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In this paper we extend results of Wyatt, Siebert and Tan by deriving an energy flow
model in terms of thermodynamic energy rather than stored energy as in the standard
Statistical Energy Analysis (SEA) approach to energy flow modelling. This modified energy
flow model shows that energy flows according to thermodynamic energy and that this
property holds for an arbitrary number of non-identical subsystems independently of the
strength of the coupling. These results are compared with SEA energy flow predictions by
means of illustrative examples. In particular, it is shown that for multiple coupled
oscillators, SEA energy flow predictions based upon blocked energy may be erroneous,
while predictions based upon thermodynamic energy are correct. In particular, the
thermodynamic energy flow model correctly predicts zero net energy flow in the case of
equal temperature subsystems.

1. INTRODUCTION

Although classical dynamics provides models for multi-degree-of-freedom vibrational
systems, the inherent uncertainties and high dimensionality of many practical problems
have led researchers to develop stochastic energy flow techniques. In this regard Statistical
Energy Analysis, known as SEA, has been extensively developed and successfully applied
to practical problems in vibrations and acoustics [1–11]. A brief readable account is given
in Chapter 6 of reference [10].

From a system-theoretic point of view, however, the theoretical foundation of SEA
remains unsatisfying, since the precise mathematical assumptions of the theory have not
been completely specified. In addition, SEA itself has inherent limitations, such as the
requirement of either weak subsystem coupling or identical subsystems [3].

Our motivation for examining SEA is twofold. First, we believe that thermodynamic
modelling of large scale interconnected systems is an efficient approach for dealing with
both uncertainty and dimensionality [12, 13], especially in the high frequency range
[14–18]. In this regard, we assert that thermodynamic concepts need not be limited to the
realm of statistical mechanics of molecular systems, but rather are applicable to
low-dimensional, low frequency, deterministic systems. This point of view has been put
forth in reference [19] and further emphasized in reference [20].

Our second motivation for this work is the long range goal of developing robust
feedback controllers for large scale uncertain systems. In this regard SEA has already
inspired some robust feedback control techniques [21–24].
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Prior work on the foundations of SEA has focused on compartmental modelling [25, 26].
Such models were used in an SEA context in reference [6], and re-examined in references
[27, 28] by exploiting M-matrix properties [29].

The starting point for the present paper is the insightful work of Wyatt, Siebert and Tan
[30]. This paper, which was motivated by SEA and the ideas of reference [19], proposes
a significant departure from the usual SEA formulation. In essence, the contribution of
reference [30] was not to define subsystem energy in terms of ‘‘blocked’’ or isolated stored
(potential plus kinetic) modal energy. Rather, they propose defining subsystem energy as
the ratio of the external input power to the damping coefficient. We call this ratio the
thermodynamic energy. Thus, the energy (and hence ‘‘temperature’’) of a system is not
fundamentally its stored energy content, but rather its ability to shed heat. Since the
thermodynamic energy of a second order system is equivalent to its uncoupled mechanical
energy (see section 6), this observation is consistent with the discussion in reference [31,
see page 131].

The present paper, thus, has three goals. First, we re-state and, for completeness,
re-prove the results obtained in reference [30]. In this regard we reformulate the multiple
lossless coupled electrical network of reference [30] as the feedback interconnection of a
positive real transfer function and a strictly positive real transfer function. This
reformulation allows us to use state space and transfer function methods to render these
results accessible to the linear systems and control community, while paving the way for
application to mechanical systems (a là SEA) in later sections.

Next, we go beyond the results of reference [30] by deriving an energy flow model involv-
ing pairwise subsystem energy flow (Theorem 3.2). If the lossless coupling is purely imag-
inary—for example, a stiffness coupling—and the disturbances are mutually uncorrelated,
then we prove that energy always flows from higher energy (‘‘hotter’’) subsystems to lower
energy (‘‘colder’’) subsystems. Similar results are obtained for time domain models with
white noise disturbances (section 4). It is important to note that these results hold for an
arbitrary number of non-identical subsystems under strong (but purely imaginary) coupling.

Finally, we apply these results to coupled mechanical subsystems to contrast our results
with those of SEA theory. Specifically, we show that for three coupled oscillators under
strong coupling, energy flows according to thermodynamic energy and not according to
isolated (‘‘blocked’’) stored subsystem energy. In fact, we show that for a system with equal
temperatures (equipartition of energy) there is no net energy flow, although SEA
erroneously predicts such flow. These results demonstrate that thermodynamic modelling
is also effective for low-dimensional, low frequency, deterministic systems.

By using thermodynamic modelling techniques developed in this paper, we further
examine connections with SEA in another paper [32].

2. DEFINITIONS AND ASSUMPTIONS

In this paper we consider r scalar subsystems z1(s), . . . , zr (s) interconnected by a linear
time-invariant lossless coupling L(s). An electrical representation of this interconnection
involving scalar impedances zi (s) is given in Figure 1, which is adapted from reference [30].
Each subsystem zi (s) is assumed to be a strictly positive real and thus asymptotically stable
scalar transfer function. The disturbances wi (t) are zero-mean, wide-sense stationary
random processes with power spectral density matrix Sww (v), where w,[w1 · · · wr ]T. Note
that, for i, j=1, . . . , r,

Sww (v)(i,i) =Swiwi (v), Sww (v)(i,j) =Sww (v)( j,i) =Swiwj (v)=Swjwi (v), (1)
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Figure 1. An electrical representation of coupled impedance subsystems.

where Swiwi (v) and Swiwj (v) are the power spectral density of wi (t) and the cross-power
spectral density of wi (t) and wj (t), respectively (a list of notation is given in Appendix F).
If wi (t) and wj (t) are uncorrelated, then Swiwj (v)=0. However, unlike reference [30], we
allow Swiwj (v)$ 0. Since zi (s) is strictly positive real, it follows that

ci (v),Re [zi (jv)]q 0, i=1, . . . , r, v $ R, (2)

where ci (v) is the frequency dependent resistance or damping of the ith subsystem. For
convenience, define the r× r diagonal transfer function

Z(s),diag (z1(s), z2(s), . . . , zr (s)), (3)

and the frequency dependent resistance or damping matrix

Cd (v),diag (c1(v), c2(v), . . . , cr (v))=Re [Z(jv)]. (4)

The lossless r-port impedance coupling L(s) is an r× r skew-Hermitian transfer function;
that is,

L(jv)=−L(jv)*, v $ R. (5)

This condition implies that Re [L(jv)] is skew-symmetric and that Im [L(jv)] is
symmetric.
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For later use we recast Figure 1 in a slightly different form involving Z−1(s), which is
also strictly positive real. By defining the r-dimensional vectors

u,[u1 · · · ur ]T, y,[y1 · · · yr ]T, v,[v1 · · · vr ]T,

it can be seen that Figure 2 is equivalent to Figure 1. Figure 2 will be useful in applying
our results to mechanical systems for which v denotes force and y denotes velocity. Since
Z−1(s) is a strictly positive real transfer function and L(s) is a positive real transfer
function, closed loop stability is guaranteed [33].

3. ENERGY FLOW ANALYSIS IN THE FREQUENCY DOMAIN

In this section we analyze energy flow among the coupled systems zi (s) shown in Figure
1. We use E to denote energy variables and P for power variables. Throughout this section
we consider the situation in which the system is in steady state and all random processes
are stationary.

At first, we consider the power associated with the coupling matrix L(s) only. From
Figure 2 it follows that

y=Z−1(s)u=Z−1(s)(w− v)=Z−1(s)(w−L(s)y). (6)

Since Z(s) is square and invertible, it follows from equation (6) that

y=(I+Z−1(s)L(s))−1Z−1(s)w=(L(s)+Z(s))−1w. (7)

On the other hand,

v=L(s)y=L(s)(L(s)+Z(s))−1w. (8)

Remark 3.1. Since L(jv)+L*(jv)=0 and Z−1(jv)+Z−*(jv)q 0, it follows from
Lemma 2.1 in reference [33] that L(jv)+Z(jv) is invertible for all v $ R.

Since v(t), y(t) and w(t) are stationary random processes, it follows from equations (7)
and (8) that the cross-spectral density matrix Svy (v) is given by

Svy (v)=L(jv)(L(jv)+Z(jv))−1Sww (v)(L(jv)+Z(jv))−*. (9)

Thus, the cross-spectral density Sviyi of vi (t) and yi (t) is given by Sviyi (v)=Svy (v)(i,i).

Figure 2. A feedback representation of coupled electrical or mechanical subsystems.
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Now we let Pc denote the steady state average coupling energy flow matrix from v
through the coupling L(s) to y,

Pc,−E[v(t)yT(t)], (10)

where the minus sign denotes the fact that Pc is the energy flow exiting from L(s). Thus
the steady state average energy flow Pc

i exiting from the ith port of L(s) is given by

Pc
i ,Pc

(i,i) =−E[vi (t)yi (t)]. (11)

Furthermore, standard identities yield [10]

Pc =−Rvy (0)=
−1
2p g

a

−a

Svy (v) dv

=
−1
2p g

a

−a g
a

−a

e−jvtE[v(t)yT(t+ t)] dt dv

=
−1
2p g

a

−a g
a

−a

(cos vt−j sin vt)E[v(t)yT(t+ t)] dt dv

=
−1
2p g

a

−a

Re [Svy (v)] dv, (12)

where Rvy is the cross-correlation matrix of v(t) and y(t).
Next we define the average coupling energy flow matrix per unit bandwidth by

Ec(v),
−1
2p

Re [Svy (v)], (13)

so that the average energy flow per unit bandwidth exiting from the ith port of L(s) is
given by Ec

i (v)=Ec(v)(i,i). Thus

Pc =g
a

−a

Ec(v) dv, Pc
i =g

a

−a

Ec
i (v) dv. (14)

The following result, which appears as equation (3.1) in reference [30], can be interpreted
as the statement of conservation of energy at the lossless coupling L(s).

Lemma 3.1. The system shown in Figure 2 satisfies

s
r

i=1

Ec
i (v)=0, v $ R. (15)

Proof. It follows from equations (9) and (13) that

s
r

i=1

Ec
i (v)=

−1
2p

tr [Re [Svy (v)]]=
−1
4p

tr [Svy (v)+S*vy (v)]

=
−1
4p

tr [L(jv)(L(jv)+Z(jv))−1Sww (v)(L(jv)+Z(jv))−*

+ (L(jv)+Z(jv))−1Sww (v)(L(jv)+Z(jv)−*L(jv)*]

=
−1
4p

tr [(L(jv)+L(jv)*)(L(jv)+Z(jv))−1Sww (v)(L(jv)+Z(jv))−*]

=0. q
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Next we consider energy flow through the subsystems zi (s). From Figure 2 it follows
that

u=Z(s)y=Z(s)(L(s)+Z(s))−1w. (16)

By using equations (7) and (16), the cross-spectral density matrix Suy (v) can be obtained
as

Suy (v)=Z(jv)(L(jv)+Z(jv))−1Sww (v)(L(jv)+Z(jv))−*, (17)

and the cross-spectral density Suiyi (v) of ui (t) and yi (t) is given by Suiyi (v)=Suy (v)(i,i). By
denoting Pd as the steady state average energy dissipation rate matrix from u through the
subsystems zi (s) to y and applying standard identities, we obtain

Pd,−E[u(t)yT(t)]=
−1
2p g

a

−a

Re [Suy (v)] dv, (18)

where the minus sign denotes the energy flow exiting from Z−1(s); that is, dissipated by
the subsystems. Thus the steady state average energy flow through the ith subsystem Pd

i

is given by

Pd
i ,Pd

(i,i) =−E[ui (t)yi (t)]. (19)

Then, in a manner similar to Ec(v), we define the average energy dissipation rate matrix
per unit bandwidth by

Ed(v),
−1
2p

Re [Suy (v)], (20)

so that the average rate of energy flow through the ith subsystem per unit bandwidth is
given by Ed

i (v)=Ed(v)(i,i). Thus

Pd =g
a

−a

Ed(v) dv, Pd
i =g

a

−a

Ed
i (v) dv. (21)

The energy flow through each subsystem is the sum of the rate of energy storage and
the rate of energy dissipation. In steady state, since the rate of energy storage is zero, it
follows that the energy flow through each subsystem is equal to the rate of energy
dissipation.

Finally, we consider the external power generated by the disturbances. From Figure 2,
the cross-spectral density matrix Swy (v) can be obtained as

Swy (v)=Sww (v)(L(jv)+Z(jv))−*, (22)

so that the cross-spectral density Swiyi (v) of wi (t) and yi (t) is given by Swiyi (v)=Swy (v)(i,i).
Letting Pe denote the steady state average external power matrix from external
disturbances w to y and applying standard identities, we obtain

Pe,E[w(t)yT(t)]=
1
2p g

a

−a

Re [Swy (v)] dv, (23)

and the steady state average external power generated at the ith subsystem Pe
i is given by

Pe
i ,Pe

(i,i) =E[wi (t)yi (t)]. (24)

Next we define the average external power matrix per unit bandwidth Ee(v) as

Ee(v),
1
2p

Re [Swy (v)], (25)
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so that the average power generated at the ith subsystem per unit bandwidth is given by
Ee

i (v)=Ee(v)(i,i). Thus,

Pe =g
a

−a

Ee(v) dv, Pe
i =g

a

−a

Ee
i (v) dv. (26)

The energy flow per unit bandwidth quantities Ec
i (v), Ed

i (v) and Ee
i (v) satisfy the

following relations.
Lemma 3.2. The system shown in Figure 2 satisfies

Ec(v)+Ed(v)+Ee(v)=0, v $ R. (27)

Proof. From equations (13), (20) and (25), it follows that

Ec(v)+Ed(v)+Ee(v)=Svy (v)+Suy (v)+Swy (v)

=
−1
2p

Re [(L(jv)+Z(jv))(L(jv)+Z(jv))−1Sww (v)(L(jv)

+Z(jv))−*−Sww (v)(L(jv)+Z(jv))−*]

=
−1
2p

Re [Sww (v)(L(jv)+Z(jv))−*−Sww (v)(L(jv)+Z(jv))−*]

=0. q

Corollary 3.1. The system shown in Figure 2 satisfies

Ec
i (v)+Ed

i (v)+Ee
i (v)=0, i=1, . . . , r, v $ R, (28)

and

s
r

i=1

[Ed
i (v)+Ee

i (v)]=0, v $ R. (29)

Proof. Equation (28) corresponds to the (i, i) element of equation (27), while equations
(15) and (28) yield equation (29). q

Lemma 3.1 and Corollary 3.1 describe the properties of the average energy flows per
unit bandwidth among the coupled subsystems. That is, equation (28) shows that at each
subsystem the effect of external power generated by the disturbances is to change the rate
of energy dissipation and energy flow through the coupling, but, from equation (15), the
total energy flow through all of the ports is zero. Thus, as shown by equation (29), the total
external power is used to change the total rate of subsystem energy dissipation in the steady
state. Furthermore, from the following results we can make the same arguments for the
energy flows.

Corollary 3.2. The system in Figure 2 satisfies

s
r

i=1

Pc
i =0, Pc +Pd +Pe =0, Pc

i +Pd
i +Pe

i =0, i=1, . . . , r, (30–32)

and

s
r

i=1

(Pd
i +Pe

i )=0. (33)

Proof. These results are obtained by integrating equations (15), (27), (28) and (29) over
(−a, a). q
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Now we decompose Sww (v) into its incoherent (diagonal) portion Inc [Sww (v)] and
its coherent (off-diagonal) portion Coh [Sww (v)], so that Sww (v)= Inc [Sww (v)]+
Coh [Sww (v)]. As will be seen, this decomposition allows us to show how energy flow is
affected by disturbance correlation. Hence Ec(v), Ed(v) and Ee(v) can be correspondingly
decomposed as

Ec(v)=Ec
Inc (v)+Ec

Coh (v), Ed(v)=Ed
Inc (v)+Ed

Coh (v),

Ee(v)=Ee
Inc (v)+Ee

Coh (v), (34–36)

where

Ec
Inc (v),

−1
2p

Re [L(jv)(L(jv)+Z(jv))−1 Inc [Sww (v)](L(jv)+Z(jv))−*], (37)

Ec
Coh (v),

−1
2p

Re [L(jv)(L(jv)+Z(jv))−1 Coh [Sww (v)](L(jv)+Z(jv))−*], (38)

and Ed
Inc (v), Ed

Coh (v), Ee
Inc (v) and Ee

Coh (v) are similarly defined from equations (17), (20),
(22) and (25). Note that Inc [Sww (v)] and Coh [Sww (v)] are diagonal and off-diagonal
matrices, respectively, although the matrix Ec

Inc (v) is not necessarily diagonal, while
Ec

Coh (v) may have non-zero diagonal elements.
Next we define the thermodynamic energy matrix, Eth(v), as

Eth(v),1
2 C−1/2

d (v)Sww (v)C−1/2
d (v). (39)

Hence the steady state thermodynamic cross energy between the ith subsystem and the jth
subsystem, Eth

ij (v), and the steady state thermodynamic energy of the ith subsystem, Eth
i (v),

are given by

Eth
ij (v),Eth

(i,j)(v)=
Swiwj (v)

2zci (v)cj (v)
, Eth

i (v),Eth
ii (v)=

Swiwi (v)
2ci (v)

. (40, 41)

Furthermore, since the diagonal portion {Eth(v)} of Eth(v) is given by

{Eth(v)},1
2 C−1/2

d (v) Inc [Sww (v)]C−1/2
d (v), (42)

it follows that

Inc [Sww (v)]=2Cd (v){Eth(v)}. (43)

Substituting equation (43) into equation (37) yields

Ec
Inc (v)=

−1
p

Re [L(jv)(L(jv)+Z(jv))−1Cd (v){Eth(v)}(L(jv)+Z(jv))−*]. (44)

Equation (44) shows that the thermodynamic energies act as driving forces for the average
energy flows at each frequency. In a similar manner, we obtain

Ed
Inc (v)=

−1
p

Re [Z(jv)(L(jv)+Z(jv))−1Cd (v){Eth(v)}(L(jv)+Z(jv))−*]. (45)

If the disturbances wi (t) are mutually uncorrelated, that is, Coh [Sww (v)]=0, then Eth
i (v)

plays the role of temperature in determining energy flow among subsystems, as shown by
the following result.
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Theorem 3.1. The system shown in Figure 2 satisfies

s
r

i=1

[Ec
Inc,i (v)]/[Eth

i (v)]e 0, v $ R, (46)

where Ec
Inc,i (v),Ec

Inc (v)(i,i).
Proof. See Appendix A.
The result (46) for the case r=2 and uncorrelated disturbances was obtained in

reference [30] and used to show that energy flows from the higher energy subsystem to the
lower energy subsystem in analogy with the Second Law of Thermodynamics. We now
derive a result that demonstrates this phenomenon for an arbitrary number of subsystems
excited by possibly correlated disturbances. To do this, decompose Ec

i (v) and Ed
i (v) as

Ec
i (v)=Ec

Inc,i (v)+Ec
Coh,i (v), v $ R, (47)

and

Ed
i (v)=Ed

Inc,i (v)+Ed
Coh,i (v), v $ R, (48)

where Ec
Coh,i (v), Ed

Inc,i (v) and Ed
Coh,i (v) are defined in a similar manner.

Theorem 3.2. Consider the system shown in Figure 2. For i=1, . . . , r, Ec
Inc,i (v), Ec

Coh,i (v)
and Ed

Coh,i (v) are given by

Ec
Inc,i (v)= s

r

j=1

j$ i

[dij (v)Eth
j (v)− dji (v)Eth

i (v)], v $ R, (49)

Ec
Coh,i (v)= s

r

p=1

s
r

q=1

q$ p

dipq (v)Eth
pq (v)− s

r

q=1

q$ i

dpiq (v)Eth
iq (v) , v $ R, (50)

Ed
Inc,i (v)=−dii (v)Eth

i (v)− s
r

j=1

j$ i

dij (v)Eth
j (v), v $ R, (51)

and

Ed
Coh,i (v)=− s

r

p=1

s
r

q=1

q$ p

dipq (v)Eth
pq (v), v $ R, (52)

where, for v $ R,

dipq (v),
1
p

ci (v)zcp (v)cq (v) Re [(L(jv)+Z(jv))−1
(i,p)(L(jv)+Z(jv))−*(q,i) ],

i, p, q=1, . . . , r, (53)

and

dij (v),dijj (v)=
1
p

ci(v)cj (v)=(Z(jv)+L(jv))−1
(i,j)=2. (54)

Proof. See Appendix B.
From equation (54), it can be seen that dij (v)e 0, i, j=1, . . . , r, v $ R. Thus it can

be seen from equation (49) that incoherent energy flow among the subsystems is governed
by the thermodynamic energy of each subsystem.

By introducing additional assumptions as follows below, we can guarantee that energy
flows from higher energy subsystems to lower energy subsystems for couplings of arbitrary
strength.
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Corollary 3.3. Consider the coupled system in Figure 2. If either r=2 or Re [L(jv)]=0,
v $ R, then

dij (v)= dji (v), i, j=1, . . . , r, v $ R, (55)

and thus

Ec
Inc,i (v)= s

r

j=1

j$ i

dij (v)[Eth
j (v)−Eth

i (v)], i=1, . . . , r, v $ R. (56)

Proof. Since L(jv) is skew-Hermitian, it follows that if r=2 then

=[(L(jv)+Z(jv))−1](1,2)=2 = =[(L(jv)+Z(jv))−1](2,1)=2.

Furthermore, if Re [L(jv)]=0, v $ R, then L(jv)= Im [L(jv)] is symmetric. Thus, in
both cases, (L(jv)+Z(jv))−1 is symmetric, so that equation (55) is an immediate
consequence of equation (54). Equation (56) follows directly from equation (49). q

If Coh [Sww (v)]=0, then equation (56) can be interpreted thermodynamically as saying
that energy flow Ec

i (v) is proportional to energy differences and flows from the higher
energy subsystems to the lower energy subsystems. Note that if Re [L(jv)]=0, then
equations (55) and (56) hold independently of the number of subsystems and the strength
of the coupling. The condition Re [L(jv)]=0 holds for stiffness couplings.

However, if dij (v)$ dji (v), then equation (49) allows reverse flow; that is, energy flow
from a lower energy subsystem to a higher energy subsystem. Conditions for such a reverse
flow are stated in the following result.

Proposition 3.1. Consider the coupled system shown in Figure 2 and assume that
Coh [Sww (v)]=0. Then,

dij (v)Eth
j (v)− dji (v)Eth

i (v)q 0, (57)

if and only if

=(Z(jv)+L(jv)−1
(i,j)=2

=(Z(jv)+L(jv))−1
( j,i)=2

q Eth
i (v)

Eth
j (v)

. (58)

Proof. This result follows immediately from equation (54). q

Proposition 3.1 says that even though Eth
i (v)qEth

j (v), energy flows from the jth (lower
energy) subsystem to the ith (higher energy) subsystem if the inequality (58) does hold.

The following useful result concerns the energy flow coefficients dij (v).
Corollary 3.4. The coupled system in Figure 2 satisfies

s
r

j=1

j$ 1

[dij (v)− dji (v)]=0, i=1, . . . , r. (59)

Proof. See Appendix C.
We now consider the relationship between the thermodynamic energy Eth

i (v), the
thermodynamic cross-energy Eth

ij (v) and the root mean square (r.m.s.) velocity per unit
bandwidth of the ith subsystem yi (v), i=1, . . . , r, defined by

yi (v),z(1/2p)Syiyi (v). (60)

By using equation (7), yi (v) can be written as

yi (v)= [(1/2p)[(L(jv)+Z(jv))−1Sww (v)(L(jv)+Z(jv))−*](i,i)]1/2, (61)

and the following result can be obtained.
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Proposition 3.2. The r.m.s. velocity, yi (v) is given by

yi (v)=
1

zci (v) $ s
r

j=1

dij (v)Eth
j (v)+ s

r

p=1

s
r

q=1

q$ p

dipq (v)Eth
pq (v)%

1/2

, i=1, . . . , r, (62)

where dipq (v) and dij (v) are defined by equations (53) and (54), respectively.
Proof. This result can be obtained in the same manner as equations (51) and

(52). q

Note that the first term and second term in equation (62) result from Inc [Sww (v)] and
Coh [Sww (v)], respectively. Since Ed

i (v)=Ed
Inc,i (v)+Ed

Coh,i (v), by comparing equations (51)
and (52) with equation (62), it follows that the mean square velocity per unit bandwidth
of the ith subsystem y2

i (v) satisfies

ci (v)y2
i (v)=−Ed

i (v).

Finally, we consider the rate of energy dissipation Ed
Inc,i (v) in equation (51), which shows

that Ed
Inc,i (v) depends on Eth

j (v) for j=1, . . . , r. By rewriting equation (51), Ed
Inc,i (v) can

be expressed as a function of Eth
i (v) only; that is,

Ed
Inc,i (v)=−di (v)Eth

i (v), i=1, . . . , r, v $ R, (63)

where

di (v), s
r

j=1

dij (v)
Eth

j (v)
Eth

i (v)
. (64)

Note that di (v)e 0, i=1, . . . , r, v $ R.
Theorem 3.2 is illustrated in Figure 3 for the case r=3 and Coh [Sww (v)]=0. In Figure

3 it is shown that there exist energy flows dji (v)Eth
i (v) and dij (v)Eth

j (v) between the ith

Figure 3. The subsystem energy flow diagram (frequency domain).
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and jth subsystems, and that the difference between these two energy flows is the net energy
flow Jij (v),dij (v)Eth

j (v)− dji (v)Eth
i (v). By equation (49), the average energy flow

through the ith port per unit bandwidth Ec
i (v) can thus be expressed as

sr
j=1
j$ i

Jij (v).

As Corollary 3.3 shows, if dij (v)= dji (v), i, j=1, . . . , r, then there is a net energy flow
from higher energy subsystems to lower energy subsystems.

4. COMPARTMENTAL MODELLING AND TIME DOMAIN ANALYSIS

In this section we consider an alternative point of view involving compartmental
modelling and time domain analysis. To do this we invoke two main assumptions. First,
w(t) is assumed to be a white noise vector, given by

w(t)=Dw̃(t), (65)

where w̃(t),[w̃1(t) · · ·w̃n (t)]T is a normalized white noise vector the intensity matrix of
which is the n× n identity matrix and D $ Rr× n is a constant matrix. Then, the intensity
matrix Sww of w(t),[w1(t) · · · wr (t)]T is given by Sww =DDT. Note that

Sww(i,i) =Swiwi , Sww(i,j) =Sww( j,i) =Swiwj =Swjwi . (66)

Our second assumption is that the real part of ci = ci (jv) in equation (2) is constant. As
before, let Cd =diag (c1, c2, . . . , cr ). Under these assumptions, the cross-thermodynamic
energy, Eth

ij , in equation (40) and the thermodynamic energy, Eth
i , in equation (41) become

Eth
ij =Swiwj /2zcicj, Eth

i =Eth
ii =Swiwi /2ci , (67)

respectively.
Next we consider a realization of the feedback system in Figure 2. Let Z−1(s) and L(s)

have the realizations

ẋZ (t)=AZxZ (t)+BZu(t), y(t)=CZxZ (t), (68, 69)

ẋL (t)=ALxL (t)+BLy(t), v(t)=CLxL (t)+DLy(t), (70, 71)

respectively. Since u=w− v, the augmented system (68)–(71) is given by

ẋ(t)=A	 x(t)+B	 w̃(t), x(0)= x0, (72)

where

x(t),$xZ (t)
xL (t)%, A	 ,$AZ −BZDLCZ

BLCZ

−BZCL

AL %, B	 ,$BZD
0 %.

Define C1 and C2 by

C1,[CZ 0], C2,[DLCZ CL ], (73)

so that y(t)=C1x(t) and v(t)=C2x(t). Then, the realizations for equations (7) for (8) are
given by

(L(s)+Z(s))−1D0$A	
C1bB	0%, L(s)(L(s)+Z(s))−1D0$A	

C2bB	0%.
The following results provide expressions for Pc, Pe and Pd.
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Theorem 4.1. Consider the system given by equation (72). Then Pc, Pe and Pd are given
by

Pc =−C2Q	 CT
1 , Pe = 1

2 DB	 TCT
1 , Pd =(C2Q	 − 1

2 DB	 T)CT
1 , (74–76)

where the steady state covariance Q	 ,E[x(t)xT(t)] satisfies the algebraic Lyapunov
equation

0=A	 Q	 +Q	 A	 T +B	 B	 T. (77)
Proof. See Appendix D.
The following result provides an alternative characterization of Pd

i .
Corollary 4.1. Consider the system given by equation (72). Then, for i=1, . . . , r, Pd

i

is given by

Pd
i =−(CdC1Q	 CT

1 )(i,i), (78)

where the steady state covariance Q	 satisfies the algebraic Lyapunov equation (77).
Proof. See Appendix E.
As in the previous section, by decomposing Sww into the incoherent portion Inc [Sww ] and

the coherent portion Coh [Sww ], Pc
i , Pd

i and Pd
i can be decomposed as follows.

Proposition 4.1. Consider the system given by equation (72). Then, for i=1, . . . , r, Pc
i ,

Pd
i , and Pe

i are given by

Pc
i =Pc

Inc,i +Pc
Coh,i , Pd

i =Pd
Inc,i +Pd

Coh,i , Pe
i =Pe

Inc,i +Pe
Coh,i , (79–81)

where

Pc
Inc,i,−(C2Q	 IncCT

1 )(i,i), Pc
Coh,i,−(C2Q	 CohCT

1 )(i,i),

Pd
Inc,i,−(CdC1Q	 IncCT

1 )(i,i), Pd
Coh,i,−(CdC1Q	 CohCT

1 )(i,i),

Pe
Inc,i,1

2 (Inc [Sww ]BTCT
1 )(i,i), Pe

Coh,i,1
2 (Coh[Sww ]BTCT

1 )(i,i),

and Q	 Inc and Q	 Coh satisfy

0=A	 Q	 Inc +Q	 IncA	 T +B Inc [Sww ]BT, 0=A	 Q	 Coh +Q	 CohA	 T +B Coh [Sww ]BT. (82, 83)

Proof. The above results follow from equations (74) and (75) by using
DDT =Sww =Inc [Sww ]+Coh [Sww ]. q

Proposition 4.2. Consider the system given by equation (72). Then, for i=1, . . . , r,

Pc
Inc,i +Pd

Inc,i +Pe
Inc,i =0, Pc

Coh,i +Pd
Coh,i +Pe

Coh,i =0. (84, 85)

Proof. This is obvious from Corollary 3.2. q
Now we obtain a compartmental model for the coupled system. Compartmental models

involve non-negative state variables that exchange and dissipate energy in accordance with
conservation laws [25, 26, 28]. Since energy flow in the coupled system satisfies a
conservation law, a compartmental model can be derived.

Theorem 4.2. Define

sij,g
a

−a

dij (v) dv, i$ j, i, j=1, . . . , r, (86)

si,g
a

−a

di (v) dv, i=1, . . . , r, (87)

Pij,sijEth
j − sjiEth

i , i, j=1, . . . , r, (88)
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where dij (v) and di (v) are defined in equations (54) and (64), respectively. Then, for each
i=1, . . . , r,

Pd
Inc,i =−siEth

i , Pc
Inc,i = s

r

j=1

j$ 1

Pij . (89, 90)

Consequently,

−siEth
i + s

r

j=1

j$ i

Pij +Pe
Inc,i =0, i=1, . . . , r. (91)

Proof. From equations (14), (49) and (86), equation (90) is obtained as

Pc
Inc,i =g

a

−a

Ec
Inc,i (v) dv=g

a

−a

s
r

j=1

j$ i

(dij (v) dvEth
j − dji (v) dv Eth

i )

= s
r

j=1

j$ i

$g
a

−a

dij (v) dv Eth
j −g

a

−a

dji (v) dv Eth
i %= s

r

j=1

j$ i

[sijEth
j − sjiEth

i ]

= s
r

j=1

j$ i

Pij .

In a similar manner, equation (89) can be derived directly from equation (63). Finally, by
using Proposition 4.2, equation (91) can be obtained. q

Obviously, si e 0, sij e 0 and Pe
Inc,i e 0.

Equations (91) and (88) represent a steady state compartmental model [6, 25, 26, 28].
These two equations can be expressed by the matrix equation

AE=Pe , (92)

where the non-negative vectors E and Pe are defined by

E,[Eth
1 · · · Eth

r ]T, Pe,[Pe
Inc,1 · · · Pe

Inc,r ]T,

and the matrix A is given by

A(i,i),si + s
r

j=1

j$ i

sji , A(i,j),−sij , i, j=1, . . . , r.

Note that the matrix A is an M-matrix [29].
The following time domain results are analogous to Corollary 3.3, Corollary 3.4,

Proposition 3.1 and Proposition 3.2.
Corollary 4.2. Consider that coupled system in Fig. 2. If either r=2 or Re [L(jv)]=0,

then
sij = sji , i, j=1, . . . , r, (93)

and

Pc
Inc,i = s

r

j=1

j$ i

sij (Eth
j −Eth

i ), i=1, . . . , r. (94)

Proof. The result follows directly from Corollary 3.3. q
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Corollary 4.3. The coupled system in Figure 2 satisfies

s
r

j=1

j$ i

(sij − sji )=0, i=1, . . . , r. (95)

Proof. This result follows immediately from Corollary 3.4. q

Proposition 4.3. Consider the coupled system in Figure 2 and assume that Coh [Sww ]=0.
Then

sijEth
j − sjiEth

i q 0, (96)

if and only if

g
a

−a

=(Z(jv)+L(jv))−1
(i,j)=2

g
a

−a

=(Z(jv)+L(jv))−1
(j,i)=2

qEth
i

Eth
j

. (97)

Proof. The result follows directly from Proposition 3.1 q

The steady state mean square velocity of the ith subsystem

E[y2
i (t)]=g

a

−a

y2
i (v) dv,

where yi (v) is defined by equation (60), is given by the following result.
Proposition 4.4. The coupled system in Figure 2 satisfies

E[y2
i (t)]=

1
ci 0 s

r

j=1

sijEth
j + s

r

p=1

s
r

q=1

q$ p

sipqEth
pq1, i=1, . . . , r, (98)

where sipq,fa
−a dipq (v) dv.

Proof. The result follows directly from Proposition 3.2. q

Although Theorem 4.2 provides expressions for si and sij , the integration is
difficult, especially for re 3. Next we introduce an algebraic expression for these
coefficients.

Proposition 4.5. Consider the coupled system in Figure 2, and let sij and si ,
i, j=1, . . . , r, be defined by equations (86) and (87). Then si and sij are given by

si = s
r

j=1

sij
Eth

j

Eth
i

, i=1, . . . , r, (99)

and

sij = cicj
1
p g

a

−a

=Hij (jv)=2 dv=2cicj (C1Q	 jCT
1 )(i,i), i$ j, i, j=1, . . . , r, (100)

where Hij (jv),eT
i C1(jvI−A	 )−1Bej and, for j=1, . . . , r, the r× r matrix Q	 j satisfies the

Lyapunov equation

0=A	 Q	 j +Q	 jA	 T +BejeT
j BT. (101)
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Proof. By applying Parseval’s Theorem to the definition of dij (v) in equation (54), we
obtain

sij =g
a

−a

dij (v) dv

=
1
p

cicj g
a

−a

[(L(jv)+Z(jv))−1](i,j)[(L(jv)+Z(jv))−*](j,i) dv

=
1
p

cicj g
a

−a

[eT
i (L(jv)+Z(jv))−1ej ][eT

j (L(jv)+Z(jv))−*ei ] dv

=2cicj
1
2p g

a

−a

[eT
i C1(jvI−A	 )−1Bej ][eT

i C1(jvI−A	 )−1Bej ]* dv

=2cicjeT
i C1Q	 jCT

1ei =2cicj (C1Q	 jCT
1 )(i,i),

where Q	 j satisfies equation (101). q

Equation (100) shows that sij is given by H2 norm of the transfer function
Hij (s)= eT

i C1(sI−A	 )Bej . In section 7, we shall use closed form expressions for this
integral, which are given in references [35, 36]. These expressions are based upon an explicit
solution of the matrix Q	 j given by equation (101).

Finally, Theorem 4.2 is illustrated in Figure 4 for the case r=3 and Coh [Sww ]=0. This
time domain representation of energy flow has the same interpretation as Figure 3.

Figure 4. The subsystem energy flow diagram (time domain).
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5. EQUIPARTITION OF ENERGY

In this section, we consider a condition relating to equipartition of energy concerning
Ec

Inc,i (v) and Pc
Inc,i . First we consider the frequency domain and use equation (59) to obtain

the following result.
Theorem 5.1. Consider the coupled system in Figure 2 and assume that

Eth
i (v)=Eth

j (v), i, j=1, . . . , r, v $ R. (102)

Then

Ec
Inc,i (v)=0, i=1, . . . , r, v $ R. (103)

Proof. From Corollary 3.4 and equation (102) it follows that

Ec
Inc,i (v)= s

r

j=1

j$ i

[dij (v)Eth
j (v)− dji (v)Eth

i (v)]

= s
r

j=1

j$ i

[dij (v)− dji (v)]Eth
i (v)=0. q

Theorem 5.1 says that there is no net energy flow among subsystems when every sub-
system has the same thermodynamic energy; that is, when equipartition of energy holds.

In the time domain we obtain a similar result. By assuming white noise, the following
result can be obtained.

Corollary 5.1. Consider the coupled system in Figure 2 and assume that Swiwi and ci are
constant for i=1, . . . , r. If

Eth
i =Eth

j , i, j=1, . . . , r, (104)

then

Pc
Inc,i =0, i=1, . . . , r. (105)

Proof. From equation (14) and Theorem 5.1 it follows that

Pc
Inc,i =g

a

−a

Ec
Inc,i (v) dv=0. q

Now we consider the converse of Theorem 5.1 and Corollary 5.1. For convenience, we
define the r× r matrix H(v) by

H(v)(i,j),dij (v), H(v)(i,i),− s
r

j=1

j$ i

dji (v), i, j=1, . . . , r.

Note that since eTH(v)=0, v $ R, where e=[1 · · · 1]T, it follows that
rank H(v)E r−1, v $ R.

Theorem 5.2. Consider the coupled system in Figure 2 and assume that
rank H(v)= r−1 for all v $ R. If

Ec
Inc,i (v)=0, i=1, . . . , r, v $ R, (106)

then
Eth

i (v)=Eth
j (v), i, j=1, . . . , r, v $ R. (107)

Proof. From equations (49) and (106), we obtain

H(v)E(v)=0, (108)
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where the vector E(v) is defined by
E(v),[Eth

1 (v) · · · Eth
r (v)]T.

From Corollary 3.4, H(v)e=0 and, by assumption, rank H(v)= r−1. Thus, it follows
from equation (108) that E(v)= g(v)e, where, for each v $ R, g(v) is a non-zero real
number. Thus Eth

i (v)= g(v), i=1, . . . , r, which proves equation (107). q
In the same manner as Thoerem 5.2, by defining

S(i,j),sij , S(i,i),− s
r

j=1

j$ i

sji , i, j=1, . . . , r,

we obtain the following result.
Corollary 5.2. Consider the coupled system in Figure 2 and assume that rank S= r−1.

If
Pc

Inc,i =0, i=1, . . . , r, (109)
then

Eth
i =Eth

j , i, j=1, . . . , r. (110)
Proof. This result can be proved in the same manner as Theorem 5.2. q
Remark 5.1. Theorem 5.2 and Corollary 5.2 are closely related to Corollary 2.2 in

reference [28].
Remark 5.2. Since H(v)e= eTH(v)=0, rank H(v)= r−1 and Se= eTS=0,

rank S= r−1, it follows that H(v) and S are EP matrices (reference [34], p. 74).

6. RELATIONSHIP TO MECHANICAL ENERGY

In the previous sections, we considered energy flow from the point of view of
thermodynamic energy. Now we introduce the mechanical energy generally used in the
SEA approach and discuss the relationship between these two types of energy. Since
uncorrelated white noise is considered in the SEA approach, we assume that the
disturbance filter D= I, which implies that Sww = I.

Consider the mass–damper–spring system in Figure 5. The thermodynamic energy Eth

of this system can be obtained as
Eth =1/2c. (111)

On the other hand, mechanical energy is usually defined as the average stored energy at
steady state. Then, the mechanical energy of this uncoupled system Eu can be obtained as

Eu,1
2 (mE[ẋ2]+ kE[x2])= 1

2 0m 1
2cm

+ k
1

2ck1=
1
2c

.

Thus, we find
Eu =Eth; (112)

that is, when white noise is assumed, the thermodynamic energy equals the mechanical
energy of the uncoupled system.

Next, we consider the case in which the oscillator in Figure 5 is coupled with r−1
similar oscillators by springs as shown in Figure 6 (r=2) or Figure 7 (r=3). In the SEA
approach [3], the blocked energy of the ith oscillator is defined as (see p. 377 in reference
[10])

Ebl
i ,1

2 2miE[ẋ2
i ]+ 2ki + s

r

j=1

j$ i

Kij3E[x2
i ]3, (113)
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Figure 5. The single oscillator.

while the coupled mechanical energy of the ith oscillator Emec
i is defined by

Emec
i ,1

2 2miE& s
r

j=1

j$ i

(ẋi − ẋj )2`'+ s
r

j=1

j$ i

KijE[xi − xj ]23.
Note that the blocked energy ignores the relative velocity and relative displacement which
contribute to the coupled mechanical energy. Nevertheless, when the coupling stiffnesses
Kij are small, it follows that

Ebl
i 2Eu

i =Eth
i ,1/2ci , (114)

where Eth
i and Eu

i are the thermodynamic energy and the uncoupled mechanical energy of
the ith subsystem, respectively. If the oscillators are coupled by springs only, it follows

Figure 6. The two coupled oscillator system.
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Figure 7. The three coupled oscillator system.

that Re [L(jv)]=0. Thus Corollaries 3.3 and 4.2 guarantee that energy flows from higher
energy subsystems to lower energy ones according to Eu

i . Note that this property does not
depend on the number of subsystems or the strength of coupling.

On the other hand, if Ebl
i is considered, as in the usual SEA approach, energy would

flow from higher energy subsystems to lower energy ones when the coupling is weak
because Ebl

i is close to Eu
i . However, if the coupling becomes strong, such an energy flow

can no longer be guaranteed. In fact, as shown in the next section, energy does not
generally flow according to Ebl

i .

7. EXAMPLES

In this section we consider second order subsystems interconnected by either a stiffness
coupling or a gyroscopic coupling. For convenience, we assume that Coh [Sww (v)]=
Coh [Sww ]=0.

First we reconsider the state space model in equation (72). By assuming that each
subsystem is a second order system, the state space vector xZ in equation (68) is comprised
of the position vector xpos and the velocity vector xvel . We now define an output matrix
Cp so that xpos =CpxZ and assume that L(s)=GL +CL /s, where GL =−GT

L is the
gyroscopic part of L(s), and CL =CT

L is the stiffness part of L(s). Then, from equations
(8) and (69) it follows that

v=(GL +CL /s)y=GLCZxZ +CL (CZxZ /s)= (GLCZ +CLCp )xZ . (115)

Then by using u=w− v, it follows that

ẋZ =AZxZ +BZ (w−GLCZ +CLCp )xZ )

= (AZ −BZ (GLCZ +CLCp ))xZ +BZw. (116)
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Thus we can redefine x, A	 , B	 , C1 and C2 in equations (72) and (73) as

x,xz , A	 ,AZ −BZ (GLCZ +CLCp ), B	 ,BZD,

C1,CZ , C2,GLCZ +CLCp .

When the coupling has only stiffnesses, as in this example, then GL =0 and L(s) is given
by CL /s . Then, a minimal realization of the coupled system is obtained by defining

x,xZ , A	 ,AZ −BZCLCp , B	 ,BZD, C1,CZ , C2,CLCp .

Now L(s) has a zero real part so that the energy flows from higher energy subsystems to
lower energy subsystems according to Corollaries 3.3 and 4.1.

On the other hand, if the coupling is purely gyroscopic, then CL =0 and L(s)=GL .
Then, a minimal realization of the coupled system is obtained by defining

x,xZ , A	 ,AZ −BZGLCZ , B	 ,BZD, C1,CZ , C2,GLCZ .

If rq 2, then Corollaries 3.3 and 4.1 do not apply. Thus if the conditions in Propositions
3.1 and 4.3 hold, then reverse flow occurs.

First we consider oscillators coupled by springs as shown in Figures 6 and 7.

7.1.  1

Consider the system consisting of two coupled oscillators, shown in Figure 6. From
equation (14), power flow between the oscillators is given by

Ec
1(v)=

K2D1D2v
2

pG(v)
(Eth

2 (v)−Eth
1 (v)), (117)

Ec
2(v)=

K2D1D2v
2

pG(v)
(Eth

1 (v)−Eth
2 (v)), (118)

where

G(v),[D1D2v
2 + k2 − (v2 −v2

1 )(v2 −v2
2 )]2 +v2[D1(v2 −v2

2 )+D2(v2 −v2
1 )]2, (119)

and

D1,c1/m1, D2,c2/m2, v2
1,(K+ k1)/m1, v2

2,(K+ k2)/m2,

k,K/zm1m2. (120)

From equations (117) and (118), we find that if Eth
1 (v)qEth

2 (v), then Ec
1(v)Q 0 and

Ec
2(v)q 0; that is, energy flows from oscillator 1 (higher thermodynamic energy) to

oscillator 2 (lower thermodynamic energy) as guaranteed by Corollary 3.3. Furthermore,
by using equation (54) we obtain

d12(v)=
K2D1D2v

2

pG(v)
e 0. (121)

On the other hand, the average blocked energy per unit bandwidth Ebl
i (v), i=1, . . . , r,

is defined by [3, 10]

Ebl
i (v),1

2

G
G

G

F

f
mi +

ki + s
r

j=1

j$ i

Kij

v2

G
G

G

J

j
y2

i (v),
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where yi (v) is defined by equation (60). Thus, by using equation (62) in Proposition 3.2
we obtain

Ebl
1 (v)=

v2 +v2
1

2D1
[d11(v)Eth

1 (v)+ d12(v)Eth
2 (v)], (122)

Ebl
2 (v)=

v2 +v2
2

2D2
[d12(v)Eth

1 (v)+ d22(v)Eth
2 (v)], (123)

where

d11(v)=
D2

1 [D2
2v

2 + (v2 −v2
2 )2]

G(v)
, d22(v)=

D2
2 [D2

1v
2 + (v2 −v2

1 )2]
G(v)

.

To examine energy flow, we assume for simplicity that the disturbances w1(t) and w2(t)
have the same intensity sww ; that is, Sww =diag (sww , sww ). Then, from equations (122) and
(123), we have

E	 bl(v),Ebl
1 (v)−Ebl

2 (v)=
A1v

6 +A2v
4 +A3v

2 +A4

4p
sww , (124)

where

A1,1/m2 −1/m1, A2,v2
2 (m2 −2m1)/m2

1 −v2
1 (m1 −2m2)/m2

2 ,

A3,v2
2 /m1 −v2

1 /m2 + (D2/m1)2 − (D1/m2)2 +A1(k2 +2v2
1v

2
2 ),

A4,
(k2 − k1)[(k1 + k2)K+ k1k2]

m2
1m2

2
.

If k2 q k1, it follows from equation (124) that

E	 bl(0)=
k2 − k1

4p[k1k2 + (k1 + k2)K]
sww q 0, (125)

which implies that there exists a frequency range (0, v0) within which Ebl
1 (v)qEbl

2 (v).
According to SEA, this inequality predicts net energy flow from subsystem 1 to subsystem
2. Now assume that c1 q c2, so that Eth

2 qEth
1 . Then the energy flow determined by

equations (117) and (118) satisfies Ec
1(v)q 0 and Ec

2(v)Q 0. Since Ec
1(v) is the energy flow

per unit bandwidth entering subsystem 1, the net energy flow is from subsystem 2 to
subsystem 1. This fact shows that the blocked energy flow incorrectly predicts reverse flow
in the frequency range (0, v0).

Finally, we consider the total energy flow. With r=2, equation (94) implies

Pc
1 =−Pc

2 = s12(Eth
2 −Eth

1 ). (126)

By using either equation (100) in Proposition 4.5 or the integral formulas in references
[35, 36], we obtain

s12 =g
a

−a

d12(v) dv=
k2D1D2(D1 +D2)

L
, (127)

where

L,k2(D1 +D2)2 +D1D2[(v2
1 −v2

2 )2 + (D1 +D2)(D1v
2
2 +D2v

2
1 )]. (128)

To obtain an energy flow relationship in terms of blocked energies, we again use references
[35, 36] with equation (124) to obtain

Ebl
2 −Ebl

1 =g
a

−a

[Ebl
2 (v)−Ebl

1 (v)] dv= Y(Eth
2 −Eth

1 ), (129)
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where

Y,
D1D2

L
[(v2

1 −v2
2 )2 + (D1 +D2)(D1v

2
2 +D2v

2
1 )]. (130)

Now equations (126) and (129) imply

Pc
1 =−Pc

2 = h12(Ebl
2 −Ebl

1 ), (131)

where

h12,
s12

Y
=

k2(D1 +D2)
(v2

1 −v2
2 )2 + (D1 +D2)(D1v

2
2 +D2v

2
1 )

.

This result was obtained in reference [3]. Since s12 and h12 are non-negative, the total energy,
integrated over v, flows from the higher energy oscillator to the lower energy oscillator
according to both the thermodynamic energy and the blocked energy although, as shown
above, the energy flow prediction based upon the blocked energy may be incorrect in
certain frequency ranges.

7.2.  2
Next we analyze the three coupled oscillator system shown in Figure 7, where k1 =1,

k2 =2, k3 =3, m1 =1, m2 =2, m3 =3 and the other parameters are changed as shown in
subsequent figures. Furthermore, let the disturbances wi (t), i=1, 2, 3, be white noise with
unit intensity; that is, D= I. Although energy flows according to both Eth and Ebl in the
weak coupling case shown in Figure 8, energy flows according to Eth but not according
to Ebl when the coupling is strong, as shown in Figures 9 and 10. Note that in Figure 10,
SEA erroneously predicts reverse flows between all pairs of subsystems. The additionally
interesting fact is that, when the rate of energy dissipation and external parameter are
balanced at one subsystem, then, as shown by subsystem 2 in Figure 9, this subsystem acts
only as an energy conduit. By increasing the damping of this subsystem, subsystem 2 again
serves as an energy sink, as shown in Figure 11. Note that the energy flow prediction based
on the thermodynamic energy Eth

i is correct even if some of the subsystems are not directly
excited and thus have zero thermodynamic energy. In such a situation, energy flows from
the subsystems directly excited (non-zero thermodynamic energy subsystems) to the
subsystems which are not excited directly (zero thermodynamic energy subsystems)
according to equation (88). Additionally, there is no energy flow between zero thermodyn-
amic energy subsystems 2 and 3. These features are shown in Figure 12. The next result,
shown in Figure 13, illustrates that there is no energy flow if all of the subsystems have
the same thermodynamic energy, even though there exist differences in the coupled
mechanical energy among subsystems. In these last two cases SEA erroneously predicts
energy flow among subsystems, although, in fact, there is none. As an interesting example
we now consider the three coupled oscillator system shown in Figure 14. In Figure 14 only
oscillator 1 is subject to a disturbance force, while only oscillator 2 is directly coupled with
oscillator 1. As can be seen in Figure 15, there is no energy flow between the zero
thermodynamic energy oscillators 2 and 3. Additionally, oscillator 3 receives energy flow
indirectly from oscillator 1. This fact can be interpreted as follows. For the interconnected
system which involves more than two subsystems, the absence of physical coupling between
the ith subsystem and the jth subsystem does not necessarily imply that the coupling
coefficient sij is zero. For example, in Figure 14, although there is no physical coupling
between oscillator 1 and oscillator 3, that is, K13 =0, s13 is not zero and thus energy flows
from oscillator 1 to oscillator 3. Next, we consider the case of gyroscopic coupling.
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Figure 8. The weak coupling case: Eth
1 qEth

2 qEth
3 , Ebl

1 qEbl
2 qEbl

3 . c1 =0·1, c2 =0·2, c3 =0·3, K12 =0·05,
K13 =0·07, K23 =0·1.

Figure 9. The strong coupling case: Eth
1 qEth

2 qEth
3 , Ebl

1 qEbl
3 qEbl

2 . c1 =0·1, c2 =0·2, c3 =0·3, K12 =1·0,
K13 =2·0, K23 =3·0.
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Figure 10. The very strong coupling case: Eth
1 qEth

2 qEth
3 , Ebl

3 qEbl
2 qEbl

1 . c1 =0·1, c2 =0·2, c3 =0·3,
K12 =50·0, K13 =60·0, K23 =70·0.

Figure 11. The strong coupling case with increased damping: Eth
1 qEth

2 qEth
3 , Ebl

1 qEbl
3 qEbl

2 . c1 =0·1,
c2 =0·29, c3 =0·3, K12 =1·0, K13 =2·0, K23 =3·0.
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Figure 12. The indirectly excited subsystem case: Eth
1 qEth

2 =Eth
3 =0, Ebl

1 qEbl
3 qEbl

2 . c1 =0·1, c2 =0·2,
c3 =0·3, K12 =0·05, K13 =0·07, K23 =0·1.

Figure 13. Equipartition of energy: Eth
1 =Eth

2 =Eth
3 , Ebl

3 qEbl
2 qEbl

1 . c1 =0·1, c2 =0·1, c3 =0·1, K12 =1·0,
K13 =2·0, K23 =3·0.



 ,   49

Figure 14. The three coupled oscillator system without K13.

7.3.  3
Consider the interconnected system composed of the three second order subsystems

zi (s), i=1, 2, 3, where
zi (s)= (s2 + cis+ ki )/s, (132)

and the gyroscopic (skew-symmetric) coupling L, where

L=GL = & 0
a1

−a2

−a1

0
a3

a2

−a3

0'. (133)

Figure 15. The energy flow in the coupled oscillator system of Figure 14. c1 =0·1, c2 =0·2, c3 =0·3, K12 =0·05,
K23 =0·1.
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Figure 16. Reverse energy flow due to gyroscopic coupling.

Let c1 =1, c2 =1·2, c3 =1·4, k1 =2, k2 =3, k3 =4, a1 =10, a2 =15 and a3 =20.
Furthermore, each disturbance force wi (t), i=1, 2, 3, has the intensity Sw1w1 =10,
Sw2w2 =11 and Sw3w3 =12, respectively. The result is shown in Figure 16, which indicates
that reverse flow occurs between subsystems 1 and 2, and between subsystems 2 and 3;
that is, the inequality (97) of Proposition 4.3 holds for (i, j )= (1, 2) and (2, 3).

8. CONCLUSIONS

In this paper, we have extended the work of Wyatt, Siebert and Tan [30] on energy flow
modelling of coupled subsystems. It has been shown that energy flow models based
upon thermodynamic energy rather than stored energy can be used to predict energy
flow from higher energy subsystems to lower energy subsystems. This model has been
compared with the standard Statistical Energy Analysis (SEA) approach for mechanical
systems. In contrast to the usual SEA formulation, which requires weak coupling or
identical subsystems, the thermodynamic formulation holds for an arbitrary number of
non-identical subsystems with arbitrarily strong coupling. This feature was demonstrated
by means of a system involving three coupled oscillators.
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APPENDIX A: PROOF OF THEOREM 3.1

From equations (13) and (42), it follows that

s
r

i=1

Ec
Inc,i (v)

Eth
i (v)

=
−1
4p

tr [{Eth(v)}−1(Svy (v)+S*vy (v))]

=
−1
4p

tr [{Eth(v)}−1[L(jv)(L(jv)

+Z(jv))−1 Inc [Sww (v)](L(jv)+Z(jv))−*

+ (L(jv)+Z(jv))−1 Inc [Sww (v)(L(jv)+Z(jv))−*L*(jv)]]. (A1)

For convenience, define the matrix T(v) by

T(v),(L(jv)+Z(jv))−1(L(jv)−Z*(jv)). (A2)

The matrix T(v) satisfies

(L(jv)+Z(jv))−1 = 1
2 (L(jv)+Z(jv))−1[L(jv)+Z(jv)− (L(jv)−Z*(jv))]C−1

d (v)

= 1
2 [I−(L(jv)+Z(jv))−1(L(jv)−Z*(jv))]C−1

d (v)

= 1
2 (I−T(v))C−1

d (v), (A3)

and

L(jv)=2Cd (v)(I−T(v))−1 −Z(jv)

=2Cd (v)(I−T(v))−1 −Z(jv)(I−T(v))(I−T(v))−1

= (2Cd (v)−Z(jv)+Z(jv)T(v))(I−T(v))−1

= (Z(jv)+Z*(jv)−Z(jv)+Z(jv)T(v))(I−T(v))−1

= (Z*(jv)+Z(jv)T(v))(I−T(v))−1. (A4)
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By substituting equations (43), (A3) and (A4) into equation (A1), and using the diagonality
of Z(jv), Cd (jv) and Inc [Sww (v)], the left side of equation (A1) can be rewritten as

s
r

i=1

Ec
Inc,i (v)

Eth
i (v)

=
1
4p

tr [Inc [Sww (v)]−1U(v) Inc [Sww (v)]U*(v)− I]

=
1
4p

tr [(Inc [Sww (v)]−1/2U(v)) Inc [Sww (v)][Inc [Sww (v)]−1/2U(v)]*− I),

(A5)

where U(v),Cd (v)T(v)C−1
d (v). It follows from equation (A5) that

s
r

i=1

Ec
Inc,i (v)

Eth
i (v)

=
r
4p $01r s

r

i=1

li1−1%, (A6)

where li is an eigenvalue of [Inc [Sww (v)]−1/2U(v)] Inc [Sww (v)][Inc [Sww (v)]−1/2U(v)]*.
Furthermore, since

T(v)= (L(jv)+Z(jv))−1(L(jv)−Z*(jv))

= (L(jv)+Z(jv))−1(−L*(jv)−Z*(jv))

=−(L(jv)+Z(jv))−1(L(jv)+Z(jv))*,

it follows that T(v) is non-singular and thus U(v) is non-singular. Therefore
[Inc [Sww (v)]−1/2U(v)] Inc [Sww (v)][Inc [Sww (v)]−1/2U(v)]* is positive definite, and therefore
all li’s are real and positive. The standard inequality between the arithmetic and geometric
means, given by

1
r $s

r

i=1

li%e$t
r

i=1

li%1/r,

leads to

s
r

i=1

Ec
Inc,i (v)

Eth
i (v)

e r
4p

[(det [Inc [Sww (v)]−1U(v) Inc [Sww (v)]U*(v)])1/r −1]

=
r
4p

([det (U(v)U*(v))]1/r −1)=
r
4p

([det (T(v)T*(v))]1/r −1)

=
r
4p

([det ((L(jv)+Z(jv))−1(L*(jv)+Z*(jv))(L(jv)+Z(jv))

×(L*(jv)+Z*(jv))−1)]1/r −1)=0 q

APPENDIX B: PROOF OF THEOREM 3.2

First we consider Ec
Inc,i (v) and Ed

Inc,i (v). Define

R(v),(L(jv)+Z(jv))−1, (B1)

which satisfies the identities

L(jv)R(v)= I−Z(jv)R(v), R(v)=R*(v)(L(jv)+Z(jv))*R(v).

By using these identities, Ec
Inc (v) given by equation (44) can be rewritten as

Ec
Inc (v)=−(1/p) Re [L(jv)R(v)Cd (v)Eth(v)R*(v)]

=−(1/2p)[L(jv)R(v)Cd (v)Eth(v)R*(v)+R(v)Eth(v)Cd (v)R*(v)L*(jv)]
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=−(1/2p)[(I−Z(jv)R(v))Cd (v)Eth(v)R*(v)+R(v)Eth(v)Cd (v)

×(I−R*(v)Z*(jv))]

= (1/2p)[Z(jv)R(v)Cd (v)Eth(v)R*(v)+R(v)Eth(v)Cd (v)R*(v)Z*(jv)

−Cd (v)Eth(v)R*(v)−R(v)Eth(v)Cd (v)]

= (1/2p)[Z(jv)R(v)Cd (v)Eth(v)R*(v)+R(v)Eth(v)Cd (v)R*(v)Z*(jv)

−Cd (v)Eth(v)R*(v)(L(jv)+Z(jv))R(v)−R*(v)(L(jv)

+Z(jv))*R(v)Eth(v)Cd (v)].

Thus, Ec
Inc,i (v) satisfies

Ec
Inc,i (v)= (1/2p)eT

i [Z(jv)R(v)Cd (v)Eth(v)R*(v)+R(v)Eth(v)Cd (v)R*(v)Z*(jv)

−Cd (v)Eth(v)R*(v)(L(jv)+Z(jv))R(v)−R*(v)(L(jv)

+Z(jv))*R(v)Eth(v)Cd (v)]ei

=(1/2p) tr [eT
i [Z(jv)R(v)Cd (v)Eth(v)R*(v)+R(v)Eth(v)Cd (v)R*(v)Z*(jv)

−Cd (v)Eth(v)R*(v)(L(jv)+Z(jv))R(v)−R*(v)(L(jv)

+Z(jv))*R(v)Eth(v)Cd (v)]ei

=(1/2p) tr [R*(v)eieT
i Z(jv)R(v)Cd (v)Eth(v)

+R*(v)Z*(jv)eieT
i R(v)Cd (v)Eth(v)−R*(v)Z(jv)R(v)eieT

i Cd (v)Eth(v)

−R*(v)Z*(jv)R(v)Eth(v)Cd (v)eieT
i −R*(v)(L(jv)+L*(jv))R(v)eieT

i

×Eth(v)Cd (v)]

= (1/2p)tr[R*(v)(eieT
i Z(jv)+Z*(jv)eieT

i )R(v)Cd (v)Eth(v)

−R*(v)(Z(jv)+Z*(jv))R(v)eieT
i Cd (v)Eth(v)].

The last equation holds because L(jv)+L*(jv)=0 and eieT
i , Cd (v) and Eth(v) are

diagonal. Finally, we obtain

Ec
Inc,i (v)=

1
p

tr [R*(v)eieT
i Cd(v)R(v)Cd (v)Eth(v)−R*(v)Cd (v)R(v)eieT

i Cd (v)Eth(v)]

=
1
p

ci (v) s
r

j=1

cj (v)R*(j,i)(v)R(i,j)(v)Eth
j (v)−

1
p

ci (v)s
r

j=1

cj (v)R*(i,j)(v)R(j,i)(v)Eth
i (v)

= s
r

j=1

dij (v)Eth
j (v)− s

r

j=1

dji (v)Eth
i (v)= s

r

j=1

j$ i

[dij (v)Eth
j (v)− dji (v)Eth

i (v)],

which proves equation (49).
Next we consider equation (51). Since Z(jv) is diagonal, it follows from equation (45)

that

Ed
Inc,i (v)=−

1
p

Re [eT
i Z(jv)R(v)Cd (v)Eth(v)R*(v)ei ]

=−
1
p

tr [Re [eT
i Z(jv)R(v)Cd (v)Eth(v)R*(v)ei ]]
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=−
1
p

tr [Re [R*(v)eieT
i Z(jv)R(v)Cd (v)Eth(v)]]

=−
1
p

s
r

j=1

ci (v)cj (v)R*(j,i)(v)R(i,j)(v)Eth
j (v)

=−dii (v)Eth
i (v)− s

r

j=1

j$ i

dij (v)Eth
j (v),

which proves equation (51).
Now we consider Ec

Coh,i (v) and Ed
Coh,i (v). In the similar manner to Ec

Inc , we obtain from
equation (38),

Ec
Coh (v)=

1
4p

[Z(jv)R(v) Coh [Sww ]R*(v)+R(v) Coh [Sww ]R*(v)Z*(v)

−Coh [Sww (v)]R*(v)−R(v) Coh [Sww (v)]].

Thus Ec
Coh,i (v) satisfies

Ec
Coh,i (v)=

1
4p

tr [eT
i (Z(jv)R(v) Coh [Sww (v)]R*(v)

+R(v) Coh [Sww (v)]R*(v)Z*(jv))ei

− eT
i (Coh [Sww (v)]R*(v)+R(v) Coh [Sww (v)])ei ]

=
1
4p

tr [R(v) Coh [Sww (v)]R*(v)eieT
i (Z(jv)+Z*(jv))

− (eieT
i Coh [Sww (v)]R*(v)+R(v) Coh [Sww (v)]eieT

i )]

=
1
4p

tr [2R(v) Coh [Sww (v)]R*(v)eieT
i Cd (v)

− (eieT
i Coh [Sww (v)]R*(v)(L(jv)+Z(jv))R(v)

+R*(v)(L(v)+Z(v))*R(v) Coh [Sww (v)]eieT
i )]

=
1
4p $2 s

r

p=1

s
r

q=1

q$ p

R(v)(i,p)R*(v)(q,i) Coh [Sww (v)](p,q)ci (v)

− s
r

q=1

q$ i

R(v)(p,i)R*(q,p)(v) Coh [Sww (v)](i,q)cp (v))

− s
r

s=1

[R*(v)(L(jv)+L*(jv))R(v)](i,s) Coh [Sww (v)](s,i)].

By using the above expression and L(jv)+L*(jv)=0 with the definition of the
cross-energy in equations (40), equation (50) can be obtained. In a similar manner,

Ed
Coh,i (v) =

−1
2p

Re [Z(jv)R(v) Coh [Sww (v)]R*(v)](i,i)

=
−1
4p

[Z(jv)R(v) Coh [Sww (v)]R*(v)+R(v) Coh [Sww (v)]R*(v)Z*(jv)](i,i)
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=
−1
4p

tr [eT
i Z(jv)R(v) Coh [Sww (v)]R*(v)ei

+ eT
i R(v) Coh [Sww (v)]R*(v)Z*(jv)ei ]

=
−1
4p

tr [(eieT
i Z(jv)+Z*(jv)eieT

i )R(v) Coh [Sww (v)]R*(v)]

=
−1
2p

ci (v)[R(v) Coh [Sww (v)]R*(v)](i,i) =−ci (v) s
r

p=1

s
r

q=1

q$ p

dipq (v)Eth
pq (v). q

APPENDIX C: PROOF OF COROLLARY 3.4

Since L(jv)+L*(jv)=0 and Z(jv)+Z*(jv)=2Cd (v), it follows that

(L(jv)+Z(jv))C−1
d (v)(L(jv)+Z(jv))*= (L(jv)+Z(jv))*C−1

d (v)(L(jv)+Z(jv)).
(C1)

Then, from equations (54) and (C1), and the diagonality of Cd (v), we obtain

s
r

j=1

j$ i

[dij (v)− dji (v)]=
1
p

ci (v) s
r

j=1

j$ i

[cj (v)]=[(L(jv)+Z(jv))−1](i,j)=2

− cj (v)=[(L(jv)+Z(jv))−1]( j,i)=2]

=
1
p

ci (v)([(L(jv)+Z(jv))−1Cd (v)(L(jv)+Z(jv))−*](i,i)

− [(L(jv)+Z(jv)−*Cd (v)(L(jv)+Z(jv)−1](i,i))

=
1
p

ci (v)[(L(jv)+Z(jv))−1Cd (v)(L(jv)+Z(jv))−*

− (L(jv)+Z(jv))−*Cd (v)(L(jv)+Z(jv))−1](i,i)

=
1
p

ci (v)[(L(jv)+Z(jv))−1Cd (v)(L(jv)+Z(jv))−*

× ((L(jv)+Z(jv))C−1
d (v)(L(jv)+Z(jv))*

− (L(jv)+Z(jv))*C−1
d (v)(L(jv)+Z(jv)))

× (L(jv)+Z(jv))−*Cd (v)(L(jv)+Z(jv))−1](i,i)
= 0. q

APPENDIX D: PROOF OF THEOREM 4.1

As shown in equation (12), Pc does not depend on Im [Svy (v)]. By using Parseval’s
theorem we have

Pc =g
a

−a

Ec(v) dv

=
−1
2p g

a

−a

Re [L(jv)(L(jv)+Z(jv))−1Sww (L(jv)+Z(jv))−*] dv

=
−1
2p g

a

−a

L(jv)(L(jv)+Z(jv))−1DDT(L(jv)+Z(jv))−* dv

=
−1
2p g

a

−a

[C2(jvI−A	 )−1B	 ][C1(jvI−A	 )−1B	 ]* dv=−C2Q	 CT
1 ,
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which proves equation (74). Since wi (t) is white noise, we have

E[w(t)xT(t)]=E$w(t)6eA	 tx0 +g
t

0

eA	 (t− s)Bw(s) ds7
T

%
=E$g

t

0

w(t)wT(s)BT eA	 T(t− s) ds%=g
t

0

d(t− s)SwwBT eA	 T(t− s) ds

= 1
2 DDTBT = 1

2 DB	 T, (D1)
where d(t) is the symmetric delta function and

B,$BZ

0 %.
By multiplying equation (D1) on the right side by CT

1 and using equation (73), we obtain
1
2 DB	 TCT

1 =E[w(t)xT(t)CT
1 ]=E[w(t)yT(t)]=Pe,

which proves equation (75). Equation (76) follows immediately from equation (31) in
Corollary 3.2. q

APPENDIX E: PROOF OF COROLLARY 4.1

In a similar manner to Pc, equation (78) can be obtained as

Pd
i =g

a

−a

Ed
i (v) dv

=
−1
2p $g

a

−a

Re [Z(jv)(L(jv)+Z(jv))−1Sww (L(jv)+Z(jv))−*] dv](i,i)

=
−1
2p $g

a

−a

Cd(L(jv)+Z(jv))−1Sww (L(jv)+Z(jv))−* dv%(i,i)

=−$Cd
1
2p g

a

−a

(L(jv)+Z(jv))−1DDT(L(jv)+Z(jv))−* dv%(i,i)

=−0Cd
1
2p g

a

−a

[C1(jvI−A	 )−1B	 ][C1(jvI−A	 )−1B	 ]* dv)(i,i)

=−(CdC1Q	 CT
1 )(i,i).

q
APPENDIX F: NOTATION

R real numbers
E expectation
Rxy cross-correlation function ma-

trix of x and y
Sxx power spectral density matrix

of x
Sxy cross-spectral density matrix

of x and y
I identity matrix
j =z−1
A(k,l) (k, l)-element of A
Re [A], Im [A] real, imaginary part of A
diag (a1, . . . , ar ) diagonal matrix ith diagonal

element of which is ai

AT, A* transpose, complex conjugate
transpose of A

Aq (e)0 positive (non-negative) definite
matrix

ei ith column of I
tr [A] trace of A
{A}, �A� digonal, off-diagonal portion

of A
Inc [S] incoherent (diagonal) portion

of spectral density matrix S
Coh [S] coherent (off-diagonal) por-

tion of spectral density matrix
S

e [1 1 · · · 1]T
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G(s)0$ACbBD% =C(sI−A)−1B+D, state

space realization of the trans-
fer function G(s)

A coefficient matrix of compart-
mental model

Cd resistance or damping matrix
CL stiffness part of coupling

matrix L(s)
ci resistance or damping of ith

subsystem
D disturbance matrix
GL gyroscopic part of coupling

matrix L(s)
E column vector with com-

ponents Eth
i

Eth thermodynamic energy matrix
Eth

i steady state thermodynamic
energy

Eth
ij steady state thermodynamic

cross energy
Ebl

i steady state blocked energy
Emec

i steady state coupled mechan-
ical energy

Eu
i steady state uncoupled mech-

anical energy
Ec(v) average coupling energy flow

matrix per unit bandwidth
Ed(v) average energy dissipation

rate matrix per unit band-
width

Ee(v) average external power matrix
per unit bandwidth

Ec
i (v) average coupling energy flow

of ith subsystem per unit
bandwidth

Ed
i (v) average energy dissipation rate

of ith subsystem per unit
bandwidth

Ee
i average external power of

ith subsystem per unit band-
width

Ec
Coh(Inc),i (v) average (in)coherent coupling

energy flow of ith subsystem
per unit bandwidth

Ed
Coh(Inc),i (v) average (in)coherent energy

dissipation rate of ith subsys-
tem per unit bandwidth

Ee
Coh(Inc),i (v) average (in)coherent external

power of ith subsystem per
unit bandwidth

S matrix involving sij

H(v) matrix involving dij (v)
ki stiffness of ith subsystem
L(s) linear time-invariant coupling

matrix
mi mass of ith subsystem
Pc steady state average coupling

energy flow matrix
Pd steady state average energy

dissipation rate matrix
Pe steady state average external

power matrix
Pe column vector comprised of

Pe
Inc,i

Pc
i steady state average coupling

energy flow of ith subsystem
Pd

i steady state average energy
dissipation rate of ith subsys-
tem

Pe
i steady state average external

power of ith subsystem
Pc

Coh(Inc),i steady state (in)coherent aver-
age coupling energy flow of ith
subsystem

Pd
Coh(Inc),i steady state (in)coherent aver-

age energy dissipation rate of
ith subsystem

Pe
Coh(Inc),i steady state (in)coherent aver-

age external power of ith
subsystem

Q	 steady state covariance for
feedback representation of in-
terconnected system

Q	 j steady state covariance for
coupling coefficient

w̃i (t) normalized white noise dis-
turbance with unit intensity

Z(s) subsystem impedance matrix
zi (s) subsystem (impedance transfer

function)
di (v) dissipative coefficient of ith

subsystem
dij (v) coupling coefficient between

ith and jth subsystems
dipq (v) coupling coefficient between

ith, pth and qth subsystems
si dissipative coefficient of ith

subsystem (time domain)
sij coupling coefficient between

ith and jth subsystems (time
domain)


