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1 Introduction

The arrow of time remains one of physics’ most puz-
zling questions. The most widely accepted explanation
depends on dimensionality and randomness, which give
rise to a monotonically increasing quantity known as
entropy. Additional candidate mechanisms that are re-
sponsible for the arrow of time are discussed in [1].

In the present paper we consider the free response of a
linear system involving dynamics and an output map.
A second system is an output reversal of the original
system if it can produce a time-reversed image of every
output of the original system. As a special case, a sys-
tem is output reversible if it can produce a time-reversed
image of every one of its free output responses.

Our main result is a spectral symmetry condition that
provides a complete characterization of single-input,
single-output, output-reversible systems. In particular,
we show that a linear system is output-reversible if and
only if its non-imaginary spectrum is symmetric with
respect to the imaginary axis. As special cases, the
class of output-reversible systems includes rigid body
and Hamiltonian systems. This result suggests that sta-
bility and instability play a key role in the arrow of time,
independently of dimensionality, nonlinearity, and sen-
sitivity.

The present paper is directed toward the goal of placing
thermodynamics on a system-theoretic foundation. For
related work, see [2,3].

2 Output-Reversible Systems
We begin by considering the dynamical system
z(t) = f(z(t)), t>0, z(0) =z, (2.1)

with output

y(t) = g(z(t)),

where z(t) € R™, y(t) € R, and f : R® — R" and
g : R® — R are continuous. We assume that solutions
of (2.1) exist and are unique on all finite intervals [0, T).
For clarity we write the solution of (2.1) as z(t, o) with
the output given by y(t) = y(t, o) = g(z(¢, zo)).

(2.2)
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Definition 2.1. The system (2.1), (2.2) is output re-
versible if, for all zop € R™ and t; > 0, there exists
Zo € R™ such that

y(t, £0) = y(t1 — t,20), t € [0,t1]. (2.3)

We wish to determine whether a given system (2.1),
(2.2) is output reversible.
Next, we consider the linear system

#(t) = Az(t), t>0, z(0)= o, (2.4)

with output
y(t) = Cxz(t),

where A € R™™ and C € R'™. We assume that the
pair (A,C) is observable. It then follows from Defini-
tion 2.1 that (2.4), (2.5) is output reversible if and only
if, for all o € R™ and ¢; > 0, there exists £o € R™ such
that

(2.5)

Cettio = CertDgg, te[0,ty). (2.6)

Note that output reversibility is a basis-independent
property.

Proposition 2.2. If (2.4), (2.5) is output reversible,
then &o in (2.6) is given uniquely by

B = 07180 1y, (2.7)
where
c v,
CA -
V] 2 . , S 2 .
can-?

Next, we write the matrix exponential e as a polyno-
mial in A of the form

n—1
et =" gi(t) A"

=0

(2.8)

The coefficients ¢g(t),...,¢n—1(t) are real linear com-
binations of terms of the form t"Re e* and t"Im e,
where ) is an eigenvalue of A and r is a nonnegative in-
teger. Since (A, C) is observable, the matrix A is cyclic
(nonderogatory) and thus its minimal polynomial coin-
cides with its characteristic polynomial. (Recall that A
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is cyclic if and only if A has exactly one Jordan block as-
sociated with each distinct eigenvalue.) Consequently,
the coefficients ¢;(t) satisfying (2.8) are unique.
For the following result, define
$o(t)
(1) : (2.9)
¢n—1(t)
Substituting (2.8) into (2.6) yields

T (t)0z0 = ¢T(—t)0eizy, t>0.

Note that (2.6) and (2.10) are equivalent.

(2.10)

Proposition 2.3. The linear system (2.4), (2.5) is out-
put reversible if and only if

d(—t) = Sé(t), t>0.

Proposition 2.3 shows that the output reversibility of
(2.4), (2.5) is independent of C so long as (4, C) is ob-
servable.

(2.11)

Example 2.4. Let A € R be scalar so that ¢o(t) = e4t.
Hence ¢o(—t) = e~ 24%¢y(t) and thus (2.11) is satisfied
if and only if A = 0. Hence, for n = 1, (2.4), (2.5) is
output reversible if and only if A = 0.

Example 2.5. Let A = [}§°] so that e4 =
e 0 ] =1(et+e*)I+ J(et —e ") A. Hence ¢(—t) =

0 et
S@(t) so that (2.11) is satisfied. Therefore, (2.4), (2.5)
is output reversible. Furthermore, it can be seen that
if A= [29), where a # b, then (2.4), (2.5) is output
reversible if and only if b = —a.

Example 2.6. Let A = [J}], which represents rigid
body motion. Then et = [3%] = I + tA. Hence
#(t) = [1¢]T so that ¢(—t) = Sé(t) and thus (2.11)
is satisfied. Therefore, (2.4), (2.5) is output reversible.
Next, let C = [1 0] so that y(t) represents the particle’s
position. Then O = I and (2.7) implies that

o = [ t1Zo2 }

—Zo2

Hence the reversed output is a consequence of the state
trajectory that arises from an initial position given by
the endpoint position tjzge of the forward trajectory
as well as an initial velocity —zo2 given by the sign-
reversed endpoint velocity of the forward trajectory.
This is, of course, exactly what we would intuitively
expect.

(2.12)

Example 2.7. As an extension of the previous ex-
ample, let A € R™*™ be nilpotent and cyclic so that

rank A = n — 1. Hence e = J +tA + --- +
Genrt"PAT! and thus 6(t) = [1t- o]

Hence ¢(—t) = S¢(t) so that (2.4), (2.5) is output re-
versible.
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The following result shows that a linear system is out-
put reversible if and only if its spectrum is symmetric
with respect to the imaginary axis.

Theorem 2.8. The system (2.4), (2.5) is output re-
versible if and only if p(—s) = (=1)"p(s).

The following observation is valid whether or not A is
cyclic.

Proposition 2.9. Suppose that p(—s) = (—1)"p(s). If
n is even, then p is even and the algebraic multiplicity
of the zero eigenvalue of A is even. If n is odd, then pis
odd and the algebraic multiplicity of the zero eigenvalue
of A is odd.

The following results depend on the fact that A is cyclic.

Proposition 2.10. p(—s) = (—=1)"p(s) if and only if A
has the following property: if A is an eigenvalue of A,
then so is —A, and A and —A have the same algebraic
multiplicity.

Note that Proposition 2.10 places no restriction on
eigenvalues of A whose real part is zero. Since A is
cyclic, the condition specified in Proposition 2.10 im-
plies that A and — A have the same similarity invariants.
This observation yields the following result.

Proposition 2.11. p(—s) = (—1)"p(s) if and only if A
and —A are similar.

Since A and AT are similar (whether or not A is cyclic),
we have the following variation of the previous result.

Proposition 2.12. p(—s) = (—1)"p(s) if and only if A
and —AT are similar.

Recall that the matrix A € R?*?" is Hamiltonian if
A=-J1ATJ, where J= [ G ¥].

Corollary 2.13. Assume that n is even and A is Hamil-
tonian. Then (2.4), (2.5) is output reversible.
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