used
with experimental data to identify the dynamics of an
acoustic duct. Concluding remarks are given in Section 7.

2. ARMARKOV Representations
For a detailed description of ARMARKOV representa-

tions see [1]. Consider the discrete-time �nite-dimensional
linear time-invariant SISO system

x(k + 1) = Ax(k) +Bu(k); (2.1)

y(k) = Cx(k) +Du(k); (2.2)

where A 2 Rn�n; B 2 Rn�1; C 2 R1�n; and D 2 R.

Let G(z)�

"
A B

C D

#
denote the transfer function cor-

responding to the state space realization (2.1) and (2.2).

The notation \
min
� " denotes a minimal realization. The

Markov parameters Hj are de�ned by

Hj

�
= D; j = �1; (2.3)

�
= CAjB; j � 0;

and satisfy

G(z)
�
= C(zI � A)

�1
B +D =

1X
j=�1

Hjz
�(j+1): (2.4)

We refer to G(z) =
P1

j=�1Hjz
�(j+1) as the Markov pa-

rameter representation of G(z):
The ARMA transfer function representation of G(z)

is given by

G(z) =
b0z

n + b1z
n�1 + � � �+ bn

zn + a1zn�1 + � � �+ an
; (2.5)

where det(zI �A) = zn + a1z
n�1 + � � �+ an and bi 2 R,

i = 0; : : : ; n. The ARMA time-domain representation of
G(z) corresponding to (2.5) is given by

y(k) = �a1y(k � 1)� � � � � any(k � n) + b0u(k)

+ � � �+ bnu(k � n) ; k � 0: (2.6)

The coe�cients of the ARMA representation and Markov
parameters of G(z) satisfy
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and

Hn+j = �

nX
i=1

aiHn+j�i ; j � 0: (2.8)

The ARMARKOV transfer function representation of
G(z) with � Markov parameters is given by

G(z) =

H�1z
�+n�1 + � � �+H��2z

n + ��;1z
n�1 + � � �+ ��;n

z�+n�1 + ��;1zn�1 + � � �+ ��;n
;

(2.9)

and the ARMARKOV time-domain representation ofG(z)
is given by

y(k) =
nX

j=1

���;jy(k � � � j + 1)

+

�X
j=1

Hj�2u(k � j + 1)

+
nX

j=1

��;ju(k � �� j + 1): (2.10)

which involves the �rst � Markov parameters
H�1; : : : ;H��2, and where ��;1; : : : ; ��;n 2 R and
��;1; : : : ; ��;n 2 R are functions of the ARMA coef-
�cients and Markov parameters. Note, however, that
the ARMARKOV transfer function representation is
not equivalent to an arbitrary nonminimal ARMA
transfer function representation since the coe�cients of
z�+n�2; : : : ; zn in the denominator are constrained to be
zero. Furthermore, note that the ARMA time-domain
representation (2.6) is a specialized ARMARKOV
time-domain representation (2.10) with � = 1.

De�ning the ARMARKOV regressor vector ��(k) 2
R2n+� by

��(k)
�
=

2
66664

y(k� �)

.

.

.
y(k � �� n+ 1)

u(k)

.

.

.
u(k � � � n+ 1)

3
77775; (2.11)

it follows that
y(k) = W���(k); (2.12)

where the ARMARKOV weight matrix W� is de�ned by

W�

�
= [�A� H

�1 � � � H��2 B� ] ; (2.13)
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where

A�

�
= [��;1 � � � ��;n ] 2 R

1�n;

B�
�
= [��;1 � � � ��;n ] 2 R

1�n:

Note that the ARMARKOV regressor vector (2.11) be-
comes the standard ARMA regressor vector and the AR-
MARKOV weight matrix (2.13) contains the ARMA co-
e�cients when � = 1.

Henceforth, for convenience we omit the subscript �
and write W and �(k) for W� and ��(k):

3. ARMARKOV/LS Identi�cation
Algorithm

Let cW denote an estimate of the ARMARKOV weight
matrix and let by(k) denote the estimated output de�ned
by by(k) �

= cW�(k): (3.1)

Furthermore, de�ne the output error "(k) by

"(k)
�
= y(k) � by(k); (3.2)

and the output error cost function J by

J
�
=

1

N

NX
k=1

1

2
"2(k); (3.3)

where N is the number of measurements. The following
result provides the ARMARKOV/LS identi�cation algo-
rithm.

Proposition 3.1 Suppose
P

N

k=1�(k)�
T(k) is non-

singular. Then cW is a strict minimizer of J if and only
if

cW =

"
1

N

NX
k=1

�T(k)y(k)

# "
1

N

NX
k=1

�(k)�T(k)

#�1
: (3.4)

It can be seen that 1
N

P
N

k=1�(k)�
T(k) contains the

covariance estimates of u(k) and y(k): Furthermore, if
� = 1 then (3.4) yields the well known ARMA/LS identi-
�cation algorithm.

4. Minimal Realizations from Markov
Parameters

For positive integers r and s and for j � �1 the
Markov block Hankel matrix Hr;s;j 2 R(r+1)l�(s+1)m is
de�ned by

Hr;s;j

�
=

2
64

Hj : : : Hj+s

...
. . .

...
Hj+r : : : Hj+r+s

3
75 : (4.1)

We �rst recall a well-known result concerning the rank of
Hr;s;0 [6, p. 442].

Lemma 4.1 Assume G(z) has McMillan degree n,
and let r; s � n� 1. Then
rank Hr;s;0 = n.

For convenience let 0l and 0l�m denote the l�l and l�
m zero matrices, respectively, and let Il and 1l�m denote
the l�l identity matrix and l�m ones matrix, respectively.

Furthermore, let Ei;j

�
=

�
Ij

0ij�j

�
. For s � 1 the s-stage

controllability and observability Gramians WCs and WOs

are de�ned by

WCs

�
=

sX
k=0

AkBBTAkT; WOs

�
=

sX
k=0

AkTCTCAk:

The following result is the eigensystem realization algo-
rithm [4] [5, pp. 133-137].

Proposition 4.1 Let G(z) have McMillan degree n,
and let r; s � n � 1. Furthermore, let P 2 R(r+1)l�n,
�r;s 2 R

n�n, and Q 2 Rn�(s+1)m satisfy

Hr;s;0 = P�r;sQ; (4.2)

where PTP = QQT = I and �r;s = diag(�r;s1 ; : : : ; �r;s
n
),

where �
r;s

1 � � � � � �r;s
n

> 0 are the singular values of
Hr;s;0. Then

G(z)
min
�

"
�
�1=2

r;s PT
Hr;s;1Q

T�
�1=2

r;s �
1=2

r;s QEs;m

ET

r;lP�
1=2

r;s H
�1

#
:

(4.3)
Moreover, this realization is (r; s)-�nitely balanced with

WCs = WOr
= �r;s: (4.4)

For a system of McMillan degree n, ERA requires
r; s � n � 1: Note that for r; s = n � 1 the highest in-
dexed Markov parameter in Hr;s;1 is H1+r+s = H2n�1:
Therefore, ERA requires at least the �rst 2n + 1 Markov
parameters in order to identify a system of McMillan de-
gree n: Hence � must be chosen to satisfy � � 2n+ 1 to
guarantee that the ARMARKOV/LS identi�cation algo-
rithm produces a su�cient number of Markov parameters
to apply Proposition 4.1.

In practical applications the rank of Hr;s;0 will be
greater than the system order due to measurement noise
and other e�ects. In this case the magnitude of the singu-
lar values of Hr;s;0 estimates the system order. Truncat-
ing the smallest singular values of Hr;s;0 yields a reduced-
order realization that retains the dominant dynamic char-
acteristics of the system [4, 5].

5. Numerical Example
In this section we present a numerical example by

which we compare the sensitivity of the eigenvalues of an
ARMA representation to the sensitivity of the eigenval-
ues of a state space realization obtained from ERA based
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entirely upon the Markov parameters. The numerical ex-
ample involves the continuous-time oscillator given by

G(s) =
!2n

s2 + 2�!ns+ !2n
; (5.1)

with a natural frequency fn = 10 Hz (!n = 6:28
rad/sec) and a damping ratio � = 1%. An equiva-
lent zero-order-hold discrete-time ARMA transfer func-
tion representation of (5.1) with a sampling frequency of
100 Hz is given by

G(z) =
1:9019� 10�1z + 1:8939� 10�1

z2 � 1:6079z + 9:8751� 10�1
: (5.2)

First we consider a 1% relative error in all of the coe�-
cients of the ARMA representation (5.2). Let bG(z) denote
the perturbed ARMA representation given by

bG(z) = bb1z + bb2
z2 + ba1z + ba2 ; (5.3)

where

baj = aj (1 + 0:01wj) ; j = 1; 2; (5.4)bbj = bj (1 + 0:01wj+2) ; j = 1; 2; (5.5)

and wj, j = 1; : : : ; 4, are uncorrelated random variables
uniformly distributed on [�1; 1]. The maximum and min-
imum natural frequency and damping ratio calculated
from the poles of bG(z) for 100 trials are fn;min = 9:6342,
fn;max = 1:0341�101, �min = �5:3988�10�3, and �max =
2:1972� 10�2. Note that the minimum damping ratio is
negative and thus some of the perturbed ARMA repre-

sentations are unstable. Alternatively let bHj, j � �1,
denote the Markov parameters that are obtained from the
coe�cients (5.4) and (5.5) of the perturbed ARMA rep-
resentation (5.3) using (2.7) and (2.8). Applying ERA
with these perturbed Markov parameters yields exactly
the same results as above. Thus, generating perturbed
Markov parameters from a perturbed ARMA representa-
tion and applying ERA to these perturbed Markov pa-
rameters provides no bene�ts over using the coe�cients
of the perturbed ARMA representation.

Next we consider a 1% relative error in all of the coef-
�cients of an ARMARKOV transfer function representa-
tion. The perturbed Markov parameters appearing in the
numerator of the perturbed ARMARKOV representation
are used with ERA to construct a state space realization.
Note that the �rst ten (unperturbed) Markov parameters
of (5.2), which are given by

H�1 = 0 , H4 = 1:8594� 10�1 ,
H0 = 1:9019� 10�1 , H5 = �1:8422� 10�1 ,
H1 = 4:9520� 10�1 , H6 = �4:7983� 10�1 ,
H2 = 6:0843� 10�1 , H7 = �5:8962� 10�1 ,
H3 = 4:8931� 10�1 , H8 = �4:7423� 10�1 ,

are of the same order of magnituded as the coe�cients of
the ARMA transfer function representation (5.2). Since

increasing r and s improves the robustness of ERA to
perturbed Markov parameters, r; s are chosen to be 50
and thus ERA requires the �rst 103 Markov parametersbH�1; : : : ; bH101. Now let bG(z) denote the perturbed AR-
MARKOV representation with � = 103 given by

bG(z) = bH�1z104 + � � �+ bH101z
2 + b�1z + b�2z

z104 + b�1z + b�2 ;

where

b�j = �j (1 + 0:01wj) ; j = 1; 2;bHj = Hj (1 + 0:01wj+2) ; j = �1; : : : ; 101;b�j = �j (1 + 0:01wj+105) ; j = 1; 2;

and wj, j = 1; : : : ; 107, are uncorrelated random vari-
ables uniformly distributed on [�1; 1]. The maximum
and minimum natural frequency and damping ratio of
second-order realizations constructed using ERA for 100
trials is fn;min = 9:9994, fn;max = 1:0001 � 101, �min =
9:8671� 10�3, and �max = 1:0121� 10�2. These numer-
ical results show that the eigenvalues obtained from the
Markov parameters of a perturbed ARMARKOV repre-
sentation are much less sensitive than the eigenvalues ob-
tained from the Markov parameters of a perturbed ARMA
representation. Similar sensitivity results (not shown) are
obtained based upon an absolute error of 0.01.

6. Identi�cation of an Acoustic Duct
In this section the ARMA/LS identi�cation algorithm

and the ARMARKOV/LS/ERA identi�cation algorithm
are used to identify the dynamics of an acoustic duct.
The acoustic duct is constructed from a 19.75 foot long 4
inch diameter PVC pipe with open-closed boundary con-
ditions and a colocated microphone and speaker mounted
on the side. The speaker input and microphone output
were recorded at a sampling frequency of 1024 Hz with a
time-record length of 4096 data points spanning 4.0 sec-
onds. The input u(k) was chosen to be white noise. The
experimentally measured frequency response was obtained
using a spectrum analyzer with the frequency range cho-
sen to be 0 - 400 Hz with 1601 spectral lines of resolution.
Hence the experimentally measured frequency response is
an estimate of the frequency response of the duct at the
discrete frequencies 0; 0:25; 0:5; : : :; 399:5; 399:75; 400 Hz.

First we used the ARMA/LS identi�cation algorithm
to obtain a transfer function representation of the dynam-
ics of the acoustic duct. Based upon an analytical model of
the acoustic duct [3] the system order was estimated to be
approximately 40. The model order of the ARMA repre-
sentation was varied from 20 to 50 and the relative degree
was varied from 0 to 10. All of the ARMA representa-
tions with model order greater than 30 are unstable and
have frequency responses that poorly match the experi-
mentally measured frequency response. The best ARMA
representation is 30th-order. The frequency response of
the 30th-order ARMA representation and the experimen-
tal frequency response is shown in Figure 1. It can be
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seen that the 30th-order ARMA representation is a poor

approximation of the duct dynamics above 250 Hz.

Next the ARMARKOV/LS/ERA identification algo-

rithm was used to obtain a minimal realization of the dy-

namics of the acoustic duct. Since the system order was

estimated to be approximately 40, p was chosen to be

210 and r, s = 100. The singular value decomposition of

‘HIOO,IOO)O confirms the system order to be approximately

40, hence the choice of r,s = 100 is appropriate. The

210 estimated Markov parameters were used within ERA

to obtain a minimal realization. The model order within

ERA was varied from 30 to 50 with the 39th-order real-

ization being the best with respect to its frequency re-

sponse matching the experimentally measured frequency

response. The frequency response of the 39th-order re-

alization is shown in Figure 2. It can be seen that the

magnitude of the frequency response of the 39th-order

realization provides a good match of the experimentally

measured magnitude. The residual phase error is an arti-

fact of intersampling behavior.

7. Conclusions
ARMA least-squares time-domain identification

has been generalized to ARMARKOV representations

that directly estimate the Markov parameters of a system

from input-output data. A numerical example involving a

second-order lightly damped systems showed the eigenval-

ues obtained from the Markov parameters of a perturbed

ARMARKOV representation are much less sensitive than

the eigenvalues obtained from Markov parameters of a

perturbed ARMA representation. Finally, using experi-

mental data, the ARMA/LS identification algorithm and

the ARMARKOV/LS/ERA identification algorithm were

used to identify the dynamics of an acoustic duct.
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Figure 1: ARMA/LS identification algorithm, fre-

quency response of 30th-Order transfer function
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quency response (solid line).

-,0
0 5.3 ,00 ,50 200 ,50 we 350 4C0

Figure 2: ARMARKOV/LS/ERA identification al-

gorithm, n = 40, p = 210, r,s = 100, frequency re-

sponse of 39th-order state space realization (dashed

line) and experimentally measured frequency re-

sponse (solid line).
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