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Abstract
This paper analyzes equipartition in linear Hamil-

tonian systems in a deterministic setting. We consider
the group of phase space symmetries of a stable linear
Hamiltonian system, and characterize the subgroup of
symmetries whose elements preserve the time averages
of quadratic functions along the trajectories of the sys-
tem. As a corollary, we show that if the system has
simple eigenvalues, then every symmetry preserves av-
erages of quadratic functions. As an application of our
results to linear undamped lumped-parameter systems,
we provide a novel proof of the virial theorem using
symmetry. We also show that under the assumption
of distinct natural frequencies, the time-averaged ener-
gies of two identical substructures of a linear undamped
structure are equal. Examples are provided to illustrate
the results.

1. Introduction
Undamped and thus conservative mechanical sys-

tems are Lyapunov stable, and thus have no steady-
state energy distribution. The simplest example of
an undamped single-degree-of-freedom oscillator shows
that the energy is periodically converted from purely
kinetic to purely potential and then back to purely
kinetic. A two-degree-of-freedom system consisting of
an interconnected pair of undamped oscillators exhibits
similar behavior, with the energy alternately possessed
by one oscillator and then the other. Yet, in classical
statistical thermodynamics, a crystalline solid is mod-
eled as a lattice of identical vibrating molecules, whose
degrees of freedom satisfy the principle of equipartition
of energy. Thus, despite the lack of a steady-state en-
ergy distribution in undamped systems, such systems
provide the conceptual foundation for macroscopic en-
ergy transfer when the system consists of a large num-
ber of undamped oscillators.

The principle of equipartition of energy implies that
the temperature of each subsystem converges to the
same value, and leads to the zeroth law of thermody-
namics, that is, that heat flows from hot to cold. The
principle of equipartition holds for systems with linear
dynamics; for nonlinear systems it is well known that
equipartition does not generally occur [7].

The challenge of deriving the empirical laws of ther-
modynamics from large scale systems of discrete subsys-
tems depends on the statistical properties of the system
model. Stochastic averaging can be performed with re-
spect to the statistics of initial conditions, exogenous
disturbances, or subsystem and coupling parameters
(see [8, 9, 10] and the references therein). Whichever
approach is used, the ultimate objective is to approxi-
mate the high-order dynamics of an oscillatory system
with the low-order dynamics of a non-oscillatory sys-
tem. In short, wave dynamics are approximated by
diffusion dynamics. Related work from a dynamics and
control perspective can be found in [1, 5, 6, 13, 14].

The objective of this paper is to investigate equipar-
tion in a deterministic setting in undamped systems
whose number of degrees of freedom may not be large.

In [4] a deterministic averaging approach was used
to analyze equipartition in collections of identical, un-
damped coupled oscillators. It was shown that equipar-
tition of energy holds for a pair of identical, coupled os-
cillators with distinct coupled frequencies. This result
shows that, with time averaging, energy flows from the
initially higher-energy oscillator to the initially lower-
energy oscillator, thereby verifying the zeroth law of
thermodynamics for a pair of coupled oscillators. In
addition, numerical evidence was presented to suggest
that the analogous result holds for a collection of cou-
pled oscillators.

Reference [12] adopted a deterministic averaging
approach in a behavioral framework to analyze equipar-
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tition in an oscillatory system comprising of two identi-
cal subsystems coupled together in a symmetrical man-
ner. It was shown that if the coupling rendered the mo-
tion of each of the two subsystems observable through
the variables of the other, then, along every motion
of the coupled system, the time average of any given
quadratic functional of the variables of one subsystem
equals the time average of the same functional of the
variables of the other subsystem. In particular, this im-
plies that the energies of the two subsystems are equal
in the average.

Intuitively, one expects that a system of coupled
subsystems will exhibit equipartition of energy only if
the subsystems are identical, that is, the state vari-
ables of one subsystem transform to those of the other
subsystem under a state-space symmetry S that leaves
the dynamics of the overall coupled system unchanged.
Moreover, the energies of such identical subsystems are
quadratic functions on the full state space that trans-
form into one another under the symmetry transforma-
tion S. Hence the average energies of the two identical
subsystems are equal if the symmetry S that relates the
two subsystems also preserves averages of functions.

To formalize the above ideas we consider the Lie
group GA of phase space symmetries of a linear Hamil-
tonian system ẏ = Ay. Thus GA is the set of all sym-
plectic transformations that leave the dynamics of the
system invariant. As expected from Noether’s theo-
rem [2, Appendix 5], the Lie algebra of GA is the set
of all linear Hamiltonian systems whose Hamiltonian
functions are the quadratic integrals of motion of the
original system.

In section 4, we consider averages of quadratic func-
tions along the solutions of a stable Hamiltonian sys-
tem. In section 5, we identify symmetries of the Hamil-
tonian system that preserve averages of quadratic func-
tions. Our main result says that the symmetries in GA

that preserve averages of every quadratic function form
the subgroup GA of elements that are also symmetries
of every linear Hamiltonian system whose Hamiltonian
function is an integral of motion of the original system.

In section 6, we characterize the groups GA and GA

along with their Lie algebras and describe their struc-
ture in terms of the eigenstructure of the system. In
particular, we show that the subgroup GA of average-
preserving symmetries is the center subgroup of GA

consisting of those symmetries of the system that com-
mute with every other symmetry of the system. As a
corollary of our characterization, we show that if the
system has distinct eigenvalues, then GA = GA, that

is, every symmetry preserves averages. This corollary
partly justifies the assumption of distinct coupled nat-
ural frequencies used in [4].

In section 7, we apply our main result to undamped
linear lumped-parameter systems. We show that the
kinetic and potential energies of such a system, con-
sidered as quadratic functions on the phase space, are
related by a phase space symmetry of the system that
commutes with every other phase space symmetry. An
application of our main result thus yields a novel proof
of the virial theorem for linear systems, which states
that the average kinetic and potential energies of an
undamped linear mechanical system are equal. We also
specialize our main result to configuration space sym-
metries, that is, orthogonal transformations on the con-
figuration space that leave the mass and stiffness ma-
trices invariant. We show that under the assumption
of distinct natural frequencies, every configuration-level
symmetry preserves the average of a quadratic func-
tion of positions or velocities. We provide an exam-
ple to illustrate how this corollary can be used to de-
duce equipartition among identical subsystems of an
undamped system. We also provide an example to
demonstrate that equipartition may not hold if the as-
sumption of distinct natural frequencies fails.

2. Integrals of Motion and Symmetries

of Linear Hamiltonian Systems
For every n, we let In denote the identity matrix of

size n × n, and let J2n =
[

0 In

−In 0

]
. A matrix S ∈

R
2n is symplectic if STJ2nS = J2n, and Hamiltonian if

J2nS is symmetric. We denote by Sp(n) the set of all
2n× 2n real symplectic matrices. Sp(n) is a n(2n+1)-
dimensional Lie group [11, p. 8]. The Lie algebra of
Sp(n) is the set sp(n) of 2n × 2n real Hamiltonian
matrices. Finally, for every n, we let Sym(n) denote
the 1

2n(n+1)-dimensional real vector space of all n×n

real symmetric matrices.
A matrix B ∈ sp(n) is stable if every eigenvalue of

B is semisimple and has zero real part. A matrix S ∈
Sp(n) is stable if every eigenvalue of S is semisimple
and has unit magnitude. Every real eigenvalue of a
stable symplectic matrix is thus either 1 or −1.

In this paper, we consider the autonomous linear
Hamiltonian system

ẏ(t) = Ay(t), (1)

where y(t) ∈ R
2n and A ∈ sp(n). The matrix H

def=
J−1

2n A is symmetric, and the system (1) is Hamiltonian
with the quadratic Hamiltonian function x �→ xTHx.
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We define LA : Sym(2n) → Sym(2n) by LA(Q) =
ATQ + QA. For every Q ∈ Sym(2n), the quadratic
function x �→ xTLA(Q)x is the Lie derivative of the
quadratic function x �→ xTQx along trajectories of
(1), that is, for every solution y of (1) and for ev-
ery Q ∈ Sym(2n), it follows that d

dty
T(t)Qy(t) =

yT(t)LA(Q)y(t). Thus, for every Q ∈ kernel LA, the
quadratic function x �→ xTQx is an integral of motion
for the system (1).

Next, we introduce the set GA
def= {S ∈ Sp(n) :

S−1AS = A} of symplectic transformations with re-
spect to which the dynamics (1) are invariant. It is
easy to show that GA = {S ∈ Sp(n) : STHS = H}.
GA is clearly a group. The next result asserts that GA

is a Lie group. Furthermore, the Lie algebra of GA

is the Lie algebra of linear Hamiltonian systems whose
Hamiltonian functions are precisely the quadratic inte-
grals of motion of (1).

Proposition 2.1. GA is a closed Lie subgroup
of Sp(n) having Lie algebra gA = {B ∈ sp(n) : BA −
AB = 0} = {J2nP : P ∈ kernel LA}. In particular, gA

and kernel LA have the same dimension.

Proof. It follows from Proposition I.2.1.3 of [11]
that GA is a Lie group with Lie algebra gA. The last
part follows by showing that B ∈ sp(n) satisfies BA =
AB if and only if P

def= J−1
2n B ∈ kernel LA. �

Remark 2.1. The relationship between the sym-
metries and the integrals of motion of (1) pointed out
in Proposition 2.1 is a restatement of the Hamiltonian
version of Noether’s theorem (see, for instance, [2, Ap-
pendix 5]). However, we do not elaborate on this con-
nection as it lies outside the scope of this paper.

3. Time-Averages of Quadratic

Functions
In this section, we investigate time-averages of

quadratic functions along the solutions of (1).
In the sequel, we assume that the Hamiltonian ma-

trix A is stable. Thus A has semisimple imaginary
eigenvalues, and every solution of (1) is bounded. In
particular, the matrix exponential t �→ eAt is bounded.

Next, we define A : Sym(2n) → Sym(2n) by
A(Q) = limt→∞ 1

t

∫ t

0
eATτQeAτdτ . For every x ∈ R

2n

and every Q ∈ Sym(2n), xTA(Q)x is the average of
the quadratic function z �→ zTQz over [0,∞) along the
solution y of (1) satisfying y(0) = x. Thus kernel A
represents quadratic functions that have zero average
along trajectories of (1).

The next result relates the property of being zero
mean along trajectories of (1) to the property of being
an integral of motion of (1).

Proposition 3.1.

range A = kernel LA, (2)

range LA = kernel A. (3)

Proof. Let Q ∈ Sym(2n) and consider P = A(Q).
We have LA(P ) = limt→∞ 1

t

∫ t

0
d
dte

ATτQeAτdτ =
limt→∞ 1

t [e
ATtQeAt − Q] = 0. Thus range A ⊆

kernel LA. The reverse inclusion follows by noting that
eATτQeAτ = Q for every τ ≥ 0 and Q ∈ kernel LA, so
that the restriction of A to kernel LA equals the iden-
tity. Equation (2) now follows.

On noting that LA ◦A = A◦LA, it follows from (2)
that range LA ⊆ kernel A. To show the reverse inclu-
sion, we use (2) to compute dim(range LA) = n(2n +
1) − dim(kernel LA) = n(2n + 1) − dim(range A) =
dim(kernel A). Since range LA is contained in kernel A
and has the same dimension as kernel A, (3) follows. �

4. Average-Preserving Symmetries
In this section, we identify symmetries of (1) that

preserve time averages of quadratic functions along so-
lutions of (1).

Let GA = ∩B∈gA
GB denote the set of symplectic

symmetries of (1) that are also symmetries of every lin-
ear Hamiltonian system whose Hamiltonian function is
an integral of motion of (1). The center subalgebra [11,
p. 40] of gA is the set gA

def= {C ∈ gA : BC − CB =
0, B ∈ gA} of elements in gA that commute with ev-
ery element of gA. The subalgebra gA is a commu-
tative Lie subalgebra of gA. It is easy to show that
gA = ∩B∈gA

gB . Our next result states that GA is a
Lie subgroup of Sp(n) and has the Lie algebra gA.

Proposition 4.1. GA is a Lie subgroup of Sp(n)
having the Lie algebra gA.

Proof. The result follows from Proposition 2.1 and
Theorem I.1.4.2 of [11]. �

The following theorem which is our main result, as-
serts that if two quadratic functions are related by a
symmetry of (1) contained in GA, then the two func-
tions have the same average along solutions of (1).

Theorem 4.1. Suppose S ∈ GA. Then
A(STQS) = A(Q) for every Q ∈ Sym(2n) if and only
if S ∈ GA.

Proof. We begin by noting that since SeAt = eAtS

for every t, it follows that A(STQS) = STA(Q)S for
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every Q ∈ Sym(2n).
To show sufficiency, suppose S ∈ GA and let

Q ∈ Sym(2n). Proposition 3.1 implies that A(Q) ∈
kernel LA, so that JA(Q) ∈ gA by Proposition 2.1. It
now follows by definition that S ∈ GJA(Q), that is,
STA(Q)S = A(Q). Hence A(STQS) = A(Q).

Next, to prove necessity, suppose A(STQS) =
A(Q) for every Q ∈ Sym(2n), and let B ∈ gA. De-
fine Q

def= J−1
2n B ∈ Sym(2n). Proposition 2.1 im-

plies that Q ∈ kernel LA, so that A(Q) = Q. Hence
STQS = STA(Q)S = A(STQS) = A(Q) = Q, which
implies that SB = BS, that is, S ∈ GB. Since B ∈ gA

was chosen arbitrarily, it follows that S ∈ GA. �

5. Structure of the Groups GA and GA

In this section, we characterize the groups GA and
GA as well as their Lie algebras.

Let ±jβ1, . . . ,±jβr be the distinct nonzero eigen-
values of the stable Hamiltonian matrix A, and let
m1, . . . ,mr be the corresponding algebraic multiplici-
ties. Let m0 ≥ 0 be the algebraic multiplicity of the zero
eigenvalue β0

def= 0 of A, so that m0+2(m1+· · ·+mr) =
2n. Note that m0 is even.

For every i = 0, . . . , r, let Vi
def= {x ∈ R

2n : A2x =
−β2

i x}. For every i = 1, . . . r, the subspace Vi is the
real eigenspace of A associated with the eigenvalue
pair ±jβi. Since A is stable, each of its eigenvalues
is semisimple, and hence, for every i = 1, . . . , r, the
subspace Vi has dimension 2mi. The subspace V0 is
the eigenspace associated with the zero eigenvalue, and
has dimension m0. It is easy to show that each of the
subspaces V0, . . . , Vr is invariant under every element of
GA and gA.

Next, for each i = 0, 1, . . . , r, we define Gi
def= {S ∈

GA : Sx ∈ {x,−x} for every x ∈ Vj , j 	= i} and gi
def=

{B ∈ gA : Bx = 0 for every x ∈ Vj , j 	= i}. In our
next result, we list some properties of the groups Gi

and Lie algebras gi, i = 0, . . . , r.

Proposition 5.1. The following statements hold.
i) For every i = 0, . . . , r, Gi is a normal Lie subgroup
of GA with the Lie algebra gi, which is an ideal of gA.
ii) G0 is homomorphic to Sp( 1

2m0), while, for ev-
ery i = 1, . . . , r, Gi is homomorphic to the group
{S ∈ Sp(mi) : SJ2mi

= J2mi
S}.

iii) The Lie subalgebra g0 is isomorphic to the
1
2m0(m0 + 1)-dimensional Lie algebra sp( 1

2m0), while,
for every i = 1, . . . , r, gi is isomorphic to the m2

i -
dimensional Lie algebra {B ∈ sp(mi) : BJ2mi

=
J2mi

B}.

Our next result completely characterizes the groups
GA and GA along with their respective Lie algebras gA

and gA. Recall that the center of the group GA is the
subgroup {S ∈ GA : ST = TS for every T ∈ GA} of
elements in GA that commute with every element of
GA. The proof depends on Theorem 2 of [3].

Theorem 5.1. The following statements hold.
i) GA =

∏r
i=0 Gi and gA = g0⊕· · ·⊕gr. Consequently,

the dimensions of the subspaces gA and kernel LA are
each equal to 1

2m0(m0 + 1) + m2
1 + · · · + m2

r.
ii) GA is the center subgroup of GA and equals∏

i∈K Gi, where K = {i : 1 ≤ i ≤ r,mi = 1}. More-
over, gA =

⊕
i∈K gi. Consequently, the dimension of

gA equals the number of simple eigenvalues of A.

The following corollary specializes Theorem 5.1 to
the case where the matrix A is simple.

Corollary 5.1. A is simple if and only if GA =
GA if and only if GA is commutative. If A is simple,
then gA = gA, and gA and kernel LA are n-dimensional
subspaces of sp(n) and Sym(n), respectively.

Proof. The result follows from Theorem 5.1 by noting
that if A is simple, then r = n, m0 = 0 and mi = 1 for
every i = 1, . . . , n, so that K = {1, . . . , n}. �

6. Undamped Mechanical Systems
In this section, we apply Theorem 4.1 to the un-

damped lumped-parameter mechanical system

Mq̈(t) + Kq(t) = 0, (4)

where q ∈ R
n, and M,K ∈ Sym(n) are the positive-

definite mass and stiffness matrices, respectively.
As a first application of Theorem 4.1, we prove the

well known virial theorem which states that the time-
averaged potential and kinetic energies of the system
(4) are equal. Our proof is novel in that it relies on
ideas of symmetry.

Defining the state vector y =
[

qTM
1
2 q̇TM

1
2

]T

yields the state space description (1) of (4) with

A =

[
0 In

−M−1
2 KM− 1

2 0

]
.

The matrix A is Hamiltonian. Consequently, the sys-
tem (4) is Hamiltonian with the Hamiltonian function
x �→ xTHx, where H = −J2nA. Under our assump-
tions on the mass and stiffness matrices, the system (1)
is Lyapunov stable.

On letting

P1 =
1
2

[
M−1

2 KM− 1
2 0

0 0

]
, P2 =

1
2

[
0 0
0 In

]
,
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it follows that xTP1x = 1
2qTKq and xTP2x = 1

2 q̇TMq̇

are the potential and kinetic energies, respectively, of
the system (4). It is a simple matter to verify that

S =

⎡
⎣ 0 −(M− 1

2 KM−1
2 )−

1
2

(M− 1
2 KM−1

2 )
1
2 0

⎤
⎦

is symplectic and satisfies i) STHS = H, so that S ∈
GA, and ii) STP2S = P1.

We claim that S ∈ GA. To show this, consider

T ∈ GA. If T is partitioned as T =
[

T1 T12

T21 T2

]
where

T1, T12, T21, T2 ∈ R
n×n, then it can be shown that T1 =

T2, T21 = −T12(M− 1
2 KM− 1

2 ) and that T1, T12, T21, T2

commute with M−1
2 KM−1

2 . These facts can be used
to show that S commutes with T . Since T ∈ GA was
chosen arbitrarily, it follows from ii) of Theorem 5.1
that S ∈ GA. Theorem 4.1 now leads to the virial
theorem, which we state as the following corollary.

Corollary 6.1. The time averaged kinetic and po-
tential energies along every solution of (4) are equal.

Our next result considers symmetries of (1) that
arise from configuration-level symmetries, that is sym-
metries of the equation (4).

Corollary 6.2. Suppose the system (4) has dis-
tinct natural frequencies. Suppose, in addition, that
there exists an orthogonal matrix R ∈ R

n×n such that
RTKR = K and RTMR = M . Then, for every
matrix P ∈ Sym(n), the time averages of qT(t)Pq(t)
(q̇T(t)P q̇(t)) and qT(t)RTPRq(t) (q̇T(t)RTPRq̇(t)) are
equal along every solution of (4).

Proof. First, note that qTPq = xTQ1x

and q̇TP q̇ = xTQ2x, where Q1, Q2 ∈ Sym(2n)

are given by Q1 =

[
M−1

2 PM−1
2 0

0 0

]
, Q2 =[

0 0

0 M− 1
2 PM−1

2

]
. Next, consider the matrix S =

[
R 0
0 R

]
. It is easy to verify that S is symplec-

tic and satisfies i) STHS = H, that is, S ∈ GA,
and ii) qTRTPRq = xTSTQ1Sx and q̇TRTPRq̇ =
xTSTQ2Sx. Since the natural frequencies of the system
are distinct, Corollary 5.1 implies that S ∈ GA. The
result now follows from Theorem 4.1 by letting Q = Q1

or Q = Q2. �

If P and RTPR represent the stiffness (mass) ma-
trices of two subsystems of (4), with R a symmetry

of (4), then Corollary 6.2 implies that the two subsys-
tems will have the same potential (kinetic) energies on
an average. Thus Corollary 6.2 allows us to assert that
symmetrically related subsystems of the system (4) will
have the same energies in the average. The following
example illustrates an application of Corollary 6.2.

Example 6.1.

m 2 m 31m
k 1 k12

k13

k 2

k 23 k 3

Let M and K denote the mass and stiffness ma-
trices, respectively of the undamped three-degree-of-
freedom system depicted in the figure above. We denote
the extensions in the springs k1, k2 and k3 by q1, q2 and
q3, respectively.

Let m1 = m2, k13 = k23 and k1 = k2. Then, the or-
thogonal permutation matrix R representing the linear
function (q1, q2, q3) �→ (q2, q1, q3) satisfies RTMR = M

and RTKR = K. In other words, the equations (4)
remain unchanged when q1 and q2 are interchanged.

The potential energies in the springs k1 and k2 are
equal to 1

2qTP1q and 1
2qTP2q, where P1 = diag(k1, 0, 0)

and P2 = diag(0, k2, 0). It is easy to verify that under
our assumptions on the spring stiffnesses, RTP1R =
P2. Also, for generic values of the parameters k12 and
k3, the system shown in the figure has distinct natural
frequencies. Hence it follows from Corollary 6.2 that,
generically, the average potential energy in the spring
k1 equals the average potential energy in the spring k2

along any solution of (4).

Our next example shows that the assertion in Corol-
lary 6.2 may not hold in the case where the system (4)
has repeated natural frequencies.

Example 6.2. Consider the undamped three-
degree-of-freedom system introduced in Example 6.1,
with all masses and spring stiffnesses set to unity.

It is easy to verify that the equations (4) remain
unchanged under orthogonal permutations that inter-
change q1 with q2, q2 with q3, and q3 with q1. Example
6.1 above may thus lead one to expect the potential en-
ergies in the springs k1, k2 and k3, which transform into
one another under the permutations listed above, to
be equal. However, the orthogonal permutations listed
above do not commute, thus indicating that the group
of symmetries of the system is not commutative. There-
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fore, Corollary 5.1 implies that the system has repeated
natural frequencies. Indeed, for our choice of the masses
and stiffnesses, the system has only two distinct natural
frequencies, namely 4s−1 and 1s−1, with the larger nat-
ural frequency being repeated twice. The eigenvalue as-
sociated with the repeated natural frequency, however,
is semisimple (see Lemma 3 in [3]), and the system has
three linearly independent mode shape vectors given by
v1 = [1 −1 0]T, v2 = [1 0 −1]T, v3 = [1 1 1]T, with v1

and v2 corresponding to the repeated natural frequency.
A general solution of (4) is given by q(t) =

a1 sin(4t + φ1)v1 + a2 sin(4t + φ2)v2 + a3 sin(t + φ3)v3,
where the amplitudes a1, a2 and a3 as well as the phases
φ1, φ2 and φ3 can be assigned arbitrary values by an
appropriate choice of initial conditions on q and q̇.

The average energies in the springs k1, k2 and k3

along the general solution given above can easily be
calculated to be 1

4 [a2
1 + a2

2 + a2
3 + 2a1a2 cos(φ1 − φ2)],

1
4 (a2

1 + a2
3) and 1

4 (a2
2 + a2

3), respectively. It is clear that
the average energies in the springs k1, k2 and k3 are
not equal along every solution of (4). Note that unlike
in Example 6.1, the average energies in the springs k1

and k2 are not equal along every solution, even though
the symmetry that transforms the energy in k1 to the
energy in k2 is the same as in Example 6.1. This illus-
trates that the assertion in Corollary 6.2 may not hold
for systems having repeated natural frequencies.

7. Conclusion
We have explored the connections between the

group of phase space symmetries of a stable linear
Hamiltonian system, the set of its quadratic integrals
of motion, and the operation of taking the average of
a quadratic function along the trajectories of the sys-
tem. Our main result is that elements of the center
subgroup of the group of symmetries preserve the time
averages of quadratic functions along the trajectories of
the system. In the special case where the system has
unrepeated eigenvalues, the group of symmetries of the
system is commutative, and therefore every symmetry
preserves averages of quadratic functions. These re-
sults are used to provide a novel symmetry-based proof
of the virial theorem, and obtain a equipartition result
for undamped linear lumped-parameter systems.
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