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Abstract-This paper shows that the transfer function of 
a continuous-time positive real system with first-order-hold 
sampling is discrete-time positive real. Next, a method for 
identifying models that are constrained to be discretrtime 
positive real is developed. 

1. Introduction 
Positive real transfer functions are of practical impor- 

tance, arising in many engineering applications [l-31. With 
force input and velocity output, the classic mechanical 
spring-mass-damper system is passive, meaning it dissipates 
energy. In addition, the system is linear, so its transfer 
function is positive real. In passive circuit theory, the driving 
point admittance and impedance are described by positive 
real transfer functions. In control theory, positive real trans- 
fer functions are useful for guaranteeing stability. Thus, 
when a system is known to be positive real, it is desirable to 
ensure that identified models retain that characteristic even 
when, for example, identification data are noisy. We are 
therefore motivated to develop an identification procedure 
for positive real models. This paper presents a method 
for obtaining positive real models using subspace system 
identification and convex optimization. 

Previous work on obtaining positive real models includes 
[4], in which the problem of obtaining a positive real 
model is considered when the linear system is known to 
be positive real. Suboptimal methods are applied aAer an 
initial identification procedure. An alternative approach was 
presented in [5] where a regularization term is added to the 
least squares cost function used in subspace identification. 
Given the appropriate choice of regularization terms the 
authors are able to impose positive realness on an identified 
model. 

Conventional zero-order-hold sampling techniques do 
not, in general, preserve positive realness [6]. In this paper 
we show that first-order-hold sampling preserves positive 
realness. We can therefore apply the positive real identi- 
fication technique of this paper to sampled-data systems 
whose continuous-time dynamics are known to be positive 
real and are sampled with a first-order-hold. 

In the present paper, positive realness is incorporated 
into the identification process by means of constrained 
optimization. We identify a positive real system, which 
is optimal in the sense of a weighted least squares cost 
function, replacing the conventional least squares cost func- 
tion of the unconstrained subspace algorithm. This paper 
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presents a subspace-based identification procedure where 
the model set is characterized by the Kalman-Yacubovich- 
Popov lemma. The constrained optimization is achieved 
through convex linear programming techniques where we 
optimize over a symmetric cone. 

Linear system identification includes both parametric and 
nonparametric methods in both the frequency and the time 
domain [7]. More recently, subspace identification methods 
have been developed for identifying linear systems [8-1 I]. 
Unlike traditional parametric methods, subspace algorithms 
rely on an estimated state sequence or extended observabil- 
ity matrix to identify system parameters. The advantages 
of subspace algorithms are covered in detail in the above 
references. 

Subspace identification methods have been extended to 
identifying stable models [12-IS]. In [14], stable models 
were identified using a constrained least squares optimiza- 
tion. A related method is developed in the present paper for 
identifying positive real systems. 

2. Discrete-Time Positive Real Systems 

In this section, we define discrete-time positive real and 
strictly positive real transfer functions and state the Kalman- 
Yacubovich-Popov (KYP) conditions as linear matrix in- 
equalities. 

Definition 2.1. [I61 A square fransfer matrix C(z), with 
no poles in It/ z 1 andsimplepoles on [zI = 1 is discrefe- 
time positive real if: for all w such thaf G(eJ") exists, 

(2.1) G(eJ") + GT(e-j") 2 0. 

Definition 2.2. A square transfer mafrix G ( z ) ,  with no 
poles in 111 2 1 is discrete-time stricflyposifive real iffhere 
exisfs 6 > 0 such that, for all w such that G(eJ"-") exisfs, 

(2.2) 

Definition 2.2 is the discrete-time analogue of the 
continuous-time strictly positive real definition presented in 
U71. 

Lemma 2.1. [16](KYP) Let G(z) be U square matrix of 
real rationalfunctions of z, and let (A,B,C,D) be a minimal 
realization o f G ( r ) .  Then G ( z )  is discrete-fimeposifive real 
if and only if there exists a positive-definite mafrix P E 

G(eJW-') + GT(e-JY-E)  2 0.  
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WnXn and matrices L E Rmx" and W E Itmx" such that 

P - A ~ P A  = L ~ L ,  
cT - A ~ P B  = L ~ W ,  

DT + D - BTPB = WTW. 

(2.3) 
(2.4) 
(2.5) 

It follows from equation (2.5) that if a system is discrete- 
time positive real then it has a non-zero feedthrongh term. 
We will return to this fact. in Section 4 when examining 
zero-order-hold discretizations. 

Lemma 2.2. Let G ( t )  be a square matrix of real rational 
functions of z, and let (A.B.C,D) be a minimal realization 
of G(z). n e n  G(z)  is discrefe-time strictly positive real if 
and only ifthere exists apositive-definite matrix P E RnX", 
matrices L E WmYn and W E WmXm. and 6 > 0 such that 

P - 6P - A T P A  = LTL,' 

D~ + D - B ~ P B  = wTw. 

(2.6) 

(2.8) 

PmoJ Assume that G(z) ,  realized by (A ,B,C,  D),  is 

(2.9) 

cT - A ~ P B  = L ~ W ,  (2.7) 

discrete-time strictly positive real. Then 

G(e3"-') = C($"-'I - A)-'B + D, 

which is equivalent to 

G,(ej") = CE(e3'"I - A,)-'B, +De, (2.10) 
a A A a where G,(ej") = G(ej"-, ), A,  = e'A, B, = e'B, C, = 

C, and DE = D. By Definition 2.1, G,(t)  is positive real 
and Lemma 2.1 implies that there exist PE, L, and W such 

a 

that P, - A:P,A, = L ~ L ,  (2.11) 
c: - A:P,B, = L ~ W ,  (2.12) 

(2.13) DF + D, - BTP,B, = WTW. 

Equations (2.1 1)-(2.13) are equivalent to 

P - b p  - A ~ P A  = L ~ L ,  
cT - A ~ P B  = tTw, 

DT + D - BTPB = WTW, 

(2.14) 
(2.15) 
(2.16) 

Since (2.18) involves the quadratic terms P A  and PB, we 
(2.19) define R =  PA, S = PB,  

and rewrite (2.18) as 

a A 

[ H D G D  $ 1  2 0 ,  (2.20) 

(2.21) 

P 

P = P T  > 0. where 

The conditions (2.19)-(2.21) are equivalent to the positive 
real matrix conditions (2.3)-(2.5). Similarly, it can be shown 
that the strictly positive real matrix conditions of Lemma 
2.2 are equivalent to (2.19), (2.21), and 

r ( 1 - 6 1 ~  CT RT 1 1 '  g' D T + D  S T ] > O ,  (2.22) 
S P 

where 6 > 0. 

3. The Bilinear Transform and Positive Real Systems 
In this section, we state the continuous-time positive real 

definition and associated KYP conditions. We then consider 
the effect of the bilinear transform in transforming a positive 
real system between continuous time and discrete time. 

[16],A square matrix G(s) of real- 
rational functions. with no poles in Re(s) > 0 and only 
simple poles on Re(s)  = 0, is continuous-time positive real 
if: for  all w such that G(jw) exists, 

Definition 3.1. 

G ( j w )  + GT(-jw) 2 0. (3.1) 

Lemma 3.1. [16](KYP) Let G(s )  be a square manu of 
real rationalfunctions of s, and let (A.B,C,D) be a minimal 
realization of G(s). Then G(s) is continuous-time positive 
real if and only if there exists a positive definite matrix 
P E WnX" and matrices L E W"'" and W E R"'" such 
that -PA - ATP = LTL, (3.2) 

(3.3) 
(3.4) 

CT - P B  = LT W, 
DT + D = WTW. 

A A In [16], the discrete-time KYF' lemma is proven tiom the 
continuous-time KYP lemma using the bilinear transform. 
Therefore, the bilinear transformation preserves positive re- 
alness between continuous-time and discrete-time systems. 

where P = e2"P,, and 6 = 1 - e-2L < 1. Note that 6 > 0 if 
and only if E > 0. The converse result follows by reversing 
these steps. 

We now express the positive real matrix conditions of 
Lemma 2.1 as a convex constraint for a least squares 
optimization in a subspace identification. Equations (2.3)- 
(2.5) are equivalent to the inequality 

Proposition 3.1. The square matrix G,(s) is continuous- 
time positive real if and only if the square matrix Gd(Z) is 
discrete-time positive real where G,(s) is mapped tu Gd(z) 
using the bilinear transform 

22-1 
(3.5) [ g  D z T D ] - [ $ ] P [ A  B ] > O ,  (2.17) s = -~ 

T2+1' 
or, using Schur complements, to where 7 is the period of the discrete-time system. 

Although the bi!inear transform provides a one-to-one 1 [ " 1 ] 2 O. (2.18) and onto mapping from the set of continuous-time positive 
real transfer functions to the set of discrete-time positive real [ [ P [ A  B l  P 
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transfer functions, it is not hardware realizable. Therefore, 
we consider sample and hold methods, and their effect on 
positive realness in the next two sections. 

4. Zero-Order-Hold Discretization of Continuous-Time 
Positive Real Systems 

In this section, we examine the effects on positive real- 
ness of zero-order-hold sampling. For the continuous-time 
transfer function G,(s), the discrete-time zero-order-hold 
equivalent is given by 

where Z{.} is the z-transform of a sampled signal. For a 
precise definition of the Z{.} operator see [18]. 

Consider the continuous-time positive real transfer func- 
tion G,(s), with minimal realization (A, ,B, ,  C,,O). The 
zero-order-hold equivalent is C,j(t), realized by 

Ad = eAcr , Bd = A;'(eAc' - I )Bc ,  (4.2) 

C d  = Cc, Dd = 0, (4.3) 

where T is the sampling period. From Lemma 2.1, we 
recognize that a discrete-time system can be positive real 
only if it has a non-zero feedthrough term, meaning it is 
exactly proper. The discrete-time system realization given 
by (4.2)-(4.3) has a zero feedthrough term and thus cannot 
be positive real. 

The following result classifies functions that can be made 
positive real by an additive feedthrough term when sampled 
using a zero-order-hold. 

Proposition 4.1. Let G,(s) be a continuous-time transfir 
function and let G ~ ( z )  be the zero-order-hold discrete-time 
equivalent. If G,(s) is asymptotically stable, then there 
exists P E W, such thatfor all D d  + DZ 2 PI, G ~ ( z )  + Dd 
is discrete-time positive real. 

Proof: Assume that G,(s) is asymptotically stable. The 
zero-order-hold equivalent G&) is also asymptotically 
stable. Therefore, there exists a /3 E W such that 

Gd(ej") + G:(e-jw) _> -01, (4.4) 

for all w. The inequality (4.4) implies that 

Choosing Dd + 0: 2 PI implies that G ~ ( z )  + D,j is 
discrete-time positive real. U 

In [6] a similar result is presented for the single-input 
single-output (WO) case. 

5. First-Order-Hold Discretization of Continuous-Time 
Positive Real Systems 

Since the zero-order-hold does not generally preserve 
positive realness, we examine the effect on positive realness 
of using first-order-hold sampling. The main result of this 
section states that the first-order-hold discretization pre- 
serves positive realness even if the continuous-time system 
is strictly proper. 

Theorem 5.1. Let G,(s) be a continuous-time transfer 
function and assume that C,(s) is discretized by a first- 
order-hold with sampling period r. The discrete-time rrans- 
fer function is given by 

If GJs) is continuous-time positive real then G ~ ( s )  is 
discrete-time positive real. 

Proof: Assume that G,(s) is continuous-time posi- 
tive real with the minimal realization (Ac ,  B,, C,, Dc).  
Let Gd( t )  be the discrete-time equivalent of G,(s) 
obtained from the first-order-hold mapping (5.1). Let 
(Ad,Bd,Cd,Dd) he a minimal realization of Gd(t).  A 
state-space formulation of the first-order hold discretization 
is given by [18] 

A A 

A a 
Ad 181, Bd = 8 1 8 3  + Q z  - 8 3 ,  (5.2) 

cd = c,, Dd = D, + c,%, (5.3) 

(5.4) 
(5.5) 

where 
given by Q~ = erA,  

E I%"'", e2 E WnX", and O3 E WnX" are 

e2 = A;'(eTAC - I ) B c ,  

Q 3 = ; A ,  -2  (e TA- - I ) B ,  - A ; ~ B ~ .  (5 .6)  

For convenience, we assume that A,  is nonsingular. The 
singular case can be proven using the Moore-Penrose gen- 
eralized inverse. By combining (5.2)-(5.3) with (5.4)-(5.6), 
the matrix transformations are 

Ad = erA=> (5.7) 

Bd = -AF2(erAC T - I)'B,, (5 .8)  

c d  = cc, (5.9) 

erAc -I) -A;' B,. (5.10) 

Since G,(s) is continuous-time positive real, Lemma 3.1 
yields 

1 

I D d = D c + C c  [;A; ( 

where P, = P,' > 0. Inequality (5.1 1) implies 

(5.12) 
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where t is a variable to be used for integration. Through 
substitution of the identities (5.7)-(5.10), the inequality 
(5.12) becomes 

Expressions (5.18)-(5.21) imply 

where 

Therefore, to prove that G,(z) is discrete-time positive real, 
it is sufficient to show that Q is positive semi-definite. 

Next, we factor (5.26) as 
T 

Q = [*A,(& - I)-'Bd] [-ATP, - P,A,] 

Since -ATP,-P,A, 2 0, it follows that Q 2 0. Therefore, 
(5.24) yields 

where Pd = PT > 0. Using Lemma 2.1, equation (5.28) 
implies that Gd(2) is discrete-time positive real. U 

6. Least Squares Optimization 
In this section, we develop weighted least squares op- 

timization problems for both the state sequence and the 
extended observability matrix subspace identification tech- 
niques. 

Consider the discrete-time, linear time-invariant system 

(6.1) 
Y k  CXk + DUk, (6.2) 

Xk+1 = AXk + BUk> 

where X k  E R", uk E R"', Y k  E R", A E W"'", B E 
W"Xm , C E R""", and D E RmXm. To describe i time 
steps of the input signal and output signal, we define 

A 

A 
Uklk+i-l = [ U k  uk+l " '  Uk+i-1 1 ,  (6.3) 

Y!++i-1 = [ Yli Yk+l  " '  ylrci-1 1 ,  (6.4) 

The objective of time domain system identification is to 
estimate the coefficient matrices of (6.1) and (6.2) from the 
input data Uklk+i-l and the output data Y ~ I ~ + ; - ~ .  

6.1. Least squares optimization using an estimated state 
sequence 

We now formulate the constrained optimization problem 
for a state sequence estimation subspace technique. Using a 
subspace algorithm, such as CVA or N4SID, that provides 
state estimates, we obtain the sequences 

x k l k + i - l  [ i k  *,+I " '  &+i-i 1 ,  (6.5) 

xk+llk+i = [ i k + i  %k+z " ' *k+i ] , (6.6) 

where Xklk+i-l E R"Xi and X k + l ~ k + i  E RnX'. The 
identitication problem now becomes a linear least squares 
problem. Estimates of the coefficient matrices are obtained 
by minimizing 

where U ~ I ~ + , - ~  E Etmxi  and Yklk+;-1 E Et"". 

A 

A 
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where W l  E RSx"+" and Wz E I t ixy '  are weighting ma- 
trices. To impose the discrete-time positive real constraints 
(2.19)-(2.21) on the cost function (6.7), we define 

A Wz = I ; ,  (6.8) P O  

so that (6.7) becomes 

J ( C , D , P , R , S )  " I [  P O  ] [ Xk+-'lk+ ] 
ykIk+I-l 

- [ s, 1 1 X k , k , i - l  I l lZ  
Uk,,,i-l F 

(6.9) 
Equation (6.9) and the discrete-time positive real constraints 
(2.19)-(2.21) constitute a constrained least square optimiza- 
tion, which is linear in parameters. We relax constraint 

P = PT 2 UI, (6.10) 

where U > 0 is arbitrarily small so that the optimization is 
convex. 

6.2. Least squares optimization using an estimated er- 
tended observability matrix 

Now, a constrained optimization is formulated for an esti- 
mated extended observability matrix subspace method. The 
MOESP algorithm and an N4SD variant are two common 
estimated observability matrix based subspace methods [lo, 
1 I]. We define the extended observability matrix 

(2.21) to 

r c i  
(6.11) 

1 CAi--' 1 
and the lower triangular block Toeplitz matrix of impulse 
responses 

r~ 0 ... 0 1  D 0 

. (6.12) 
D 1 : :  8 1 

. .  . .  
CA"-'B CA'-3B . . _  D 1 CA"'B CA'-3B . . _  D 

Using an extended observability matrix subspace routine 
we obtain an estimate of (6.1 I), designated P. A technique 
described in [IO,  111 is used to obtain an estimate of (6.12), 
designated 6. 

The data matrices i. and 6 are used to write a least 
squares optimization. Using Matlab notation, we define the 
matrices 

ro = r(i : m, 1 : n) ,  &, = @(i : m, i : m). (6.13) ~ A -  a -  

We also define the'block vectors 
~ A -  rl = r(m + 1 : mi, 1 : n) ,  
a -  J?, = r(i : m(i - I), 1 : n) ,  

" A h  
@I = @(m+ 1 : mi,l : m). 

(6.14) 

(6.15) 

(6.16) 

The identification problem may now be presented as a least 
squares optimization, with the cost iimction, 

where W, E Waxmi and W, E are, again, 
weighting matrices. 

To impose the positive real constraint, we define 

where J?: is the Moore-Penrose generalized inverse. The 
minimization problem can now be written 

Again, we have delineated a constrained least square prob- 
lem that is linear in optimization parameters. The solution 
is obtained by minimizing (6.19) such that (2.19)-(2.20) and 
(6.10) are satisfied. 

I. Algorithm Implementation 
The constrained subspace identification described in this 

paper is implemented in Matlab version 6.5. To determine 
system order and the state sequence, we use a variant 
of the N4SD subspace algorithm, presented in [9]. The 
algorithm uses the computationally efficient singular value 
decomposition and "Q-less" QR factorization. For imple- 
mentation, we use the estimated state sequence optimization 
described in Section 4.1. The constrained least squares 
optimization problem is to minimize (6.9) subject to (2.19) 
where P = PT 2 uI and U > 0 is arbitrarily small. The 
system matrices A and B are determined by A = P-'R 
and B = P - - ' S .  

The optimization is performed using the SeDuMi Matlab 
toolbox [19]. SeDuMi solves linear programming problems 
over symmetric cones, allowing us to impose quadratic and 
positive semi-definite constraints. 

8. Examples 
Consider the continuous time spring-mass-damper 

where the position is z1, the velocity is 2 2 ,  the force input 
in Newtons is U, the scaled velocity output is y, the plant 
disturbance is w, the sensor noise is U, the mass is m = 7 

865 



1 I . .. .. .. .. ., .. 
e.,- 

Fig. 1. Nyquist and Bode plots for the discretized spring-mass-damper 
system with no plant disturbance or sensor noise. The plots of the 
discrete-time system , the unconstrained identification, and the positive 
real constrained identification coincide. 

kg, the damping is c = 36 kg/s, the stiffness is k = 1087 
kg/mz, and the output multiplication factor is b = 23. Since 
the input is force and the output is a scaled velocity, the 
continuous-time transfer function is positive real. 

The continuous-time system (8.1)-(8.2) is discretized 
with a sample time of 0.01 seconds using a first-order-hold. 
The discrete-time state space realization is 

I .  . .. Y .. .. ., .. 
-U 

Fig. 2. Nyquist and Bode plots for the discretized sphg-massdamper 
system with Gaussian white plant disturbance noise and sensor noise. 
Shown are plots of the discrete-time system (solid), the unconstrained 
identification (dash-dotted), and the positive real constrained identification 
(dashed). 
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