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Adaptive Harmonic Steady State Control for Disturbance
Re ection
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I. INTRODUCTION

The use of feedback control for disturbance re-
jection is of fundamental importance in a broad range of
applications, and the development of effective algorithms
is an ongoing area of research. For well-modeled plants
with broadband disturbance, classical LQG theory can be G
applied with weighting filters introduced to shape con-
troller effort in accordance with the disturbance spectrum Fig. 1. Harmonic Steady State Control Architecture
and performance objectives [1]. On the other hand, if the
disturbance is tonal or multi-tonal with known spectrum,
then a model of the exogenous signal can be embedded in

the controller to produce high gain feedback at frequencies Implementation of HSS control requires knowl-
that comprise the spectrum of the disturbance [2]. edge of the frequency response of the transfer function
between the control input and the measurements at the

An alternative approach, which is applicable in disturbance frequency. In practice, this information is
the case of tonal or multi-tonal disturbances with known obtained through modeling or off-line identification. When
spectrum, allows the system to reach harmonic steady statéhis information is uncertain or when the plant is subject to
and uses measurements of the steady state response amhange, instability can occur. Consequently, the robsstne
plitude and phase to determine the required control signal.of HSS control is analyzed in [5] for both additive and
This technique was developed independently within two multiplicative model uncertainty.
research communities. For helicopter vibration redugtion . .
this technique is known akigher harmonic control [3, Adaptive extensions of HSS control that re-

4]. The same technique was developed independently for"0v€ the need to independently model the control-to-
active rotor balancing, in this case known esvergent measurement frequency response have been considered.

control [5]. We refer to this algorithm as HSS (harmonic Specifically, in [10,11] the least squares procedure was

steady state) control. Connections between higher har_proposed for estimating t.his transfer function. Analysis
monic control and internal model control are discussed©f convergence of the estimates and performance of HSS

in [6] with simultaneous estimation were not discussed in [10,
11]. In the present paper we develop a unified framework
When the plant and the disturbance are not well for analyzing the properties and performance of adaptive
modeled, then the problem can be significantly more harmonic steady state control, thus extending and includ-
challenging. Within the active noise control literature, a ing most of the previous literature on harmonic steady state
host of adaptive algorithms have been developed inspireccontrol.
by digital signal processing techniques. These techniques
are based on LMS updating of FIR filters [7]. Another
approach involves continuously adjusting the frequency,

magnitude and phase of the control input to cancel the dis- , )

turbance [8]. Alternative techniques, which require it - Assume for convenience that the disturbance

modeling of the plant dynamics and disturbance spectrum X" @cting on the plant is a single harmonic, with constant
amplitude and phase. The HSS control algorithm waits

have also been developed; see, for example, [9]. r ;
until the outputz € R? reaches harmonic steady state, and
This research was supported by the Air Force Office of Sdienti th?n.measur_es the amp“tUdEf and phase _Of the OUtPUt' With
Research under grant F429620-01-1-0094, and the Army Res€diice this information, the control input € R™ is determined
under grant 02-1-0202. o to minimize the effect of disturbance. As shown in Fig.
The authors are with Department of Aerospace Engineering Th 1. the HSS | al ithm i feedback I d
University of Michigan, Ann Arbor, MI 48109-2140, (734) 7&#19, » the control algorithm is a teedback controller, an

(734) 763-0578 (FAX)dsbaer o@ni ch. edu thus can potentially destabilize the plant, although not in
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the usual LTI sense. As indicated in Fig. 1, we assumewhere foralli =1,...,p,j=1,...,m,andl =1,...,d,

that the disturbance signal is unmeasured and thus is nothe entriesT;; € R?*? and W;; € R?*2 of T € R¥»*2m

available for feedback. and W € R?P*24  respectively, are defined by
a Re(G’ziuj (gw1)) _IIn(Gziuj (gw1))

Tis *[ Re(Gx,u, (301)) ]

—II][(G;,L’LUZ (jwl))

z=[ G.u qu]{ },

where G.,,(s) and G, (s) are multi-input multi-output
continuous-time transfer functions, and, for all =
L...,p,jg=1,....d,andl = 1,...,m, G.,(s) and
G, (s) are the SISO entries off..,(s) and G..(s), zi+1 = 2 + T (U1 — uk). (2.7)
respectively. In HSS control, the update of the control tnpu \yhen the disturbances(t) is a sum of sinusoids of

u is not performed continuously but rather at specified mytiple frequencies, the above analysis carries through
times ¢,. The control input is harmonic with the same \yith minor modifications.

spectrum as the disturbance, and the amplitude and phase
of the control input are updated gt. The time interval

tr+1 —tr between two successive updates need not be con-
stant but must be sufficiently large to allow the outpub . .

. . Consider the cost function

reach harmonic steady state. At steady state, the amplitude . o -

and phase of the output are completely determined by J (2, uk) = 2z Qzi + 225, Sup, + uy, Ruy, (3.1)
the amplitude and phase of the disturbance and controlynere ) ¢ R2P%22, § ¢ R2P%2m and R € R2mx2m

§ (2.6)

u

Re(G-w, (301))
Im(Gziwl (JWI)) Re(Gziwl (J‘Ul))

Replacingk by k+1 in (2.5), and subtracting the resulting
equation from (2.5) yields the disturbance-free update
model

1) wa 2 |

Ill. THEHSS ALGORITHM

input. Assuming that the disturbaneeis harmonic with
frequencyw; and the output has reached harmonic steady
state within the time intervaly, t;11], w(t), z(t), andu(t)
have components

) ) , T
w(t) = {uilRe(ej(“”tJr(bl)) (€J(w1t+od))] R

wqRe

T
2(t) = [21kRe(e'7(w1t+61k)) 5kae(e-7(“1t+"’pk))] ,

(2.2)
9 al P B T
u(t) = [kRe(e 1Y) Ly Re(e? 1 TP mi)| T

wherew; € R, Z;; € R, 4;;, € R are the amplitudes, and
¢; € R, 0;, € R, 9, € R are the phase angles, of the
ith component ofw(t), z(¢), andu(t), respectively. Note
that the amplituded; and phase; of theith component of
w(t) are independent of the time interval, and, furthermore,
¢; is determined by the choice of.

Next, definews, € R, w,, € R, zs, €ER, z, €
R, us, €R, anducik € R by

ws, £ =y sin(¢;), we, = w; cos(pi),
Z, = —Zipsin(0ir), ze, = Zik cos(fir), (2.3)
us, =~ sin(ig), Ue, = Uik cos(Pir)-

Note that for alli = 1,...,d, ws, andw,., are constants
determined by the choice of, and thatu,, andu., are
determined by the control law. Define € R?¢, 2, € R??,
anduy € R*™ by

T

" (2.4)

ES [ }T S
W= Wy Wey - WegWey| T 20 = | Zsy, Zoq, o Fspy Fopy,

A T
Wk = [uslk Wepy, © 7 Usmy, uc’”k} :
It follows from (2.1)-(2.4) that the system dynam-

ics in terms ofw, zx, anduy are given by

zi = Tug + Ww, (2.5)

are weighting matrices such thAtis positive definite and
& 7 | is positive semidefinite. Substituting, from

12.5) into (3.1) yields
Iz, ur) = ul (TTQT + 775+ 5TT + R) wpt

(3.2)
2u;£(TTQ + ST)W'w + wTWTQWw.
Since (3.2) involves only;;, andw we define
j(wa uk) = J(Zkﬂ Uk), (33)
and write 7 (w, ug) as
T(w,ur) = [(Ww)" u} ] [TTQQ-i- gT QTDJr S} [Vg:)] . (3.4)

where the positive-semidefinite matriX is defined by

D2TTQT +T1T7S +STT + R. (3.5)
To determineuy, that minimizesJ (w, uy), we set
W = 2Duy, + 2(T7Q + ST)Ww = 0. (3.6)
Uk

Assuming D is positive definite, the optimal control law
is given by

Uopt £ Uk, opt = _D_l(TTQ + ST)W’LU
and the minimum cost is

3.7)

T (w,wop) = w'WT[Q = QT + 5D~ TTQ +5T)|ww. (3.8)

Since u.p depends omw whose measurement is not
available, we derive an equivalent control law that can be
used for allk > 1.

Settingk = 0 in (2.5), yields

Ww = 20 — TUO (39)
and hence substituting (3.9) into (2.5) yields
2k = 20 + T(ug — up). (3.10)
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From (3.9) the optimal control law,p: in (3.7) can be
expressed as

Uopt = _Dil(TTQ + ST)(ZO - TUO)- (311)

IV. CONVERGENCEANALYSIS OF HSS ALGORITHM

Note thatu,,: given by (3.11) is independent of

k, and hence remains constant for @l 1. Substituting
(3.11) in (3.10) and (3.1), the optimal value gf for all
k > 1is given by

zopt 2 2hope = [T = TD™HTTQ+ 5T)] (20 — Tuo),  (4.1)
and thus
= (20 — Tuo) ™ — -1
J(Zopt, Uopt) = (20 — Two) " [Q — (QT + S)D (4.2)

(TTQ + S™)(20 — Tuo).

Using (3.10), the optimal control law can be

expressed recursively as
uk:+1,opt = —D_l(TTQ + ST)(Zk’Opt — Tuk,opt)~ (43)

The state-space representation of the system dynamics with

the optimal control law is

[ FhLopt } :A[ “h,opt ] (4.4)
Uk+1,0pt Uk, opt
where A € R2(p+m)x2(p+m) jg defined by

AL [ I2p_—]\fM _(IQp]\;gM)T } (4'5)

and M € R*™*?p is defined byM £ D1 (TTQ + ST).
Note that4? = A and henced is an idempotent matrix,
and its eigenvalues are eitheror 1. In fact, A can be
factored as

e B [ A I S F )
which implies that

spec(A) = spec(lap) U spec(Ozpm, ). 4.7)

Since A is idempotent, with the initial conditions

zo anduyg, (4.4) implies that for alk = 1,2,.. .,
[zopt} Ak {zg] :A[zo} _ {(IfTM)(znguo)] . (48)

Uopt ug ug —M(z0 — Tuo)
Consequently, the optimum values of,; in (3.11) and
Zopt IN (4.1) are attained after the first update.

Note that if S = 0, then z,,, in (4.1) can be

expressed as
(4.9)

Zopt = QT HQ T+ TRT'TT) ™ (20 — Two).

Hence,
Umax(R)
Omin(Q)o (TTT)

wherel = min(2p, 2m).

llzope |l < llzo — Tuoll, (4.10)

Note that, if Z“‘%*(R) is large (minimum energy
control), it follows frorﬁm(4.10) that|zop¢ || may be large,

indicating poor performance. Alternatively, fuax(B) g

small (cheap control), then (4.10) implies thérfmiih@ptu
is small and hence the performance is good.

V. ROBUSTNESS OFHSS GONTROL

Implementation of HSS requires knowledge of
T. An erroneous model ofl’ can result in degraded
performance and possible instability. If an estimatef
T is given, the control law defined in (4.3) becomes

g1 = —M (2, — T, (5.1)
where
M2 D YTTQ + ST) e RZmx% (5.2)
assuming that
DETTQT + ST +TTS+ R (5.3)

is positive definite. The state-space representation of the
system-dynamics with (5.1) is

ORI I (5.4)
g1 ay |’
where A is defined by
«a [ (I —TM) T(MT — Iy)
= [ i N (5-3)
andAT 27 —T.
It is useful to factorA as
A Iz T Iz 0 I, T
A:[ 0 Iom } [ -M  MAT H 0 Iom ] (5.6)
which shows that
spec(A) = spec(ly,) Uspec(MAT). (5.7)

Hence the HSS algorithm is stable if and only if
sprad(MAT) < 1.

Assuming$ = 0, it follows that

sprad(MAT) = sprad (17 QT + R) "' 1T QAT)

o Omax(T) + Omax (AT)0max (Q)rmax(AT)  (5:9)
= Umin(R) '
Therefore, it can be shown that, if

rman(AT) < —max(D) | E%TMX(TV + 4%, (5.10)

(5.8)

2 2 max

thensprad(MAT) < 1.

f Cmin(f)

J is large (minimum energy control),
then according to (5.10), HSS control possesses a high
degree of robustness and a sufficient condition for the
stability of HSS algorithm is approximately given by
U'min(R)

O'maX(Q)'
However, if% is small (cheap control), then (5.10)
implies that robustness is compromised.

Omax(AT) < \/ (5.11)
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From (5.6), it follows that AULAU is nonsingular for allk > ko. Hence the
I recursive procedure for determinifg,s, for all k& > kg
Ak:[fgv Ijm] {’gp ;zﬂ (5.12) s given by
Kii1 = (1 +Auf  PeAupi1) 'Aul P, (6.7
Now assume that HSS control is stable, that is, (5.8) is . bt (A k1 PrAtn) k1P (8D
satisfied. In this caselim;_..(MAT)* = 0, and let Tisyyy = Tusy, +ert1Kpt1, (6.8)
k1 Py =P (I — Aupp1 Kit) (6.9)

where

k—1
= > (MAT)'N (MAT)*
i=1

I &limg oo » (MAT)' = (I — MAT)™*. Hence, the
limiting valueézéfzk and 4y, are given by

i [52] =[] =[O0 619 Note that

k— o0 k— oo

rp1 2 Azgpyr — T, Augyr. (6.10)

rank(AUkAUE) = rank(AUyg) < min(k,2m). (611)

Since AU, AU is 2m x 2m, it follows from (6.11) that
AULAUT is singular for allk < 2m. Hence the recursive
procedure (6.7)-(6.9) cannot be used fo& 2m.

Now, consider the case where the estini&tef 7’
involves a multiplicative error, that ig) = T(I+ATmm),
where AT, € R2mx2m_ Then T can be expressed
equivalently byT = T + AT, where AT = TAT,.
A sufficient condition for stability of HSS control is A suboptimal way to determine an estimate of
sprad(MTATyw) < 1. Following a procedure similar 7 s to replaceP; in (6.7)-(6.9) by P, that is,

to the one discussed in (5.9) and (5.10) for additive T o~ AT £
uncertainty, it can be shown that the HSS algorithm is [{kﬂ = (1 + Aup  PrAugyr)”  Aug Py, (6.12)

stable if Trs1 = Th + cxy1Kpi1, (6.13)
o (ATm) < 7% n %\/1 o Aomn(B) (5 1) Pry1 = Py (I — Aug1Kpt1), (6.14)

02 ax (T)omax (Q) ’ ~
whereP, is positive definjte but otherwiseAarbitrary and
is defined by (6.10) wi}tTLSk replaced by, . It follows
VI. ADAPTIVE HSS GONTROL ALGORITHM from (6.12)-(6.14) thaP, is positive definite for alk > 0

and is given by
Here we discuss online identification of the matrix 5 A1 Ty_1
T, which will then be used as the basis for an adaptive ex- P’“ﬂ_ (Fo~ + AURAU )™ (6.15)
tension of HSS control discussed in the previous sections FurthermoreT;, is given by

Define Az, € R?” and Auy, € R*™ by Tk _ (T0p0—1 + AZk-AUE)(PO_l " AUkAU];P)fl.(G.lG)
Az & 2 — 21, Aup = up — up1, (6.1) Since P, is positive definite, the inverse in (6.16) always
and AZ, € R?** and AU, € R?™*F by exists, and hence the recursive procedure can be used for

all k > 0. The updated estimafB, is used at each control

update step to calculate the control law,;, which is
The system dynamics equation (2.7) can be represented byjiven by

Azk = TAuk (63) Uk+1 = *Mk(zk - Tk“k)y (617)
Hence, it follows from (6.1) that where M, is defined by
AZy, = TAU;. (6.4) Ny, & (TR QT + S™Ty + TS + Ry (77 Q + s7).  (6.18)
Assuming AU, AU is nonsingular, we define
Py £ (AULAUD) Y, (6.5)

) i VIl. CONVERGENCEANALYSIS OF THE ESTIMATE T,
and it follows from (6.4) that the least squares estimate

Tis, of T is given byTis, = AZyAULP,.

Define AT}, € R2P*2m py
The recursive least squares method is used to A
iteratively updateTys, based on the past and current X AT, =T, = T, (7.1)
values of Az, and Auy. Since AuyAuf is positve — whereT}, is updated using (6.12)-(6.14). Next, define the

semidefinite for allk and function V (AT, P) by
k Ay A A—1 AT
V(AT,P) 2 ATP'AT 7.2
AULAUL =3 AuAa], (6.6) (AT, P) (7.2)
i=1 and AV}, by
it follows that if AU, AUZL is nonsingular, then AVy, = V(ATy i1, Peyr) — V(AT By, (7.3)
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where P, is updated using (6.12)-(6.14) ai¥ is the pos-
itive definite matrix used to initialize (6.14). Subtragfin
T from both sides of (6.13) yields

ATy = ATy 4 €11 Kpq 1.
Using (6.3) and (7.1)sx+1 can be expressed as

(7.4)

Ek+1 = 7ATkAuk+1. (75)
Substituting (6.12)-(6.14) and (7.5) into (7.3) yields
T
AV = —— W (7.6)
1+ Aug+1PkAuk+1
and hence V (AT, P,) is non-increasing. Since

V(ATy, P,) > 0, it follows that Jim V(ATy, Py)
exists and is nonnegative. Hence
T
Ek+1€% 41

lim — i = lim AV, =0.
k—oo 1 4 Aug+1PkAu;g+1

k—o0

7.7)

Next we show thatAu, is bounded. Substituting
(6.4) into (6.16) yields

Ty = (ToPy " + TAULAUL (Pt + AU AU TE (7.8)
Post-multiplying (7.8) byP; ! + AULAU, yields
ATy, = ATy Py Y (Pt + AULAUT) L (7.9)

If AU, AU, is nonsingular, then, for alk > ko, (7.9)
implies that

Umax(ATO)
O—min(pO)Umin(AUkoAUg[;) .

Hence, if P, is chosen to be sufficiently large, then

Omax (ATk) g

(7.10)

From (7.11) it follows that

k k
Omax ( H (A}zATz)) < H (Umax(MiATi)> <1

i=kg i=kq

(7.15)

and hence it follows from (7.13)-(7.15) that andwy, are
bounded. Hence, for alt = 0,1,..., let v > 0 satisfy
|lur|| <~ and thus

[Aug| = [Jupgr — url] < 2v. (7.16)

From (6.5) and (6.6) it follows thaf;,; < P,
which implies that

P, < B, (7.17)
Hence, it follows from (7.17) and (7.16) that
14 Auf PeAuy, < 1+ 492 A nax (Po) (7.18)
and thus (7.8) implies that
klim er = 0. (7.19)
Taking the limit ask — oo of (6.13) yields
. N N _ . 5k+1AUE+1ﬁk
Jim (T =) = Jim s ey (7-20)
From (7.16)-(7.20) it follows that,
lim. (TM — Tk) —0. (7.21)

Thus,{7}} is a Cauchy sequence, and hefigeconverges.
However, there is no guarantee tfatwill converge toT'.

In fact, it can be shown that there are certain choices of

Py andT, such thatl}, will not converge ta'. Conditions
on Ty and P, that guarantee convergence Bf to T' are

Y not available. However, the steady state performance of the
omax(ATy) can be made sufficiently small and even made gqaptive HSS control depends on the steady-state value of

to satisfy condition (5.10) and in that case it follows from ha estimate7},. Note that using (6.16) the RLS estimate

(5.9) that, for allk > ko,

Omax (MpAT}) < 1. (7.11)

T}, can be expressed as

Tw =T + ATy Py ' By (7.22)

The state space representation of the system dy-Consequently, ifP, — 0 ask — oo, thenTy — T as

namics with the control law (6.17) is

]-a ]

Uk+1
where Ay, is defined by (5.5) withil” and A7 replaced by
T, and My, respectively. Hence for alt > kg

HEtE

i=ko
k

Note that H A; can be factored as

i=ko

k
‘ 0 Iam
i=ko

(7.12)

(7.13)

[ Lo e onany] [ n] - (7:29)

where Agl = _Mko (I+ Zf:_]jo(nzzo ATij+1)).

k — oo. It follows from the theory of RLS [12] that, if
Auy, is persistently exciting, thed, — 0 ask — oc.

However, sinceuy, is given by the adaptive control law
(6.17), Auy, may not be persistently exciting.

Next, defined;, € R2™ by
Ok 2 [ Otxic1 Ok Otx2m—i ]T (7.23)

anddy; € R by 0x; = 6 sign(Auy;), whereAuy ; is the
ith component oAy, 6 > 0, andi is the remainder when
k is divided by2m. Next, defineAd,, by Aty 2 Auy+0y.
It can be shown that i§ is sufficiently large, them\ay, is

persistently exciting. The modified control law is given by

Uk+1 = U + Aly,. (7.24)
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Fig. 2. Top view of the acoustic drum with two end-mounted &pea
and one internal microphone. The microphone is initially atat®n

A and is moved to Location B while the HSS control algorithm is
operational.

Fig. 3.
control. The microphone is moved &t~ 4 s and the output diverges.
Adaptive HSS control begins atx~ 22 s, and convergence is achieved.

Disturbance rejection using fixed-model and adapH&S

IX. CONCLUSION
VIIl. EXPERIMENTAL EXAMPLE: NOISE

CANCELLATION IN AN ACOUSTICDRUM In this paper we developed adaptive harmonic
steady state control for disturbance rejection. HSS cbntro
extends higher harmonic control and convergent control
The acoustic drum (see Fig. 2) has two end- developed for helicopter vibration reduction and rotor

mounted speakers, and up to six microphones suspendetinbalance control. HSS control is applicable to stable sys-
inside the drum through holes drilled along the top. €MS with tonal or multi-tonal disturbances. The adaptive

Though the equations of motion of the acoustic drum is HSS algorithm is easy to implement and robust in the sense

not similar to that of the duct [1], the input-output respens that no mod.eling information i§ required aside from the
is linear, and hence HSS control can be used to reject g'umber of disturbance harmonics.

disturbance with a known harmonic spectrum.

A constant-amplitude, single-tone disturbance
signal w(t) with frequency 10 Hz ¢ = 20x rad/s) is  [1]
produced by the disturbance speaker. The actuation speaker
produces the contrak(t) for cancelling the disturbance. [
The control objective is to reduce the outp(t) measured

by microphone 1 at Location A. 3]

To estimateTl’, a sinusoidal input with frequency
10 Hz, amplituded;, and phase angle); is applied
to the system, inN separate trials. The amplitude and
phase of the output;; andd,, are used to determine an [5]
initial estimateT},s of T using the batch least squares
procedure. A dSPACE 1003 system is used to determine
the vectorz;, from measurements of(¢) and the update
ug is computed by a Simulink implementation of the HSS
control algorithm.

(4]

(7]

Fig. 3 shows the performance of HSS control [8]
with T = Tis. Next, we consider the case in which
T is uncertain. Att ~ 4 s the microphone is moved
from its original location (Location A) to a new location
(Location B), resulting in a change in the system dynamics. 1
Since conventional HSS control is unaware of this change,
the modified system is unstable and the output divergesIll]
At t = 22 s, adaptive HSS control begins, and stability
is recovered, providing disturbance rejection at the new([12]
location.

El
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