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1 Introduction 
The arrow of time remains one of physics' most puz- 
zling questions. The most widely accepted explanation 
depends on dimensionality and randomness, which give 
rise to a monotonically increasing quantity known as 
entropy. Additional candidate mechanisms that are re- 
sponsible for the arrow of time are discussed in [l]. 
In the present paper we consider the free response of a 
linear system involving dynamics and an output map. 
A second system is an output reversal of the original 
system if it can produce a time-reversed image of every 
output of the original system. As a special case, a sys- 
tem is output reversible if it can produce a time-reversed 
image of every one of its free output responses. 

Our main result is a spectral symmetry condition that 
provides a complete characterization of single-input, 
single-output, output-reversible systems. In particular, 
we show that a linear system is output-reversible if and 
only if its non-imaginary spectrum is symmetric with 
respect to the imaginary axis. As special cases, the 
class of output-reversible systems includes rigid body 
and Hamiltonian systems. This result suggests that sta- 
bility and instability play a key role in the arrow of time, 
independently of dimensionality, nonlinearity, and sen- 
sitivity. 

The present paper is directed toward the goal of placing 
thermodynamics on a system-theoretic foundation. For 
related work, see [2,3]. 

2 Output-Reversible Systems 

We begin by considering the dynamical system 

k ( t )  = f ( x ( t ) ) ,  t 1 0 ,  2(0) = 20, (2.1) 

with output 

where z( t )  E R", y(t) E R, and f : R" --$ R" and 
g : R" + R axe continuous. We assume that solutions 
of (2.1) exist and are unique on all finite intervals [0, T) .  
For clarity we write the solution of (2.1) as z( t ,  xo) with 
the output given by y(t)  = y(t ,  50) = g(x ( t ,  xo)). 
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Definition 2.1. The system (2.1), (2.2) is output re- 
versible if, for all x~ E R" and t~ > 0, there exists 
io E Wn such that 

y ( t , i o )  = Y(t1 - t ,xo) ,  t E [ O , t l ] .  (2.3) 

We wish to determine whether a given system (2.1), 
(2.2) is output reversible. 
Next, we consider the linear system 

k ( t )  = Ax(t) ,  t 2 0, ~ ( 0 )  = 20, (2.4) 

with output 

Y(t> = W t ) ,  (2.5) 

where A E EtnXn and C E Et1'". We assume that the 
pair (A,C) is observable. It then follows from Defini- 
tion 2.1 that (2.4), (2.5) is output reversible if and only 
if, for all 20 E Rn and tl > 0, there exists 20 E Wn such 
that 

CeAtio = CeA(t l - t )xO,  t E [0, t l ] .  (2.6) 

Note that output reversibility is a basis-independent 
property. 

Proposition 2.2. If (2.4), (2.5) is output reversible, 
then 20 in (2.6) is given uniquely by 

io = O-lSOeAtlxo, (2.7) 

where 

Next, we write the matrix exponential eAt as a polyno- 
mial in A of the form 

n- 1 

i = O  

The coefficients 40 ( t ) ,  . . . , 4"- 1 ( t )  are real linear com- 
binations of terms of the form trRe ext and trIm ext, 
where X is an eigenvalue of A and r is a nonnegative in- 
teger. Since ( A ,  C) is observable, the matrix A is cyclic 
(nonderogatory) and thus its minimal polynomial coin- 
cides with its characteristic polynomial. (Recall that A 
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is cyclic if and only if A has exactly one Jordan block as- 
sociated with each distinct eigenvalue.) Consequently, 
the coefficients $i(t) satisfying (2.8) are unique. 
For the following result, define 

Substituting (2.8) into (2.6) yields 

4T( t )~20  = 4T(-t)OeAt1xo, t 2 0. (2.10) 

Note that (2.6) and (2.10) are equivalent. 

Proposition 2.3. The linear system (2.4), (2.5) is out- 
put reversible if and only if 

4(-t) = S+(t), t L 0. (2.11) 

Proposition 2.3 shows that the output reversibility of 
(2.4), (2.5) is independent of C so long as ( A ,  C) is ob- 
servable. 

Example 2.4. Let A E Iw be scalar so that 4o(t) = eAt. 
Hence 4o(-t) = e-2At40(t) and thus (2.11) is satisfied 
if and only if A = 0. Hence, for n = 1,  (2.4), (2.5) is 
output reversible if and only if A = 0. 

Example 2.5. Let A = [ A  jl] so that eAt = 

[ $ = ;(et + e-t)I + +(et - e - t )A .  Hence q5(-t) = 
S4(t) so that (2.11) is satisfied. Therefore, (2.4), (2.5) 
is output reversible. Furthermore, it can be seen that 
if A = [ g  t], where a # b, then (2.4), (2.5) is output 
reversible if and only if b = -a. 

Example 2.6. Let A = [EA], which represents rigid 
body motion. Hence 
$(t) = [ i  t I T  so that 4(-t) = S4(t) and thus (2.11) 
is satisfied. Therefore, (2.4), (2.5) is output reversible. 
Next, let C = [ 1 01  so that y(t) represents the particle’s 
position. Then (3 = I and (2.7) implies that 

Then eAt = [A 4 1  = I + tA .  

(2.12) 

Hence the reversed output is a consequence of the state 
trajectory that arises from an initial position given by 
the endpoint position t1202 of the forward trajectory 
as well as an initial velocity - 2 0 2  given by the sign- 
reversed endpoint velocity of the forward trajectory. 
This is, of course, exactly what we would intuitively 
expect. 

Example 2.7. As an extension of the previous ex- 
ample, let A E RnXn be nilpotent and cyclic so that 
rank A = n - 1.  Hence eAt = I + t A  + ...  + 
(n-l)! tn-’An-’ and thus 4(t) = [ I  t ... &t“-’IT. 

Hence r$(-t) = Sc$(t) so that (2.4), (2.5) is output re- 
versible. 

The following result shows that a linear system is out- 
put reversible if and only if its spectrum is symmetric 
with respect to the imaginary axis. 

Theorem 2.8. The system (2.4), (2.5) is output re- 
versible if and only if p ( - ~ )  = (-l)np(s). 

The following observation is valid whether or not A is 
cyclic. 

Proposition 2.9. Suppose that p ( - s )  = (-l)np(s). If 
n is even, then p is even and the algebraic multiplicity 
of the zero eigenvalue of A is even. If n is odd, then p is 
odd and the algebraic multiplicity of the zero eigenvalue 
of A is odd. 

The following results depend on the fact that A is cyclic. 

Proposition 2.10. p ( - s )  = (-l)np(s) if and only if A 
has the following property: if X is an eigenvalue of A,  
then so is -A, and X and -A have the same algebraic 
multiplicity. 

Note that Proposition 2.10 places no restriction on 
eigenvalues of A whose real part is zero. Since A is 
cyclic, the condition specified in Proposition 2.10 im- 
plies that A and - A  have the same similarity invariants. 
This observation yields the following result. 

Proposition 2.11. p ( - s )  = (-l)np(s) if and only if A 
and - A  are similar. 

Since A and AT are similar (whether or not A is cyclic), 
we have the following variation of the previous result. 

Proposition 2.12. p ( - s )  = (-l)np(s) if and only if A 
and -AT are similar. 

Recall that the matrix A E R2rx2r is Hamiltonian if 
A = -J - lATJ ,  where J = [ -;, ‘of] .  
Corollary 2.13. Assume that n is even and A is Hamil- 
tonian. Then (2.4), (2.5) is output reversible. 

[l] B. Bernstein and T. Erber, “Reversibility, Irre- 
versibility: Restorability, Non-Restorability,” J. Phys. 
A :  Math. Gen., V. 32, 7581-7602, 1999. 

[2] D. S. Bernstein and D. C. Hyland, “Compartmental 
Modeling and Second-Moment Analysis of State Space 
Systems,” SIAM J. Matrix Anal. Appl., V. 14, 880-901, 
1993. 

[3] D. S. Bernstein and S. P. Bhat, “Energy Equipar- 
tition and the Emergence of Damping in Lossless Sys- 
tems,” CDC, 2913-2918, 2002. 

3241 
Proceedings of the American Control Conference 

Denver, Colorado June 44,2003 


