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Input Estimation for Nonminimum-Phase Systems
With Application to Acceleration Estimation

for a Maneuvering Vehicle
Ahmad Ansari and Dennis S. Bernstein, Fellow, IEEE

Abstract— The goal of state and input estimation is to simul-
taneously estimate both the unmeasured states and unknown
input. Although this problem has been widely studied, existing
techniques are confined to the case where the system is minimum
phase. This paper introduces retrospective cost input estimation
(RCIE), which is based on retrospective cost optimization. It is
shown that RCIE automatically develops an internal model of
the unknown input. This internal model provides an asymptotic
estimate of the unknown input regardless of the location of
the zeros of the plant, including the case of nonminimum-
phase (NMP) dynamics. RCIE is applied to the NMP problem
of estimating inertial acceleration of a maneuvering unmanned
aerial vehicle using optical position data.

Index Terms— Input estimation, Kalman filter, maneuvering
target tracking, nonminimum-phase (NMP) zeros.

I. INTRODUCTION

THE Kalman filter and its variants provide well-established
techniques for estimating states that are not directly

measured [1]–[5]. The goal of these techniques is to obtain
optimal state estimates in the presence of process and sensor
noise. These techniques typically assume that the sensor and
process noise are stationary with zero mean. If, however,
the process noise includes a known deterministic component,
then estimator bias can be avoided by injecting this component
into the estimator; this technique underlies the separation
principle of linear-quadratic-Gaussian control. If, however,
the process noise is biased, that is, has unknown, nonzero
mean, or, more generally, it includes an unknown deterministic
component, then it is of interest to obtain estimates that are
unbiased, that is, unaffected by the deterministic-but-unknown
input. This problem is addressed in [6]–[10].

The advantages of injecting the known deterministic input
signal into the estimator motivate the development of tech-
niques for estimating not only the unmeasured states but also
the unknown deterministic input. The value of this objective in
practice resides in the fact that knowledge of the deterministic
input and its injection into the estimator can greatly increase
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the accuracy of the state estimates relative to the ad hoc
technique of choosing the disturbance covariance matrix to
overbound the deterministic input. The potential value of this
approach is evident from the increasing literature on input
estimation [11]–[34].

An alternative approach to input estimation is to assume that
the unknown input is the output of an auxiliary linear/nonlinear
system with known dynamics driven by white noise. The
dynamics of the auxiliary system are appended to the dynamics
of the physical system, and the augmented model is used
as the basis of the state estimator [35]–[37]. This approach
may not be accurate, however, if the unknown input cannot
be approximated by the output of a linear system driven by
white noise. The approach of this paper can be viewed as an
adaptive technique for learning suitable dynamics that capture
the unknown input.

The motivation for this paper resides in the fact that most
of the techniques for state and input estimation cited above
are confined to minimum-phase systems, that is, systems with
invariant zeros contained in the open unit disk. In particular,
the approach of [30], which extends the method of [16],
explicitly invokes a minimum-phase assumption.

The case of nonminimum-phase (NMP) zeros, that is, zeros
that are either on the unit circle or outside the closed unit
disk, is much more challenging. As shown in [24], a naive
attempt to estimate the input for an NMP system with zeros
outside the closed unit disk yields a reconstruction error that
is unbounded; in the case of zeros on the unit circle, the input-
reconstruction error is bounded but nonzero. In contrast, in the
case of MP systems, the input-reconstruction error vanishes
asymptotically. Unlike most of the references cited above, [34]
considers the case of NMP zeros, but the method is not
applicable to the case of zeros on the unit circle.

More generally, it is important to stress that exact input
reconstruction for a system with any zeros is impossible. This
can be easily seen by noting that the presence of an invariant
zero implies the existence of an initial condition and input for
which the output is identically zero. These details are related
to the unobservable input subspace [24]. Hence, in the case
where the system has one or more invariant zeros, the goal is
to achieve asymptotic input reconstruction of the component
of the input that resides in the orthogonal complement of the
unobservable input subspace.

This paper is aimed at the case where the system is NMP.
In particular, this paper considers state and input estima-
tion based on retrospective cost optimization [33], [38]–[43].
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Based on this technique, the contribution of this paper is the
development of retrospective cost input estimation (RCIE),
which is a technique for state and input estimation that is
effective for NMP systems. This approach uses an estimator
whose coefficients are recursively updated at each time step
so as to minimize a retrospective cost function. Motivation
for this approach is discussed within the context of adaptive
control in [44] and [45].

The method developed in this paper provides a novel
approach to a longstanding problem in target tracking, namely,
estimation of the inertial acceleration of a body using only
position measurements. This problem is motivated by the
need to estimate acceleration in order to predict future motion
and distinguish ballistic vehicles from maneuvering vehicles.
The extensive literature and diverse methods developed for
this problem attest to its importance [20], [39], [46]–[51].
It turns out that, for this problem, the discretized kinematics
have invariant zeros on the unit circle, and thus the approach
of [34] is not applicable. A more restricted version of RCIE
confined to LTI systems is applied to this problem for pla-
nar target tracking in [41]. The approach of [41], however,
is not applicable to LTV systems, such as the kinematics
of a 3-D maneuvering vehicle resolved in the body frame.
In addition, [41] does not recognize or address the NMP
features of the problem.

The contents of this paper are as follows. Section II intro-
duces the state and input estimation problem along with the
RCIE algorithm and details of the input-estimation subsystem.
Section III shows how RCIE can asymptotically reconstruct
the input to an NMP system by embedding an internal model
of the unknown input in the input-estimation subsystem.
Section IV illustrates the effect of the unobservable input
subspace, and Section V compares RCIE to the filter presented
in [30]. Section VI provides the main objective of this paper,
namely, application of RCIE to estimation of inertial accel-
eration. Using optical position data for an unmanned aerial
vehicle (UAV), RCIE estimates the inertial acceleration, which
is modeled as an unknown input. The acceleration estimates
are compared with IMU data from onboard sensors.

II. INPUT AND STATE ESTIMATION

Consider the linear discrete-time system

x(k) = A(k−1)x(k−1) + B(k−1)u(k−1)

+ G(k−1)d(k−1) + D1(k−1)w(k−1) (1)

y(k) = C(k)x(k) + D2(k)v(k) (2)

where x(k) ∈ R
lx is the unknown state, u(k) ∈ R

lu is the
known input, d(k) ∈ R

ld is the unknown input, w(k) ∈ R
lw

is the unknown white process noise with zero mean and unit
variance, y(k) ∈ R

ly is the measured output, and v(k) ∈ R
lv

is the unknown white measurement noise with zero mean
and unit variance. This model may represent a sampled-
data version of a continuous-time plant with sample time Ts ,
in which case x(k) denotes the state at time t = kTs . The
matrices A(k) ∈ R

lx ×lx , B(k) ∈ R
lx ×lu , G(k) ∈ R

lx ×ld ,
D1(k) ∈ R

lx ×lw , C(k) ∈ R
ly×lx , and D2(k) ∈ R

ly×lv

are assumed to be known. The process noise covariance is

V1(k)
�= D1(k)D1(k)T ∈ R

lx ×lx , and the measurement noise

covariance is V2(k)
�= D2(k)D2(k)T ∈ R

ly×ly . The goal is to
estimate the unknown input d(k) and the unknown state x(k).

A. Retrospective Cost Input Estimation

In order to estimate the unknown input d(k), we consider
the Kalman filter forecast step

x f c(k) = A(k−1)xda(k−1) + B(k−1)u(k−1)

+G(k−1)d̂(k − 1) (3)

y f c(k) = C(k)x f c(k) (4)

z(k) = y f c(k) − y(k) (5)

where d̂(k) ∈ R
ld is the input estimate, xda(k) ∈ R

lx is the
data-assimilation state, x f c(k) ∈ R

lx is the forecast state, and
z(k) ∈ R

ly is the innovations. The goal is to develop an input
estimator that minimizes z(k) by estimating d(k).

We obtain the input estimate d̂(k) as the output of the input-
estimation subsystem of order nc given by

d̂(k) =
nc∑

i=1

Pi (k)d̂(k − i) +
nc∑

i=0

Qi (k)z(k − i) (6)

where Pi (k) ∈ R
ld×ld and Qi (k) ∈ R

ld×ly . Note that (6)
represents an exactly proper transfer function with direct
feedthrough from the innovations z(k) to the estimate d̂(k)
of d(k). RCIE minimizes z(k) by updating Pi (k) and Qi (k).
The subsystem (6) can be reformulated as

d̂(k) = �(k)θ(k) (7)

where the regressor matrix �(k) is defined by

�(k)
�=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

d̂(k − 1)
...

d̂(k − nc)
z(k)

...
z(k − nc)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

⊗ Ild ∈ R
ld ×lθ

and

θ(k)
�= vec[P1(k) · · · Pnc (k) Q0(k) · · · Qnc (k)] ∈ R

lθ ,

where lθ
�= l2

dnc + ldly(nc +1), “⊗” is the Kronecker product,
and “vec" is the column-stacking operator. The order nc of
the input-estimation subsystem must be chosen large enough
to accommodate an internal model of the unknown input. The
action of the internal model is described in Section III.

Define ly × ld filter G f,k(q)
�= D−1

f,k(q)Nf ,k(q), where q is
the forward shift operator, n f ≥ 1 is the order of G f ,

N f,k (q)
�= K1(k)qn f −1 + K2(k)qn f −2 + · · · + Kn f (k) (8)

D f,k(q)
�= Ily qn f + A1(k)qn f −1+ A2(k)qn f −2+· · · + An f (k)

(9)

and, for all 1 ≤ i ≤ n f and k ≥ 0, Ki (k) ∈ R
ly×ld and

Ai (k) ∈ R
ly×ly .
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Next, for all k ≥ 0, we define the retrospective input

drc(θ̂ , k)
�= �(k)θ̂ (10)

and the corresponding retrospective performance variable

zrc(θ̂ , k)
�= z(k) + G f,k(q)[drc(θ̂ , k) − d̂(k)] (11)

where the filter G f,k(q) is derived in Section II-C and the
coefficient vector θ̂ ∈ R

lθ is determined by the following
optimization. Defining

� f (k)
�= G f,k(q)�(k) ∈ R

ly×lθ (12)

d̂ f (k)
�= G f,k(q)d̂(k) ∈ R

ly (13)

it follows that zrc(θ̂ , k) can be written as:

zrc(θ̂ , k) = z(k) + � f (k)θ̂ − d̂ f (k). (14)

For k ≥ 1, we define the retrospective cost function

J (θ̂ , k)
�=

k∑

i=0

λk−i (zrc(θ̂, i)TRzzrc(θ̂ , i)+[�(i)θ̂]T Rd�(i)θ̂ )

+ λk[θ̂ − θ(0)]T Rθ [θ̂ − θ(0)] (15)

where Rz ∈ R
ly×ly , Rd ∈ R

ld×ld , and Rθ ∈ R
lθ ×lθ are positive

definite, and λ ∈ (0, 1] is the forgetting factor. Let P(0) =
R−1

θ and θ(0) = θ0. Then, for all k ≥ 1, the cumulative cost
function (15) has the unique global minimizer θ(k) given by
the recursive least squares (RLS) update

θ(k) = θ(k−1) − P(k−1)�̃(k)T �(k)[�̃(k)θ(k−1) + z̃(k)]
(16)

P(k) = 1

λ
[P(k−1) − P(k−1)�̃(k)T �(k)�̃(k)P(k−1)]

(17)

where

�̃(k)
�=

[
� f (k)
�(k)

]
∈ R

(ly+ld )×lθ (18)

R̃(k)
�=

[
Rz(k) 0

0 Rd (k)

]
∈ R

(ly+ld )×(ly+ld ) (19)

z̃(k)
�=

[
z(k) − d̂ f (k)

0

]
∈ R

ly+ld (20)

�(k)
�= [λR̃(k)−1 + �̃(k)P(k−1)�̃(k)T ]−1. (21)

Note that RCIE uses RLS to estimate the coefficients θ of
the input-estimation subsystem. Since the RLS equation is
a quadratic matrix equation, its computational complexity
is O(n2

c).

B. State Estimation

In order to estimate the state x(k), we use x f c(k) given
by (3) to obtain the estimate xda(k) of x(k) given by the
Kalman filter data-assimilation step

xda(k) = x f c(k) + Kda(k)z(k) (22)

where the state estimator gain Kda(k) ∈ R
lx ×ly is given by

Kda(k) = −Pf (k)C(k)T [C(k)Pf (k)C(k)T + V2(k)]−1

(23)

and the forecast error covariance P f (k) ∈ R
lx ×lx and the data-

assimilation error covariance Pda(k) ∈ R
lx ×lx are given by

Pf (k) =A(k−1)Pda(k − 1)A(k−1)T + V1(k−1) + Vd̂(k−1)

(24)

Pda(k) = [I + Kda(k)C(k)]Pf (k) (25)

where Vd̂(k) is the covariance of d̂(k). Note that, if
d̂(k) = d(k) for all k ≥ 0, then, for all k ≥ 0, Vd̂(k) = 0 and
the state estimate xda given by (22) is the standard Kalman
filter estimate.

C. Filter Construction

For simplicity of presentation, the known input u and the
process noise w are omitted in this section. By substituting (3)
into (22), the forecast step is given as

x f c(k) = Ā(k − 1)x f c(k − 1) + G(k − 1)d̂(k − 1)

+ B̄(k − 1)y(k − 1) (26)

where

Ā(k)
�= A(k)[I+Kda(k)C(k)], B̄(k)

�= −A(k)Kda(k). (27)

The forecast state estimate x f c(k) given by (26) can be
expanded as

x f c(k)

=
(

n∏

i=1

Ā(k−i)

)
x f c(k−n)

+
n∑

i=2

⎛

⎝
i−1∏

j=1

Ā(k− j)

⎞

⎠ G(k−i)d̂(k−i) + G(k−1)d̂(k−1)

+
n∑

i=2

⎛

⎝
i−1∏

j=1

Ā(k− j)

⎞

⎠ B̄(k−i)y(k−i) + B̄(k−1)y(k−1)

(28)

where
∏2

i=1 Mi
�= M2 M1. Using (4) and (28) yields

z(k) = C(k)

(
n∏

i=1

Ā(k−i)

)
x f c(k−n) +

n∑

i=1

Hi(k)d̂(k−i)

+
n∑

i=1

H ′
i (k)y(k−i) − y(k) (29)

where, for all i ≥ 1

Hi(k)
�=

⎧
⎪⎪⎨

⎪⎪⎩

C(k)G(k−1), i = 1

C(k)

⎛

⎝
i−1∏

j=1

Ā(k− j)

⎞

⎠ G(k−i), i ≥ 2
(30)

H ′
i (k)

�=

⎧
⎪⎪⎨

⎪⎪⎩

C(k)B̄(k−1), i = 1

C(k)

⎛

⎝
i−1∏

j=1

Ā(k− j)

⎞

⎠ B̄(k−i), i ≥ 2.
(31)
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Fig. 1. Block diagram of RCIE. The two-step Kalman filter consists of
the forecast subsystem G f c and the data-assimilation subsystem Gda . The
innovation z and the output d̂ of the input-estimation subsystem Gd̂z are the
inputs of the two-step Kalman filter.

Furthermore, (10) and (29) imply

zrc(θ̂, k) = C(k)

(
n∏

i=1

Ā(k−i)

)
x f c(k−n)

+
n∑

i=1

Hi(k)drc(θ̂, k−i) +
n∑

i=1

H ′
i (k)y(k−i) −y(k).

(32)

Subtracting (29) from (32) yields

zrc(θ̂, k) = z(k) +
n∑

i=1

Hi(k)
1

qi [drc(θ̂ , k) − d̂(k)]. (33)

Hence, G f,k(q) in (11) is the FIR filter

G f,k(q) =
n f∑

i=1

Hi(k)
1

qi
(34)

and, thus, for all k ≥ 0 and all i = 1, . . . , n f , Ai (k) = 0 and
Ki (k) = Hi(k) in (9) and (8), respectively. Furthermore, � f

and d̂ f defined by (12) and (13) are given by

� f (k) =
n f∑

i=1

Hi(k)�(k − i) (35)

d̂ f (k) =
n f∑

i=1

Hi(k)d̂(k−i). (36)

D. Transfer Function Representation of RCIE

The physical system Gyd,k, forecast subsystem G f c,k ,
input-estimation subsystem Gd̂z,k , and data-assimilation sub-
system Gda,k in Fig. 1 represent [(1) and (2)], (3),
(6), and (22), respectively. For simplicity of presentation,
the known input u and the process noise w are not shown
in Fig. 1 and are omitted for the remainder of this section.

By substituting (26) into (4), y f c is given by

y f c(k) = Gy f c y,k(q)y(k) + Gy f cd̂,k(q)d̂(k) (37)

where

Gy f c y,k(q) = C(k)[qI − Ā(k)]−1 B̄(k) (38)

Gy f cd̂,k(q) = C(k)[qI − Ā(k)]−1G(k). (39)

Algorithm 1 Input and State Estimation

Next, it follows from (6) that d̂ is given by:

d̂(k) = Gd̂z,k(q)z(k) (40)

where

Gd̂z,k(q) = (Ild − P1(k)q−1 − · · · − Pnc (k)q−nc )−1

· (Q0(k) + Q1(k)q−1 + · · · + Qnc q−nc ). (41)

Next, it follows from (1) and (2) that y is given by:

y(k) = Gyd,k(q)d(k) + D2(k)v(k) (42)

where

Gyd,k(q) = C(k)[qI − A(k)]−1G(k). (43)

Using (37), (40), and (42), the innovation z defined by (5)
is given by

z(k) = Gzd,k(q)d(k) + Gzy,k(q)D2(k)v(k) (44)
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where

Gzy,k = [Ily − Gy f cd̂,k Gd̂z,k]−1[Gy f c y,k − Ily ] (45)

Gzd,k = Gzy,kGyd,k. (46)

Using (40) and (44), d̂ is given by

d̂(k) = Gd̂d,k(q)d(k) + Gd̂v,k(q)v(k) (47)

where

Gd̂d,k = Gd̂z,kGzd,k (48)

Gd̂v,k = Gd̂z,kGzy,k D2(k). (49)

Now, define the notation

Gyd,k
�= D−1

yd,k Nyd,k ∈ R
ly×ld (q) (50)

Gy f c y,k
�= D−1

y f c y,k Ny f c y,k ∈ R
ly×ly (q) (51)

Gy f cd̂,k
�= D−1

y f cd̂,k
Ny f cd̂,k ∈ R

ly×ld (q) (52)

Gd̂z,k
�= D−1

d̂ z,k
Nd̂z,k ∈ R

ld×ly (q) (53)

and note from (38) and (39) that Dy f cd̂,k = Dy f c y,k . Using
(51) and (53), it follows that (46) and (48) are given by:

Gzd,k = (
Ily − D−1

y f cd̂,k
Ny f cd̂,k D−1

d̂z,k
Nd̂z,k

)−1

· (D−1
y f c y,k Ny f c y,k − Ily

)
D−1

yd,k Nyd,k (54)

Gd̂d,k = D−1
d̂ z,k

Nd̂z,k

(
Ily − D−1

y f cd̂,k
Ny f cd̂,k D−1

d̂z,k
Nd̂z,k

)−1

· (D−1
y f c y,k Ny f c y,k − Ily

)
D−1

yd,k Nyd,k . (55)

III. ANALYSIS OF THE INPUT ESTIMATION SUBSYSTEM

We now analyze the input-estimation subsystem Gd̂z,k in
order to determine conditions on Gd̂z,k under which z(k) and

d̂(k)−d(k) converge to zero. We then show that RCIE adapts
Gd̂z,k so as to satisfy these conditions.

In the following analysis, we assume for simplicity that A,
C , G, Kda , and Gd̂z are time invariant. Furthermore, as a
special case, assume that ld = ly = 1 and u = w = v = 0.
Then, using (54) and (55), it follows that (44) and (47) are
given by:

z(k)

= Gzd(q) d(k)

=
Nyd (q)(Ny f c y(q)−Dy f c y(q))Dy f cd̂ (q)Dd̂z(q)

Dyd(q)Dy f c y(q)
(
Dy f cd̂(q)Dd̂z(q)−Ny f cd̂ (q)Nd̂z(q)

)d(k)

(56)

d̂(k)

= Gd̂d (q) d(k)

=
Nd̂z(q)Nyd (q)(Ny f c y(q)−Dy f c y(q))Dy f cd̂(q)

Dyd(q)Dy f c y(q)
(
Dy f cd̂(q)Dd̂z(q)−Ny f cd̂ (q)Nd̂z(q)

)d(k).

(57)

In the following analysis, we replace the forward shift
operator q with the Z-transform variable "z" in order to use

the final value theorem. The identity

det(z I − A − BC) = det(z I − A)

− Cadj(z I − A − B K C)B (58)

implies that

Dy f c y(z) − Ny f c y(z)

= det(z I − Ā) − Cadj(z I − Ā)B̄

= det(z I − A − AKdaC) + Cadj(z I − A − AKdaC)AKda

= det(z I − A) − Cadj(z I − A − AKdaC)AKda

+ Cadj(z I − A − AKdaC)AKda

= det(z I − A) = Dyd(z). (59)

Since Ā = A + AKdaC , it follows from (38) and (43) that
Ny f cd̂ = Nyd . Using (59), Dy f cd̂ = Dy f c y , and Ny f cd̂ = Nyd ,

it follows from (56) and (57) that:

Z{z}(z) = Gzd(z)Z{d}(z)
= Nyd (z)Dd̂z(z)

Ny f cd̂ (z)Nd̂z(z) − Dy f cd̂(z)Dd̂z(z)
Z{d}(z) (60)

Z{d̂}(z) = Gd̂d (z)Z{d}(z)
= Nd̂z(z)Nyd(z)

Ny f cd̂ (z)Nd̂z(z) − Dy f cd̂(z)Dd̂z(z)
Z{d}(z). (61)

As an example, assume that d(k) ≡ d̄ is constant and Gd̂z has
an internal model of d , that is, Dd̂z(z) = (z −1)D̄d̂z(z). Then,

Z{d}(z) = d̄

z − 1
, Gd̂z(z) = Nd̂z(z)

(z − 1)D̄d̂z(z)
. (62)

Using (60) and assuming that Ny f cd̂(z)Nd̂z(z) − (z −
1)Dy f cd̂(z)D̄d̂z(z) is asymptotically stable, it follows from the
final value theorem that:

lim
k→∞ z(k)

= lim
z→1

(z−1)
(z − 1)Nyd(z)D̄d̂z(z)

Ny f cd̂(z)Nd̂z(z)−(z−1)Dy f cd̂(z)D̄d̂z(z)
· d̄

(z−1)

= 0. (63)

Similarly, using (61) and Ny f cd̂ = Nyd , it follows that:

lim
k→∞ d̂(k) = Nd̂z(z)Nyd (z)

Ny f cd̂(z)Nd̂z(z) − (z−1)Dy f cd̂ (z)D̄d̂z(z)

∣∣∣∣∣
z=1

d̄

= d̄. (64)

To apply the above analysis, we assume that the unknown
input d(k) is generated by the discrete-time, linear time-
invariant exogenous subsystem

xd(k) = Ad xd(k−1) (65)

d(k) = Cd xd(k) (66)

where Ad ∈ R
n×n , Cd ∈ R

ld×n , and the eigenvalues of Ad

are simple and lie on the unit circle. Now, assume that the
following conditions are satisfied.
P1: Gd̂z contains an internal model of d , that is, for all λ ∈

spec(Ad), |Gd̂z(λ)| = ∞.
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P2: Ny f cd̂ Nd̂z − Dy f cd̂ Dd̂z is asymptotically stable.
P3: For all λ ∈ spec(Ad), Gd̂d (λ) = 1.

Then, it follows from the internal model principle [52] that,
as k → ∞, z(k) → 0 and d̂(k)−d(k) → 0. The following
examples show that RCIE adapts Gd̂z,k such that P1–P3 are
asymptotically satisfied.

Example 1: Consider the MP system

Gyd(z) = z − 0.9

(z − 0.7)(z − 0.8)
(67)

with the minimal realization

A =
[

1.5 −0.56
1 0

]
, G =

[
1
0

]
, C = [1 − 0.9]. (68)

Let nc = 3, n f = 24, λ = 1, Rθ = 10−4 Ilθ , Rd = 10−6,
Rz = 1, and Vd̂ = 10−2 Ilx , and let B , V1, and V2 be zero.
The unknown input is d(k)=1+ sin(0.3k), which consists of
a step and a harmonic. Its Z-transform is given by

Z{d}(z) = z

z − 1
+ 0.29

z

z2 − 1.91z + 1
. (69)

Note that, since the input d is unknown, the frequency of
its harmonic component is unknown to RCIE. It, thus, is not
possible to construct an auxiliary system that captures the
spectrum of d .

After an initial transient of 10 time steps, d̂ follows d ,
as shown in Fig. 2(a). The estimator coefficients θ(k) shown
in Fig. 2(b) converge in 50 steps to

Gd̂z,50(z) = −2.91
(z + 0.006)(z2 − 0.99z + 0.34)

(z − 1.004)(z2 − 1.909z + 0.999)
. (70)

The poles of Gd̂z,50 at 1.004 and 0.95 ± 0.29j in (70) show
that RCIE builds an internal model of d in Gd̂z,50. Thus,
P1 is satisfied. Furthermore, Kda (not shown in Fig. 2) also
converges, and the poles of Gd̂d,50 are shown in Fig. 2(c).
Since the poles of Gd̂d,50 are inside the open unit disk,
P2 is satisfied. The magnitude and phase plots of Gd̂d,50
in Fig. 2(d) show that, at both dc and the unknown input
frequency 0.3 rad/s, the magnitude is 1 and the phase is 0°.
Hence, P3 is satisfied.

To test the robustness of RCIE to model error, we vary the
(1, 2) entry of A matrix while keeping G, C constant. The
RCIE parameters are kept the same for all cases. Fig. 3 shows
the mean and standard deviation of the error |d − d̂|, after
50 time steps, for a range of values of the (1, 2) entry of
A. Note that the mean and standard deviation of the error
increase linearly as the (1, 2) entry of A varies from its true
value 0.56. ♦

Example 2: Consider the NMP system

Gyd(z) = z − 1.2

(z − 0.7)(z − 0.8)
(71)

with the minimal realization

A =
[

1.5 −0.56
1 0

]
, G =

[
2
0

]
, C = [0.5 − 0.6].

(72)

The tuning parameters are the same as in Example 1.
The unknown input is d(k)= sin(0.3k).

Fig. 2. RCIE for the MP system (67). (a) After the initial transient, d̂
follows d. (b) Estimator coefficients θ converge in about 50 steps. (c) Poles
of Gd̂z,50 at 1.004 and 0.95±0.29j show that RCIE builds an internal model
of d in Gd̂z,50. The poles of Gd̂d,50 are inside the open unit disk. (d) Gd̂d,50
has magnitude 1 and phase 0° at both dc and the unknown input frequency
0.3 rad/s.

Fig. 3. Robustness of RCIE to model error for the system (67). The (1, 2)
entry of A is varied while keeping the matrices G, C , and RCIE parameters
constant. Note that the mean and standard deviation of the error increase
linearly as the (1, 2) entry of A varies from its true value 0.56.

After an initial transient of about 90 steps, d̂ follows d ,
as shown in Fig. 4(a). The estimator coefficients θ(k) shown
in Fig. 4(b) converge in about 450 steps to

Gd̂z,450(z) = 8.52
(z + 0.01)(z2 − 1.908z + 0.91)

(z + 10.46)(z2 − 1.903z + 0.99)
. (73)

The poles of Gd̂z,450 at 0.95 ± 0.29j in (73) show that RCIE
builds an internal model of d in Gd̂z,450. Thus, P1 is satisfied.
Furthermore, Kda (not shown in Fig. 2) also converges, and
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Fig. 4. RCIE for the NMP system (71). (a) After the initial transient, d̂
follows d. (b) Estimator coefficients θ converge in about 450 steps. (c) Poles
of Gd̂z,450 at 0.95 ± 0.29j show that RCIE builds an internal model of d
in Gd̂z . The poles of Gd̂d,450 are inside the open unit disk. (d) Gd̂d has
magnitude 1 and phase 0° at the unknown input frequency 0.3 rad/s.

the poles of Gd̂d,450 are shown in Fig. 4(c). Since the poles
of Gd̂d,450 are inside the open unit disk, P2 is satisfied. The
magnitude and phase plots of Gd̂d,450 in Fig. 4(d) show that,
at the unknown input frequency 0.3 rad/s, the magnitude is 1
and the phase is 0°. Hence, P3 is satisfied. ♦

Example 3: Consider the linear, time-varying system

Gyd,k(q) = q − ξ(k)

(q − 0.8)(q − 0.9)
(74)

where

ξ(k) =
⎧
⎨

⎩

0.95, k < 100
0.95 + 0.001(k − 100), 100 ≤ k ≤ 300
1.15, k > 300.

(75)

Note that, during the transition, Gyd is MP for k < 150 and
NMP for k ≥ 150. Let nc = 8, n f = 48, λ = 0.998, Rθ =
10−2 Ilθ , Rd = 10−6, Rz = 1, and Vd̂ = 10−2 Ilx .

First, we consider the case where the unknown input d(k) is
constant. Fig. 5(a) shows that RCIE estimates d for both MP
and NMP Gyd with an intervening transient. Fig. 5(b) shows
that the estimator coefficients θ(k) readapt due to the transition
of Gyd from MP to NMP dynamics in order to estimate d .
Note that, at k = 100 and 600 steps, Gd̂z,k has a pole at
1, Gd̂d,k is asymptotically stable, and Gd̂d,k(1) ≈ 1. Hence,
before and after the transition, P1–P3 are satisfied.

Next, we consider the case where d(k) = sin(0.1k).
Fig. 5(c) shows that RCIE estimates d for both MP and NMP
Gyd with an intervening transient. Fig. 5(d) shows that the
estimator coefficients θ(k) readapt due to the transition of Gyd

from MP to NMP dynamics in order to estimate d . Note that,

Fig. 5. RCIE for the time-varying system (74). The transition begins at
k = 100 steps and ends at k = 300 steps. (a) RCIE estimates constant d for
both MP and NMP G yd with an intervening transient response. (b) Estimator
coefficients readapt due to the transition of G yd from MP to NMP dynamics
in order to estimate d. (c) RCIE estimates harmonic d for both MP and
NMP G yd with an intervening transient response. (d) Estimator coefficients
readapt due to the transition of G yd from MP to NMP dynamics in order to
estimate d.

at k = 100 and 600 steps, Gd̂z,k has poles at 0.995 ± 0.099,
Gd̂d,k is asymptotically stable, and Gd̂d (e0.1j ) ≈ 1. Hence,
before and after the transition, P1–P3 are satisfied. ♦

IV. EFFECT OF THE UNOBSERVABLE INPUT SUBSPACE

As shown in [24], if (A, G, C) has an invariant zero, then
it has a nontrivial unobservable input subspace. In particular,
an input of the form d(k) = Re(ξ k d̄), where ξ ∈ C is
an invariant zero of (A, G, C) and d̄ ∈ C

ld is specified in
Example 4 in the following, is unobservable, since there exists
an initial condition x(0) = Re(x̄) such that the output is
identically zero. Note that, for each example in Section III,
the input d was chosen so that its spectral content is disjoint
from the zeros of (A, G, C). For instance, in Example 1, d is
the sum of step and harmonic signals, but the zero of Gyd is
0.9. This section illustrates the effect of the unobservable input
subspace in the case where the unknown input has spectral
content that coincides with a zero of (A, G, C).

Example 4: Consider the system

Gyd(z) = C(z I − A)−1G = z − ξ

(z − 0.7)(z − 0.8)
(76)

where ξ ∈ C is an invariant zero of (A, G, C). Let
[

x̄
d̄

]
∈ N

([
ξ I − A −G

C 0

])

be nonzero with nonzero real part and define d(k) = dob(k)+
duo(k), where, for all k ≥ 0, dob(k) = sin(0.3k) and duo(k) =
Re(ξ k d̄). Furthermore, let x(0) = Re(x̄). Note that duo is
unobservable. Next, let nc = 8, n f = 48, λ = 0.998, Rθ =
10−2 Ilθ , Rd = 10−6, Rz = 1, and Vd̂ = 10−2 Ilx .

First, let ξ = 0.96, which lies in the open unit disk. In this
case, Fig. 6(a) shows that d̂ converges to dob. Furthermore,
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Fig. 6. Effect of the unobservable input subspace on the estimate of the
unknown input using RCIE for the system (76). (a) d̂ converges to dob, and
duo = d − dob converges to zero. (b) d̂ converges to dob , and duo = d − dob
is a nonzero constant. (c) d̂ converges to dob, and duo = d − dob diverges.

Fig. 6(a) shows that d − dob converges to zero, which is
consistent with the fact that duo = d − dob converges to zero.
Thus, d − d̂ also converges to zero.

Next, let ξ = 1, which lies on the unit circle. In this
case, Fig. 6(b) shows that d̂ converges to dob. Furthermore,
Fig. 6(b) shows that d − dob does not converge to zero, which
is consistent with the fact that duo is constant. Thus, d − d̂
converges to duo.

Finally, let ξ = 1.08, which lies outside the closed unit
disk. In this case, Fig. 6(c) shows that d̂ converges to dob.
Furthermore, Fig. 6(c) shows that d − dob diverges, which is
consistent with the fact that duo diverges. Thus, d − d̂ also
diverges; however, dob − d̂ converges to zero.

Note that, in all three cases, d̂ converges to dob and z (not
shown in Fig. 6) converges to zero after an initial transient. ♦

V. COMPARISON OF RCIE WITH ULISE

We now compare RCIE with the ULISE filter [30] in the
presence of process and measurement noise. To assess the
accuracy of the input estimate, we plot the error metrics

eRCIE(k)
�= 1

Ntrial

√√√√
Ntrial∑

i=1

[d̂i (k) − d(k)]2 (77)

eULISE(k)
�= 1

Ntrial

√√√√
Ntrial∑

i=1

[d̂ULISE,i(k) − d(k)]2 (78)

where i denotes the i th trial, d̂i is the i th RCIE estimate of
d , d̂ULISE,i is the i th ULISE estimate of d , and Ntrial is the

Fig. 7. Estimation of a multistep input for the lightly damped mass-spring-
damper system (79). (a) UILSE estimate. (b) RCIE estimate. (c) Error in the
input estimate. The error for RCIE has mean 0.2 N and standard deviation
0.3 N, whereas the error for ULISE has mean 23.5 N and standard deviation
3.3 N.

number of trials. Each trial is based on a randomly generated
realization of v and w.

Example 5: Consider the mass-spring-damper system with
masses m1 and m2 and input force d applied to m1. The
dynamics are given by

ẋ = Acx + Gcd (79)

where

Ac
�=

[
02×2 I2×2
�1 �2

]
, Gc

�=
[

02×1
�3

]

�1
�=

⎡

⎢⎣
−k1 + k2

m1

k2

m1
k2

m2
− k2

m2

⎤

⎥⎦, �2
�=

⎡

⎢⎣
−c1 + c2

m1

c2

m1c2

m2
− c2

m2

⎤

⎥⎦

�3
�=

⎡

⎣
1

m1
0

⎤

⎦

x1 and x2 are the displacements and x3 and x4 are the velocities
of masses m1 and m2, respectively. We choose m1 = m2 =
1 kg, k1 = k2 = 1 N/m, and c1 = c2 = 1 kg/s. We discretize
(79) as

A = eAcTs , G = A−1
c (Ac − I )Gc (80)

where Ts = 0.1 s is the sampling time. The discretized system
has poles at 0.87 ± 0.08j and 0.97 ± 0.05j . Letting

C =
[

1 0 0 0
0 1 0 0

]

we measure the positions and estimate the velocities and the
unknown input force d on m1. The system (A, G, C) has
no invariant zeros. Let Ntrial = 100, nc = 4, n f = 24,
λ = 1, Rθ = 10−2 Ilθ , Rd = 10−8, Rz = Ily , Vd̂ = 0,
D1 = 10−2diag(1, 1, 2, 2), and D2 = 10−2diag(1, 1).

First, we consider the case where the unknown input force
d is a multistep. Fig. 7 shows that the error for RCIE has
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Fig. 8. Estimation of an unknown random-walk input for the lightly damped,
mass-spring-damper system (79). (a) ULISE estimate. (b) RCIE estimate.
(c) Error in the input estimate. The RCIE error has mean 0.3 N and standard
deviation 0.2 N, whereas the ULISE error has mean 22.6 N and standard
deviation 2.1 N.

Fig. 9. Estimation of an unknown multistep input for the mass-spring system
(79) with c1 = c2 = 0. (a) ULISE estimate. (b) RCIE estimate. (c) Error in
the input estimate. The RCIE error is close to zero, whereas the ULISE error
diverges.

mean 0.2 N and standard deviation 0.3 N, whereas the error
for ULISE has mean 23.5 N and standard deviation 3.3 N.
Next, we consider the case where the unknown input force
is a random walk. At each time step k, the random walk is
modeled as an increase or decrease in the magnitude by 0.1 N
with equal probability. Fig. 8 shows that the RCIE error has
mean 0.3 N and standard deviation 0.2 N, whereas the ULISE
error has mean 22.6 N and standard deviation 2.1 N. ♦

Example 6: Reconsider the system (79) but with zero
damping, that is, c1 = c2 = 0. Hence, (79) is Lyapunov stable
but not asymptotically stable. The continuous-time system has
no transmission zeros, but the discretized system (A, G, C)
has one transmission zero at −1 due to the sampling.

We consider the case where the unknown input force d is
a multistep. Fig. 9 shows that the RCIE error is 0.1 N at
t = 100 s, whereas the ULISE error diverges and is 282.7 N

at t = 100 s. The behavior of the error shown in Fig. 9(c)
with ULISE for the NMP system is consistent with the fact
that [30, Th. 6] is confined to MP systems. ♦

VI. EXPERIMENTAL APPLICATION: ESTIMATION

OF INERTIAL ACCELERATION

A. Problem Description

The Earth frame and body-fixed frame are denoted by FE

and FB , respectively. We assume that FE is an inertial frame
and the Earth is flat. The origin OE of FE is any convenient
point fixed on the Earth. The axes ı̂ E and ĵE are horizontal,
while the axis k̂E points downward. FB is defined with ı̂ B ,
ĵB , and k̂B fixed relative to the body. FB and FE are related
by

FB =→
R B/E FE (81)

where
→
R B/E is a physical rotation matrix represented by

a 3-2-1 Euler rotation sequence, involving two intermediate
frames FE ′ and FE ′′ . In particular,

→
R B/E= →

Rı̂E ′′ (�)
→
R ĵE ′ (	)

→
Rk̂E

(
) (82)

where FE ′ =→
R E ′/E FE , FE ′′ =→

R E ′′/E ′ FE ′ , and
→
Rn̂(κ)

is the Rodrigues rotation about the eigenaxis n̂ through the
eigenangle κ according to the right-hand rule.

Let p denote a point that is fixed on the body. The location
of p relative to OE is denoted by

⇀
r p/OE and is resolved in

FE as
⎡

⎣
X
Y
Z

⎤

⎦ �= ⇀
r p/OE

∣∣
E . (83)

The velocity of p relative to OE with respect to FE is given
by

⇀
v p/OE /E =

E•
⇀
r p/OE (84)

where E• denotes the derivative with respect to the time taken
in Earth frame. The acceleration of p relative to OE with
respect to FE is given by

⇀
a p/OE /E =

E•
⇀
v p/OE /E=

E••
⇀
r p/OE . (85)

We resolve
⇀
a p/OE /E in FE and FB using the notation

⎡

⎣
Ax

Ay

Az

⎤

⎦ �= ⇀
a p/OE /E

∣∣
E ,

⎡

⎣
ax

ay

az

⎤

⎦ �= ⇀
a p/OE /E

∣∣
B . (86)

Using (82) and (86),
⇀
a p/OE /E in FE is given by

⇀
a p/OE /E

∣∣
E = OE/B

⇀
a p/OE /E

∣∣
B (87)

and thus
⎡

⎣
Ax

Ay

Az

⎤

⎦ = OE/B

⎡

⎣
ax

ay

az

⎤

⎦ (88)
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where

OE/B =→
R E/B

∣∣
E .

Note that (81)–(88) are kinematic relations that are applicable
to an arbitrary point p on a body and are independent of all
modeling information.

For estimating the inertial acceleration of p relative to OE

with respect to FE , (84)–(88) are written in state-space form

ẋ = Acx + Gcd (89)

where

Ac =
[

03×3 I3×3
03×3 03×3

]
, Gc =

[
03×3
I3×3

]
(90)

x = [X Y Z Ẋ Ẏ Ż ]T , d = [Ax Ay Az]T . (91)

Note that (89) is an exact kinematic equation, and thus it
does not include process noise. For estimating the inertial
acceleration of p relative to OE with respect to FB , (84)–(88)
are written in state-space form

ẋ = Acx + Gcd + D1w (92)

where

Ac =
[

03×3 I3×3
03×3 03×3

]
, Gc =

[
03×3
OE/B

]
(93)

x = [X Y Z Ẋ Ẏ Ż ]T , d = [ax ay az]T . (94)

Likewise, (92) is an exact kinematic equation; however,
process noise is now included to account for errors in the
measurements of the matrix OE/B appearing in (93). Finally,
note that, due to OE/B , (92) is a continuous-time linear, time-
varying system; therefore, its discretization is linear, time-
varying.

B. Experimental Setup

In the laboratory setup, we estimate the inertial acceleration
of a quadrotor in FE and FB using (89) and (92), respectively,
with C = [I3×3 03×3]. The position

⇀
r p/OE |E and attitude

(�,	,
) of the vehicle are obtained using the Vicon system
and recorded for postflight data analysis. To compare the esti-
mated acceleration with the measured acceleration, data from
the vehicle’s inertial measurement unit (IMU) are recorded
and time-stamped. Using knowledge of the vehicle attitude,
IMU acceleration measurements are corrected to compensate
for gravity offset for comparison with RCIE acceleration
estimates.

C. Estimating Inertial Acceleration in the Earth Frame

We discretize (89) with Ts = 0.01 s, which is the sample
rate of the recorded data. The system (A, G, C) is NMP with
six poles at 1 and three invariant zeros at −1. Note that D1
is zero. Let nc = 2, n f = 6, λ = 1, Rθ = 10−10 Ilθ , Rd =
10−2 Ild , Rz = Ily , Vd̂ = 10−4 I6×6, and V2 = 10−2 I3×3.

Fig. 10 shows the accuracy of the RCIE estimate of the
inertial acceleration of the quadrotor in FE using position
measurements obtained from the Vicon system. For this setup,
the estimates of d using filters [16] and [30] diverge in less
than 2.5 s (not shown).

Fig. 10. Estimation of the inertial acceleration of the quadrotor relative to
OE with respect to FE using position measurements. RCIE estimates are
compared with the IMU acceleration measurements transformed to FE and
corrected to compensate for gravity offset.

Fig. 11. Estimation of the inertial acceleration of the quadrotor relative
to OE with respect to FB using position and attitude measurements. RCIE
estimates are compared with the IMU acceleration measurements with gravity
correction.

D. Estimating Inertial Acceleration in the Body Frame

Noting that Gc is time varying in (92), we discretize (92)
at each time step k with Ts = 0.01 s, which is the sample
rate of the recorded data. Let nc = 2, n f = 6, λ = 1, Rθ =
10−10 Ilθ , Rd = 10−4 Ild , Rz = Ily , Vd̂ + V1 = 10−4 I6×6, and
V2 = 10−2 I3×3.

Fig. 11 shows the accuracy of the RCIE estimate of the
inertial acceleration of the quadrotor in the body frame using
position and attitude measurements obtained from the Vicon
system. For this setup, the estimates of d using filters [16]
and [30] diverge in less than 2.5 s (not shown).
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VII. CONCLUSION

This paper presented RCIE and showed that this algorithm
is effective for asymptotically estimating the unknown input
of an NMP system. The mechanism underlying RCIE was
explained in terms of an internal model of the unknown input.
In particular, RCIE was shown to automatically construct
an internal model of the unknown input d despite the lack
of knowledge of the spectrum of d and in the presence of
arbitrary invariant zeros.

As an experimental application, RCIE was used to estimate
the inertial acceleration of a UAV; these estimates were
shown to be close to independent, onboard measurements
provided by an IMU. In contrast, the techniques of [16]
and [30] produced divergent estimates. In fact, the techniques
in [16], [30], and [34] are not applicable to this problem due
to the presence of invariant zeros on the unit circle.

Future research will focus on the following questions. First,
the covariance Vd̂(k) of d̂(k) is required to update the forecast
error covariance Pf given by (24). An online technique for
setting this covariance is desirable. Next, alternative techniques
for constructing G f that are simpler than the method given
in Section II-C could simplify the implementation of RCIE.
Finally, stochastic analysis of RCIE in the case where the
dynamics are linear time-varying remains a future objective.
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