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I. I NTRODUCTION

The use of feedback control for disturbance re-
jection is of fundamental importance in a broad range of
applications, and the development of effective algorithms
is an ongoing area of research. For well-modeled plants
with broadband disturbance, classical LQG theory can be
applied with weighting filters introduced to shape con-
troller effort in accordance with the disturbance spectrum
and performance objectives [1]. On the other hand, if the
disturbance is tonal or multi-tonal with known spectrum,
then a model of the exogenous signal can be embedded in
the controller to produce high gain feedback at frequencies
that comprise the spectrum of the disturbance [2].

An alternative approach, which is applicable in
the case of tonal or multi-tonal disturbances with known
spectrum, allows the system to reach harmonic steady state
and uses measurements of the steady state response am-
plitude and phase to determine the required control signal.
This technique was developed independently within two
research communities. For helicopter vibration reduction,
this technique is known ashigher harmonic control [3,
4]. The same technique was developed independently for
active rotor balancing, in this case known asconvergent
control [5]. We refer to this algorithm as HSS (harmonic
steady state) control. Connections between higher har-
monic control and internal model control are discussed
in [6].

When the plant and the disturbance are not well
modeled, then the problem can be significantly more
challenging. Within the active noise control literature, a
host of adaptive algorithms have been developed inspired
by digital signal processing techniques. These techniques
are based on LMS updating of FIR filters [7]. Another
approach involves continuously adjusting the frequency,
magnitude and phase of the control input to cancel the dis-
turbance [8]. Alternative techniques, which require limited
modeling of the plant dynamics and disturbance spectrum,
have also been developed; see, for example, [9].
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Fig. 1. Harmonic Steady State Control Architecture

Implementation of HSS control requires knowl-
edge of the frequency response of the transfer function
between the control input and the measurements at the
disturbance frequency. In practice, this information is
obtained through modeling or off-line identification. When
this information is uncertain or when the plant is subject to
change, instability can occur. Consequently, the robustness
of HSS control is analyzed in [5] for both additive and
multiplicative model uncertainty.

Adaptive extensions of HSS control that re-
move the need to independently model the control-to-
measurement frequency response have been considered.
Specifically, in [10, 11] the least squares procedure was
proposed for estimating this transfer function. Analysis
of convergence of the estimates and performance of HSS
with simultaneous estimation were not discussed in [10,
11]. In the present paper we develop a unified framework
for analyzing the properties and performance of adaptive
harmonic steady state control, thus extending and includ-
ing most of the previous literature on harmonic steady state
control.

II. H ARMONIC PERFORMANCEANALYSIS

Assume for convenience that the disturbancew ∈
R

d acting on the plant is a single harmonic, with constant
amplitude and phase. The HSS control algorithm waits
until the outputz ∈ R

p reaches harmonic steady state, and
then measures the amplitude and phase of the output. With
this information, the control inputu ∈ R

m is determined
to minimize the effect of disturbance. As shown in Fig.
1, the HSS control algorithm is a feedback controller, and
thus can potentially destabilize the plant, although not in



the usual LTI sense. As indicated in Fig. 1, we assume
that the disturbance signal is unmeasured and thus is not
available for feedback.

The inputsu,w and the outputz are related by

z =
[

Gzw Gzu

]

[

w

u

]

, (2.1)

whereGzw(s) and Gzu(s) are multi-input multi-output
continuous-time transfer functions, and, for alli =
1, . . . , p, j = 1, . . . , d, and l = 1, . . . ,m, Gziwj (s) and
Gziul(s) are the SISO entries ofGzw(s) and Gzu(s),
respectively. In HSS control, the update of the control input
u is not performed continuously but rather at specified
times tk. The control input is harmonic with the same
spectrum as the disturbance, and the amplitude and phase
of the control input are updated attk. The time interval
tk+1−tk between two successive updates need not be con-
stant but must be sufficiently large to allow the outputz to
reach harmonic steady state. At steady state, the amplitude
and phase of the outputz are completely determined by
the amplitude and phase of the disturbance and control
input. Assuming that the disturbancew is harmonic with
frequencyω1 and the outputz has reached harmonic steady
state within the time interval[tk, tk+1],w(t), z(t), andu(t)
have components

w(t) =
[

ŵ1Re(e
(ω1t+φ1)

) · · · ŵdRe(e
(ω1t+φd)

)
]T

,

z(t) =
[

ẑ1kRe(e
(ω1t+θ1k)

) · · · ẑpkRe(e
(ω1t+θpk)

)
]T

,

u(t) =
[

û1kRe(e
(ω1t+ψ1k)

) · · · ûmkRe(e
(ω1t+ψmk)

)
]T

,

(2.2)

whereŵi ∈ R, ẑik ∈ R, ûik ∈ R are the amplitudes, and
φi ∈ R, θik ∈ R, ψik ∈ R are the phase angles, of the
ith component ofw(t), z(t), andu(t), respectively. Note
that the amplitudêwi and phaseφi of theith component of
w(t) are independent of the time interval, and, furthermore,
φi is determined by the choice oft0.

Next, definewsi ∈ R, wci ∈ R, zsik ∈ R, zcik ∈
R, usik

∈ R, anducik
∈ R by

wsi , −ŵi sin(φi), wci , ŵi cos(φi),

zsik , −ẑik sin(θik), zcik , ẑik cos(θik),

usik
, −ûik sin(ψik), ucik

, ûik cos(ψik).

(2.3)

Note that for alli = 1, . . . , d, wsi andwci are constants
determined by the choice oft0, and thatusik

anducik
are

determined by the control law. Definew ∈ R
2d, zk ∈ R

2p,
anduk ∈ R

2m by

w ,
[

ws1
wc1

· · ·wsd
wcd

]T
, zk ,

[

zs1k
zc1k

· · · zspk
zcpk

]T
,

uk ,
[

us1k
uc1k

· · ·usmk
ucmk

]T
.

(2.4)

It follows from (2.1)-(2.4) that the system dynam-
ics in terms ofw, zk, anduk are given by

zk = Tuk +Ww, (2.5)

where for alli = 1, . . . , p, j = 1, . . . ,m, andl = 1, . . . , d,
the entriesTij ∈ R

2×2 andWil ∈ R
2×2 of T ∈ R

2p×2m

andW ∈ R
2p×2d, respectively, are defined by

Tij ,

[

Re(Gziuj (ω1)) −Im(Gziuj (ω1))

Im(Gziuj (ω1)) Re(Gziuj (ω1))

]

,

Wil ,

[

Re(Gziwl (ω1)) −Im(Gziwl (ω1))
Im(Gziwl (ω1)) Re(Gziwl (ω1))

]

.

(2.6)

Replacingk by k+1 in (2.5), and subtracting the resulting
equation from (2.5) yields the disturbance-free update
model

zk+1 = zk + T (uk+1 − uk). (2.7)

When the disturbancew(t) is a sum of sinusoids of
multiple frequencies, the above analysis carries through
with minor modifications.

III. T HE HSS ALGORITHM

Consider the cost function

J(zk, uk) , zT
k Qzk + 2zT

k Suk + uT
kRuk, (3.1)

whereQ ∈ R
2p×2p, S ∈ R

2p×2m, and R ∈ R
2m×2m

are weighting matrices such thatR is positive definite and
[

Q S

ST R

]

is positive semidefinite. Substitutingzk from
(2.5) into (3.1) yields

J(zk, uk) = u
T
k

(

T
T

QT + T
T

S + S
T

T + R
)

uk+

2u
T
k (T

T
Q + S

T
)Ww + w

T
W

T
QWw.

(3.2)

Since (3.2) involves onlyuk andw we define

J (w, uk) , J(zk, uk), (3.3)

and writeJ (w, uk) as

J (w, uk) =
[

(Ww)T uT
k

]

[

Q QT + S

TTQ + ST D

] [

Ww
uk

]

, (3.4)

where the positive-semidefinite matrixD is defined by

D , TTQT + TTS + STT +R. (3.5)

To determineuk that minimizesJ (w, uk), we set

∂J (w, uk)

∂uk

= 2Duk + 2(TTQ+ ST)Ww = 0. (3.6)

AssumingD is positive definite, the optimal control law
is given by

uopt , uk,opt = −D−1(TTQ+ ST)Ww (3.7)

and the minimum cost is

J (w, uopt) = w
T

W
T
[

Q − (QT + S)D
−1

(T
T

Q + S
T
)
]

Ww. (3.8)

Since uopt depends onw whose measurement is not
available, we derive an equivalent control law that can be
used for allk > 1.

Settingk = 0 in (2.5), yields

Ww = z0 − Tu0 (3.9)

and hence substituting (3.9) into (2.5) yields

zk = z0 + T (uk − u0). (3.10)



From (3.9) the optimal control lawuopt in (3.7) can be
expressed as

uopt = −D−1(TTQ+ ST)(z0 − Tu0). (3.11)

IV. CONVERGENCEANALYSIS OF HSS ALGORITHM

Note thatuopt given by (3.11) is independent of
k, and hence remains constant for allk > 1. Substituting
(3.11) in (3.10) and (3.1), the optimal value ofzk for all
k > 1 is given by

zopt , zk,opt =
[

I − TD
−1

(T
T

Q + S
T
)
]

(z0 − Tu0), (4.1)

and thus
J(zopt, uopt) = (z0 − Tu0)

T
[Q − (QT + S)D

−1

(T
T

Q + S
T
)](z0 − Tu0).

(4.2)

Using (3.10), the optimal control law can be
expressed recursively as

uk+1,opt = −D−1(TTQ+ ST)(zk,opt − Tuk,opt). (4.3)

The state-space representation of the system dynamics with
the optimal control law is

[

zk+1,opt

uk+1,opt

]

= A

[

zk,opt

uk,opt

]

, (4.4)

whereA ∈ R
2(p+m)×2(p+m) is defined by

A ,

[

I2p − TM −(I2p − TM)T
−M MT

]

(4.5)

andM ∈ R
2m×2p is defined byM , D−1(TTQ + ST).

Note thatA2 = A and henceA is an idempotent matrix,
and its eigenvalues are either0 or 1. In fact, A can be
factored as

A =

[

I2p T
0 I2m

] [

I2p 0
−M 02m

] [

I2p −T
0 I2m

]

, (4.6)

which implies that

spec(A) = spec(I2p) ∪ spec(02m). (4.7)

SinceA is idempotent, with the initial conditions
z0 andu0, (4.4) implies that for allk = 1, 2, . . . ,

[

zopt

uopt

]

= A
k

[

z0

u0

]

= A

[

z0

u0

]

=

[

(I − TM)(z0 − Tu0)
−M(z0 − Tu0)

]

. (4.8)

Consequently, the optimum values ofuopt in (3.11) and
zopt in (4.1) are attained after the first update.

Note that if S = 0, then zopt in (4.1) can be
expressed as

zopt = Q
−1

(Q
−1

+ TR
−1

T
T
)
−1

(z0 − Tu0). (4.9)

Hence,

‖zopt‖ 6
σmax(R)

σmin(Q)σl(TTT)
‖z0 − Tu0‖, (4.10)

wherel , min(2p, 2m).

Note that, if σmax(R)

σmin(Q)
is large (minimum energy

control), it follows from (4.10) that‖zopt‖ may be large,

indicating poor performance. Alternatively, ifσmax(R)

σmin(Q)
is

small (cheap control), then (4.10) implies that the‖zopt‖
is small and hence the performance is good.

V. ROBUSTNESS OFHSS CONTROL

Implementation of HSS requires knowledge of
T . An erroneous model ofT can result in degraded
performance and possible instability. If an estimateT̂ of
T is given, the control law defined in (4.3) becomes

ûk+1 = −M̂(zk − T̂ ûk), (5.1)

where

M̂ , D̂−1(T̂TQ+ ST) ∈ R
2m×2p (5.2)

assuming that

D̂ , T̂TQT̂ + STT̂ + T̂TS +R (5.3)

is positive definite. The state-space representation of the
system-dynamics with (5.1) is

[

zk+1

ûk+1

]

= Â

[

zk

ûk

]

, (5.4)

whereÂ is defined by

Â ,

[

(I2p − TM̂) T (M̂T̂ − I2p)

−M̂ M̂T̂

]

(5.5)

and∆T , T̂ − T .

It is useful to factorÂ as

Â =

[

I2p T
0 I2m

] [

I2p 0

−M̂ M̂∆T

] [

I2p −T
0 I2m

]

, (5.6)

which shows that

spec(Â) = spec(I2p) ∪ spec(M̂∆T ). (5.7)

Hence the HSS algorithm is stable if and only if

sprad(M̂∆T ) < 1. (5.8)

AssumingS = 0, it follows that

sprad(M̂∆T ) = sprad
(

(T̂
T

QT̂ + R)
−1

T̂
T

Q∆T
)

6
(σmax(T ) + σmax(∆T ))σmax(Q)σmax(∆T )

σmin(R)
.

(5.9)

Therefore, it can be shown that, if

σmax(∆T ) <
−σmax(T )

2
+

1

2

√

σmax(T )2 + 4
σmin(R)

σmax(Q)
, (5.10)

then sprad(M̂∆T ) < 1.

If σmin(R)

σmax(Q)
is large (minimum energy control),

then according to (5.10), HSS control possesses a high
degree of robustness and a sufficient condition for the
stability of HSS algorithm is approximately given by

σmax(∆T ) <

√

σmin(R)

σmax(Q)
. (5.11)

However, if σmin(R)
σmax(Q) is small (cheap control), then (5.10)

implies that robustness is compromised.



From (5.6), it follows that

Â
k
=

[

I2p T
0 I2m

]







I 0

−

k−1
∑

i=1

(M̂∆T )
i
M̂ (M̂∆T )k







[

I2p −T
0 I2m

]

.(5.12)

Now assume that HSS control is stable, that is, (5.8) is
satisfied. In this case,limk→∞(M̂∆T )k = 0, and let

Γ , limk→∞

k−
∑

i=

(M̂∆T )i = (I − M̂∆T )−. Hence, the

limiting values ofzk and ûk are given by

lim
k→∞

[

zk
ûk

]

= lim
k→∞

Â
k

[

z0

û0

]

=

[

(I − TΓM̂)(z − T û)

−ΓM̂(z − T û)

]

. (5.13)

Now, consider the case where the estimateT̂ of T
involves a multiplicative error, that is,̂T = T (I+∆Tmul),
where ∆Tmul ∈ R

2m×2m. Then T̂ can be expressed
equivalently byT̂ = T + ∆T , where ∆T = T∆Tmul.
A sufficient condition for stability of HSS control is
sprad(M̂T∆Tmul) < 1. Following a procedure similar
to the one discussed in (5.9) and (5.10) for additive
uncertainty, it can be shown that the HSS algorithm is
stable if

σmax(∆Tmul) < −
1

2
+

1

2

√

1 +
4σmin(R)

σ2
max(T )σmax(Q)

, (5.14)

VI. A DAPTIVE HSS CONTROL ALGORITHM

Here we discuss online identification of the matrix
T , which will then be used as the basis for an adaptive ex-
tension of HSS control discussed in the previous sections.
Define∆zk ∈ R

2p and∆uk ∈ R
2m by

∆zk , zk − zk−1, ∆uk , uk − uk−1, (6.1)

and∆Zk ∈ R
2p×k and∆Uk ∈ R

2m×k by

∆Zk ,
[

∆z1 · · · ∆zk
]

, ∆Uk ,
[

∆u1 · · · ∆uk
]

. (6.2)

The system dynamics equation (2.7) can be represented by

∆zk = T∆uk. (6.3)

Hence, it follows from (6.1) that

∆Zk = T∆Uk. (6.4)

Assuming∆Uk∆UT
k is nonsingular, we define

Pk , (∆Uk∆UT
k )−1, (6.5)

and it follows from (6.4) that the least squares estimate
T̂LSk of T is given byT̂LSk = ∆Zk∆UT

k Pk.

The recursive least squares method is used to
iteratively updateT̂LSk based on the past and current
values of ∆zk and ∆uk. Since ∆uk∆uT

k is positive
semidefinite for allk and

∆Uk∆UT
k =

k
∑

i=1

∆ui∆u
T
i , (6.6)

it follows that if ∆Uk0
∆UT

k0
is nonsingular, then

∆Uk∆UT
k is nonsingular for allk > k0. Hence the

recursive procedure for determiningTLSk for all k > k0

is given by

Kk+1 = (1 + ∆uT
k+1Pk∆uk+1)

−1∆uT
k+1Pk, (6.7)

T̂LSk+1
= T̂LSk + εk+1Kk+1, (6.8)

Pk+1 = Pk (I − ∆uk+1Kk+1) , (6.9)

where

εk+1 , ∆zk+1 − T̂LSk∆uk+1. (6.10)

Note that

rank(∆Uk∆U
T
k ) = rank(∆Uk) 6 min(k, 2m). (6.11)

Since∆Uk∆UT
k is 2m× 2m, it follows from (6.11) that

∆Uk∆UT
k is singular for allk < 2m. Hence the recursive

procedure (6.7)-(6.9) cannot be used fork < 2m.

A suboptimal way to determine an estimateT̂k of
T is to replacePk in (6.7)-(6.9) byP̂k, that is,

Kk+1 = (1 + ∆uT
k+1P̂k∆uk+1)

−1∆uT
k+1P̂k, (6.12)

T̂k+1 = T̂k + εk+1Kk+1, (6.13)

P̂k+1 = P̂k (I − ∆uk+1Kk+1) , (6.14)

whereP̂0 is positive definite but otherwise arbitrary andεk

is defined by (6.10) witĥTLSk replaced byT̂k . It follows
from (6.12)-(6.14) that̂Pk is positive definite for allk > 0
and is given by

P̂k = (P̂−1
0 + ∆Uk∆UT

k )−1. (6.15)

Furthermore,T̂k is given by

T̂k = (T̂0P̂
−1
0 + ∆Zk∆UT

k )(P̂−1
0 + ∆Uk∆UT

k )−1.(6.16)

SinceP̂0 is positive definite, the inverse in (6.16) always
exists, and hence the recursive procedure can be used for
all k > 0. The updated estimatêTk is used at each control
update step to calculate the control lawuk+1, which is
given by

uk+1 = −M̂k(zk − T̂kuk), (6.17)

whereM̂k is defined by

M̂k , (T̂
T
k QT̂k + S

T
T̂k + T̂

T
k S + R)

−1
(T̂

T
k Q + S

T
). (6.18)

VII. C ONVERGENCEANALYSIS OF THE ESTIMATE T̂k

Define∆Tk ∈ R
2p×2m by

∆Tk , T̂k − T, (7.1)

whereT̂k is updated using (6.12)-(6.14). Next, define the
function V (∆T, P̂ ) by

V (∆T, P̂ ) , ∆T P̂−1∆TT (7.2)

and∆Vk by

∆Vk = V (∆Tk+1, P̂k+1) − V (∆Tk, P̂k), (7.3)



whereP̂k is updated using (6.12)-(6.14) and̂P0 is the pos-
itive definite matrix used to initialize (6.14). Subtracting
T from both sides of (6.13) yields

∆Tk+1 = ∆Tk + εk+1Kk+1. (7.4)

Using (6.3) and (7.1),εk+1 can be expressed as

εk+1 = −∆Tk∆uk+1. (7.5)

Substituting (6.12)-(6.14) and (7.5) into (7.3) yields

∆Vk = −
εk+1ε

T
k+1

1 + ∆uT
k+1P̂k∆uk+1

, (7.6)

and hence V (∆Tk, P̂k) is non-increasing. Since
V (∆Tk, P̂k) > 0, it follows that lim

k→∞
V (∆Tk, P̂k)

exists and is nonnegative. Hence

lim
k→∞

−
εk+1ε

T
k+1

1 + ∆uT
k+1P̂k∆uk+1

= lim
k→∞

∆Vk = 0. (7.7)

Next we show that∆uk is bounded. Substituting
(6.4) into (6.16) yields

T̂k = (T̂0P̂
−1
0 + T∆Uk∆U

T
k )(P̂

−1
0 + ∆Uk∆U

T
k )

−1
. (7.8)

Post-multiplying (7.8) byP̂−1
0 + ∆Uk∆UT

k yields

∆Tk = ∆T0P̂
−1
0 (P̂−1

0 + ∆Uk∆UT
k )−1. (7.9)

If ∆Uk0
∆UT

k0
is nonsingular, then, for allk > k0, (7.9)

implies that

σmax(∆Tk) 6
σmax(∆T0)

σmin(P̂0)σmin(∆Uk0
∆UT

k0
)
. (7.10)

Hence, if P̂0 is chosen to be sufficiently large, then
σmax(∆Tk) can be made sufficiently small and even made
to satisfy condition (5.10) and in that case it follows from
(5.9) that, for allk > k0,

σmax(M̂k∆Tk) < 1. (7.11)

The state space representation of the system dy-
namics with the control law (6.17) is

[

zk+1

uk+1

]

= Âk

[

zk

uk

]

, (7.12)

whereÂk is defined by (5.5) withT̂ andM̂ replaced by
T̂k andM̂k respectively. Hence for allk > k0

[

zk

uk

]

=

k
∏

i=k0

Âi

[

zk0

uk0

]

. (7.13)

Note that
k

∏

i=k0

Âi can be factored as

k
∏

i=k0

Âi =

[

I2p T
0 I2m

] [

I 0

Â21

∏k
i=k0

(M̂i∆Ti)

] [

I2p −T
0 I2m

]

, (7.14)

where Â21 = −M̂k0

(

I +
∑k−1

i=k0
(
∏i

j=0 ∆TjM̂j+1)
)

.

From (7.11) it follows that

σmax





k
∏

i=k0

(M̂i∆Ti)



 6
k

∏

i=k0

(

σmax(M̂i∆Ti)
)

< 1 (7.15)

and hence it follows from (7.13)-(7.15) thatzk anduk are
bounded. Hence, for allk = 0, 1, . . ., let γ > 0 satisfy
‖uk‖ < γ and thus

‖∆uk‖ = ‖uk+1 − uk‖ < 2γ. (7.16)

From (6.5) and (6.6) it follows that̂Pk+1 6 P̂k,
which implies that

P̂k 6 P̂0. (7.17)

Hence, it follows from (7.17) and (7.16) that

1 + ∆uT
k P̂k∆uk 6 1 + 4γ2λmax(P̂0) (7.18)

and thus (7.8) implies that

lim
k→∞

εk = 0. (7.19)

Taking the limit ask → ∞ of (6.13) yields

lim
k→∞

(

T̂k+1 − T̂k

)

= lim
k→∞

εk+1∆uT
k+1P̂k

1 + ∆uT
k+1P̂k∆uk+1

. (7.20)

From (7.16)-(7.20) it follows that,

lim
k→∞

(

T̂k+1 − T̂k

)

= 0. (7.21)

Thus,{T̂k} is a Cauchy sequence, and henceT̂k converges.
However, there is no guarantee thatT̂k will converge toT .
In fact, it can be shown that there are certain choices of
P̂0 andT̂0 such thatT̂k will not converge toT . Conditions
on T̂0 and P̂0 that guarantee convergence ofT̂k to T are
not available. However, the steady state performance of the
adaptive HSS control depends on the steady-state value of
the estimateT̂k. Note that using (6.16) the RLS estimate
T̂k can be expressed as

T̂k = T + ∆T0P̂
−1
0 P̂k. (7.22)

Consequently, ifP̂k → 0 as k → ∞, then T̂k → T as
k → ∞. It follows from the theory of RLS [12] that, if
∆uk is persistently exciting, then̂Pk → 0 as k → ∞.
However, sinceuk is given by the adaptive control law
(6.17),∆uk may not be persistently exciting.

Next, defineδ̃k ∈ R
2m by

δ̃k ,
[

01×i−1 δk,i 01×2m−i

]T
(7.23)

andδk,i ∈ R by δk,i , δ sign(∆uk,i), where∆uk,i is the
ith component of∆uk, δ > 0, andi is the remainder when
k is divided by2m. Next, define∆ũk by ∆ũk , ∆uk+δ̃k.
It can be shown that ifδ is sufficiently large, then∆ũk is
persistently exciting. The modified control law is given by

uk+1 = uk + ∆ũk. (7.24)



Fig. 2. Top view of the acoustic drum with two end-mounted speakers
and one internal microphone. The microphone is initially at Location
A and is moved to Location B while the HSS control algorithm is
operational.

VIII. E XPERIMENTAL EXAMPLE : NOISE

CANCELLATION IN AN ACOUSTICDRUM

The acoustic drum (see Fig. 2) has two end-
mounted speakers, and up to six microphones suspended
inside the drum through holes drilled along the top.
Though the equations of motion of the acoustic drum is
not similar to that of the duct [1], the input-output response
is linear, and hence HSS control can be used to reject a
disturbance with a known harmonic spectrum.

A constant-amplitude, single-tone disturbance
signal w(t) with frequency 10 Hz (ω = 20π rad/s) is
produced by the disturbance speaker. The actuation speaker
produces the controlu(t) for cancelling the disturbance.
The control objective is to reduce the outputz(t) measured
by microphone 1 at Location A.

To estimateT , a sinusoidal input with frequency
10 Hz, amplitudeû1, and phase angleψ1 is applied
to the system, inN separate trials. The amplitude and
phase of the output,̂z1 and θ1, are used to determine an
initial estimateTLS of T using the batch least squares
procedure. A dSPACE 1003 system is used to determine
the vectorzk from measurements ofz(t) and the update
uk is computed by a Simulink implementation of the HSS
control algorithm.

Fig. 3 shows the performance of HSS control
with T = TLS. Next, we consider the case in which
T is uncertain. Att ≈ 4 s the microphone is moved
from its original location (Location A) to a new location
(Location B), resulting in a change in the system dynamics.
Since conventional HSS control is unaware of this change,
the modified system is unstable and the output diverges.
At t ≈ 22 s, adaptive HSS control begins, and stability
is recovered, providing disturbance rejection at the new
location.
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Fig. 3. Disturbance rejection using fixed-model and adaptiveHSS
control. The microphone is moved att ≈ 4 s and the output diverges.
Adaptive HSS control begins att ≈ 22 s, and convergence is achieved.

IX. CONCLUSION

In this paper we developed adaptive harmonic
steady state control for disturbance rejection. HSS control
extends higher harmonic control and convergent control
developed for helicopter vibration reduction and rotor
imbalance control. HSS control is applicable to stable sys-
tems with tonal or multi-tonal disturbances. The adaptive
HSS algorithm is easy to implement and robust in the sense
that no modeling information is required aside from the
number of disturbance harmonics.
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