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a b s t r a c t

This paper considers finite-time input reconstruction for discrete-time linear time-invariant systems
in the case where the initial condition is unknown. There are three main results. First, a specific
construction of finite-impulse-response (FIR) delayed left inverse with the minimal delay for systems
with zero nonzero zeros is presented. Next, it is shown that, in the presence of an arbitrary unknown
initial condition, finite-time input reconstruction is possible using a delayed left inverse H if and only
if H is FIR. Finally, it is shown that a transfer function with full column normal rank has an FIR delayed
left inverse with the minimal delay if and only if the system has zero nonzero zeros.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The need to invert dynamical systems arises in many appli-
cations. One of these is input estimation, where the goal is to
determine the input of a system based on measurements of its
output. Within the context of linear systems, plant inversion is
considered in the classic papers [1–4]. Input estimation for linear
systems is considered in [5–8]. Additional references are cited in
[9].

The present paper focuses on finite-time input reconstruction
within the context of deterministic discrete-time linear time-
invariant systems. For this problem there are three key issues.
The first issue concerns the delay under which the input can
be estimated. This question was resolved in [1], which showed
that the minimal delay is the smallest index for which the dif-
ference of the ranks of two successive block-Toeplitz matrices is
equal to the number of inputs. The second issue concerns the
presence of zeros. Since zeros block inputs, it is reasonable to
expect that the presence of zeros precludes the ability to un-
ambiguously estimate the system input. The third issue concerns
the effect of unknown, nonzero initial conditions. In particular,
the free response of the system contributes to its output, thus
making it difficult to determine the input simply by inverting the
system.

Finite-time input reconstruction for discrete-time LTI systems
was considered in [7,9,10], where the input was reconstructed
based on a state space approach for systems with no zeros.
The present paper has three key contributions relative to prior
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work. First, Theorem 4.2 uses the Smith–McMillan form at infinity
to construct a finite-impulse-response (FIR) delayed left inverse
with the minimal delay for systems with zero (that is, no) nonzero
zeros. The significance of this construction is due to Theorem 5.1,
which shows that, in the presence of arbitrary unknown ini-
tial conditions, finite-time input reconstruction is possible using
a delayed left inverse H if and only if H is FIR. Theorem 5.1
also specifies a time step beyond which input reconstruction is
achievable. Finally, Theorem 6.1 extends Theorem 4.2 by showing
that a transfer function with full column normal rank has an FIR
delayed left inverse with the minimal delay if and only if it has
zero nonzero zeros. The explicit construction of a delayed left
inverse was not given in [7,9,10]. In addition, unlike the present
paper, which allows the system to have zeros at zero, the results
of [7,9,10] assume that the system has no zeros.

Some preliminary results regarding finite-time input recon-
struction were presented in [11], in which no proofs were pro-
vided. The current paper extends the results given in [11] in
several ways. Necessary and sufficient conditions for finite-time
input reconstruction in the presence of unknown, nonzero ini-
tial conditions are derived in this paper, whereas only sufficient
conditions are provided in [11]. Proposition 6.1 was a conjecture
in [11]. Finally, the construction of an FIR delayed left inverse
with the minimal delay is not given in [11].

2. Preliminaries

Definition 2.1. Let G ∈ R(z)p×m
prop , and, for each i ≥ 0, let Hi be

the ith Markov parameter of G. Then, for all i ≥ 0, the ith Toeplitz

https://doi.org/10.1016/j.sysconle.2019.104552
0167-6911/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.sysconle.2019.104552
http://www.elsevier.com/locate/sysconle
http://www.elsevier.com/locate/sysconle
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysconle.2019.104552&domain=pdf
mailto:snehasnj@umich.edu
https://doi.org/10.1016/j.sysconle.2019.104552


2 S. Sanjeevini and D.S. Bernstein / Systems & Control Letters 133 (2019) 104552

matrix associated with G is defined by

Ti ≜

⎡⎢⎢⎢⎢⎣
H0 0 0 · · · 0
H1 H0 0 · · · 0
H2 H1 H0 · · · 0
...

...
. . .

. . .
...

Hi Hi−1 · · · H1 H0

⎤⎥⎥⎥⎥⎦ ∈ R(i+1)p×(i+1)m.

In the case where i is a negative integer, Ti is an empty matrix.

Definition 2.2. Let G ∈ R(z)m×p
prop , and let d be a nonnegative

integer. Then, G is delayed left invertible with delay d if there exists
H ∈ R(z)m×p

prop such that H(z)G(z) = z−dIm. In this case, H is a
delayed left inverse of G with delay d. Furthermore, G is delayed left
invertible if there exists d ≥ 0 such that G is delayed left invertible
with delay d, and H is a delayed left inverse of G if there exists
d ≥ 0 such that H is a delayed left inverse of G with delay d.
Finally, H is a left inverse of G if H is a delayed left inverse of G
with delay d = 0.

If H is a delayed left inverse of G with delay d, then the output
of HG is equal to the d-step-delayed input of HG. However, HG
does not account for the free response of the state space model
formed by cascading state space models of G and H . The missing
free response can be accounted for by specifying initial conditions
of realizations of G and H . Let

G
min
∼

[
AG BG
CG DG

]
, H

min
∼

[
AH BH
CH DH

]
, (1)

and, for all k ≥ 0, consider the state space equations

xG(k + 1) = AGxG(k) + BGu(k), (2)

y(k) = CGxG(k) + DGu(k), (3)

and

xH (k + 1) = AHxH (k) + BHy(k), (4)

z(k) = CHxH (k) + DHy(k). (5)

Then, the state space realization of the cascade HG is given by

x(k + 1) = Ax(k) + Bu(k), (6)

z(k) = Cx(k) + Du(k), (7)

where

x ≜

[
xG
xH

]
, A ≜

[
AG 0

BHCG AH

]
, B ≜

[
BG

BHDG

]
, (8)

C ≜
[
DHCG CH

]
, D ≜ DHDG. (9)

Note that the realization (6), (7) of HG is not necessarily minimal.

Definition 2.3. Let A ∈ Rn×n. Then, the index of A, denoted by
ind A, is the smallest nonnegative integer ν such that rank Aν

=

rank Aν+1.

Note that, if A is nilpotent, then ind A is the smallest positive
integer ν such that Aν

= 0.

Definition 2.4. Let G ∈ R(z)p×m
prop , where G

min
∼

[
A B
C D

]
and

A ∈ Rn×n. Then, the index of G, denoted by indG, is ind A.

3. Effect of zeros on input reconstruction

If the continuous-time system G has a transmission zero, then
it follows from [12, p. 398] that there exist an initial condition and
nonzero input such that the response of a minimal state space
realization of G is identically zero. The following result is the
discrete-time analogue.

Proposition 3.1. Let G ∈ R(z)p×m
prop , where G ∈ R(z)p×m

prop , where

G
min
∼

[
A B
C D

]
and A ∈ Rn×n, and, for all k ≥ 0, consider

x(k + 1) = Ax(k) + Bu(k), (10)

y(k) = Cx(k) + Du(k). (11)

Assume that z0 ∈ C is a transmission zero of G, and let
[
x
u

]
∈

N (Z(z0)) have nonzero real part, where Z(z) ≜

[
zI − A −B

C D

]
.

Define the initial state x(0) ≜ Re(x), and, for all k ≥ 0, define the
input sequence u(k) ≜ Re(zk0u), where 00 ≜ 1. Then, for all k ≥ 0,
y(k) = 0. Furthermore, u ̸= 0.

Proof. By assumption,[
z0I − A −B

C D

][
x
u

]
= 0,

and thus

(z0I − A)x = Bu, (12)

Cx + Du = 0. (13)

Using (12) and the fact that z00 = 1, it follows from (10) that
x(1) = A Re(x) + B Re(u) = A Re(x) + Re(z0x) − A Re(x) = Re(z0x).
Proceeding similarly, it follows that, for all k ≥ 0, x(k) = Re(zk0x).
Thus (11) and (13) together imply that, for all k ≥ 0, y(k) =

C Re(zk0x) + DRe(zk0u) = Re(zk0(Cx + Du)) = 0.
Next, suppose that u = 0. Hence (13) implies that Cx = 0.

Then it follows from (10) and (11) that⎡⎢⎢⎣
y0
y1
...

yn−1

⎤⎥⎥⎦ = OnRe(x),

where On is the observability matrix obtained from (A, C). Since
On has full column rank and, for all k ≥ 0, yk = 0, it follows that
Re(x) = 0, which is a contradiction. Thus u ̸= 0. □

Note that, in the case where z0 ̸= 0, the input u that produces
the zero output has the property that, for all k ≥ 0, u(k) ̸= 0. Since
the zero input also produces the zero output, finite-time input
reconstruction is impossible. However, in the case where z0 = 0,
the input u that produces the zero output is {Re(u), 0, 0, . . . .}.
The fact that u(k) is nonzero only at the initial time step suggests
that finite-time input reconstruction may be possible in this case
as long as G has zero nonzero zeros. In fact, a delayed left inverse
for systems with this property is constructed in the next section.

4. Construction of an FIR delayed left inverse with the mini-
mal delay

In this section, we use the Smith–McMillan form at infin-
ity [13] to construct an FIR delayed left inverse with the minimal
delay for systems with zero nonzero zeros. The main result is
Theorem 4.2, which presents the expression for the constructed
FIR inverse.

Definition 4.1. Let U ∈ R[z]n×n. Then U is unimodular if detU is
a nonzero constant.

Definition 4.2. Let W ∈ R(z)m×m
prop . Then W is biproper if W∞ ≜

lim
z→∞

W (z) is nonsingular.



S. Sanjeevini and D.S. Bernstein / Systems & Control Letters 133 (2019) 104552 3

Lemma 4.1. Let U ∈ R[z]n×n, assume that U is unimodular, and,
for all z ̸= 0, define V (z) ≜ U(1/z). Then V is biproper and FIR.

Proof. Since U is a polynomial matrix, each entry of U is of the
form αkzk + · · · + α1z + α0, where k is a nonnegative integer
and α0, . . . , αk are real numbers. Then the corresponding entry
of V has the form αkz−k

+ · · · + α1z−1
+ α0, which is proper and

FIR. Hence V is proper and FIR. Next, define the nonzero constant
β ≜ detU(z), and note that lim

z→∞
det V (z) = lim

z→∞
detU(1/z) =

lim
z→0

detU(z) = β ̸= 0. Hence V is biproper. □

Lemma 4.2. Let G ∈ R(z)p×m
prop and, for all z ̸= 0, define Ĝ(z) ≜

G(1/z). Then the following statements hold:

(i) Ĝ has no poles at zero.
(ii) If G has zero nonzero zeros, then Ĝ has zero nonzero zeros.

Proof. To prove (i), suppose that Ĝ has at least one pole at zero.

Then at least one entry of Ĝ is of the form
N(z)
zkD(z)

, where k is a

positive integer, N and D are polynomials such that N(0) ̸= 0, and

D(0) ̸= 0. Then the corresponding entry of G is
zkN(1/z)
D(1/z)

. Since

N(0) ̸= 0 and D(0) ̸= 0, it follows that
N(1/z)
D(1/z)

is exactly proper

and hence
zkN(1/z)
D(1/z)

is improper, which is a contradiction. Hence

Ĝ has no poles at zero.
To prove (ii), define ρ ≜ rankG = rank Ĝ. Suppose that z0 is

a nonzero zero of Ĝ. Then rankG(1/z0) = rank Ĝ(z0) < ρ. Thus
1/z0 is a nonzero zero of G, which is a contradiction. Hence Ĝ has
zero nonzero zeros. □

The following result presents the Smith–McMillan form at in-
finity S∞ of G. The proof presented here, which is different from
the proof in [13], is constructive; this construction is also used to
prove Theorem 4.2.

Theorem 4.1. Let G ∈ R(z)p×m
prop , define ρ ≜ rankG, and define

ρ0 ≜ ρ − rankG(∞). Then there exist biproper transfer functions
W ∈ R(z)p×p

prop and V ∈ R(z)m×m
prop and integers ι1 ≥ ι2 ≥ · · · ≥ ιρ0 >

0 such that G = WS∞V , where

S∞(z) ≜

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z−ι1 0ρ×(m−ρ)
. . .

z−ιρ0

1
. . .

1
0(p−ρ)×ρ 0(p−ρ)×(m−ρ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(14)

Proof. For all z ̸= 0, define Ĝ(z) ≜ G(1/z). Note that rank Ĝ =

rankG = ρ. Let Ĝ = Ŝ1ŜŜ2, where Ŝ ∈ R(z)p×m is the Smith–
McMillan form of Ĝ, and Ŝ1 ∈ R(z)p×p and Ŝ2 ∈ R(z)m×m are
unimodular matrices. Define S1(z) ≜ Ŝ1(1/z), S(z) ≜ Ŝ(1/z), and
S2(z) ≜ Ŝ2(1/z). It follows from Lemma 4.2 that Ĝ has no poles
at zero and thus Ŝ has no poles at zero. Hence Ŝ is of the form
given in Box I, where ι1 ≥ · · · ≥ ικ > 0 and κ ≜ ρ − rank Ĝ(0). Ni
and Di, for i = 1, . . . , ρ, are polynomials such that Ni(0) ̸= 0, and
Di(0) ̸= 0. Then S is as given in Box II. Since, for all i = 1, . . . , ρ,
Ni(0) ̸= 0, and Di(0) ̸= 0, it follows that Ni(1/z) and Di(1/z) are
exactly proper and hence S is proper. Therefore, S can be factored

as S = S0Dv , where

S0(z) ≜

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z−ι1 0ρ×(m−ρ)
. . .

z−ικ

1
. . .

1
0(p−ρ)×ρ 0(p−ρ)×(m−ρ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

and

Dv(z) ≜

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1(1/z)
D1(1/z)

. . .

Nρ(1/z)
Dρ(1/z)

1
. . .

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (15)

Note that Dv ∈ R(z)m×m
prop is a biproper diagonal matrix. Since

Ĝ(0) = G(∞), it follows that κ = ρ0 and thus S0 = S∞. Now, for
all z ̸= 0, G(z) = Ĝ(1/z) = Ŝ1(1/z)Ŝ(1/z)Ŝ2(1/z) = S1(z)S(z)S2(z).
Since Ŝ1 and Ŝ2 are unimodular, it follows from Lemma 4.1 that
S1 and S2 are biproper. Defining W ≜ S1 and V ≜ DvS2, it follows
that G = S1SS2 = S1S0DvS2 = S1S∞DvS2 = WS∞V . □

Definition 4.3. Let G ∈ R(z)p×m
prop and i ≥ 0. Then βi(G) ≜

rank Ti − rank Ti−1.

The following result is given by Theorem 1 in [14].

Lemma 4.3. Let G1 ∈ R(z)p×m
prop and G2 ∈ R(z)p×m

prop be such that
G2 = WG1V , where W ∈ R(z)p×p

prop and V ∈ R(z)m×m
prop are biproper.

Then, for all i ≥ 0, βi(G1) = βi(G2).

The following result is given by Theorem 4 in [1].

Proposition 4.1. Let G ∈ R(z)p×m
prop and d ≥ 0. Then G is delayed left

invertible with delay d if and only if rank Td − rank Td−1 = m.

Definition 4.4. Let G ∈ R(z)p×m
prop , and assume that G has full

column normal rank. Then ηG denotes the smallest nonnegative
integer d for which there exists a delayed left inverse of G with
delay d.

The following result is based on the discussion of the pole/zero
structure at infinity given in [14].

Proposition 4.2. Let G ∈ R(z)p×m
prop , assume that G has full column

normal rank, and define ι1 as in Theorem 4.1. Then ηG = ι1.

Proof. Let H∞,i be the ith Markov parameter of S∞ and T∞,i
be the ith Toeplitz matrix associated with S∞, where S∞ is the
Smith–McMillan form at infinity of G. Define the multiset F ≜
{ι1, . . . , ιρ0 , 0, . . . , 0} with ρ elements, where ι1, . . . , ιρ0 and ρ
are defined in Theorem 4.1. For all i ≥ 0, let Fi be the multiset
consisting of all elements of F that are less than or equal to i, and
let |Fi| denote the cardinality of Fi.

Note that, for all i ≥ 0, each row of T∞,i is either zero
or has exactly one nonzero entry that is equal to one, and the
nonzero rows of T∞,i are linearly independent. It thus follows that
βi(S∞) = rank T∞,i − rank T∞,i−1 = rank

[
H∞,0 · · · H∞,i

]
=

|Fi|. Hence, Theorem 4.1 and Lemma 4.3 imply that, for all i ≥ 0,
βi(G) = βi(S∞) = |Fi|.
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Ŝ(z) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

zι1N1(z)
D1(z)

0ρ×(m−ρ)

. . .

zικNκ (z)
Dκ (z)

Nκ+1(z)
Dκ+1(z)

. . .

Nρ(z)
Dρ(z)

0(p−ρ)×ρ 0(p−ρ)×(m−ρ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Box I.

S(z) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z−ι1N1(1/z)
D1(1/z)

0ρ×(m−ρ)

. . .

z−ικNκ (1/z)
Dκ (1/z)

Nκ+1(1/z)
Dκ+1(1/z)

. . .

Nρ(1/z)
Dρ(1/z)

0(p−ρ)×ρ 0(p−ρ)×(m−ρ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Box II.

Note that maxi≥0 βi(S∞) = maxi≥0 |Fi| = |F | = ρ. Since ι1 is
the largest element in F , it follows that the smallest i such that
|Fi| = ρ is ι1. Thus ρ = |Fι1 | = βι1 (G) = rank Tι1 − rank Tι1−1,
where Ti is the ith Toeplitz matrix associated with G. Since G has
full column rank, it follows that ρ = m, and thus ι1 is the smallest
i such that rank Ti − rank Ti−1 = m. Hence Proposition 4.1 implies
that ηG = ι1. □

The following result constructs an FIR delayed left inverse of
G with the minimal delay.

Theorem 4.2. Let G ∈ R(z)p×m
prop , assume that G has full column rank,

and assume that G has zero nonzero zeros. Then there exist biproper
transfer functions W ∈ R(z)p×p

prop and V ∈ R(z)m×m
prop such that

H∞(z) ≜ z−ηGV−1(z)ST
∞
(1/z)W−1(z) (16)

is an FIR delayed left inverse of G with delay ηG, where

S∞(z) ≜

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z−ι1

. . .

z−ιρ0

1
. . .

1
0(p−m)×m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(17)

is the Smith–McMillan form at infinity of G, ι1 ≥ ι2 ≥ · · · ≥ ιρ0 > 0
are integers, and ρ0 ≜ m − rankG(∞).

Proof. Define, for all z ̸= 0, Ĝ(z) ≜ G(1/z). Note that rank Ĝ =

rankG = m. Let Ĝ = Ŝ1ŜŜ2, where Ŝ is the Smith–McMillan
form of Ĝ, and Ŝ1 and Ŝ2 are unimodular matrices. Define S1(z) ≜
Ŝ1(1/z), S(z) ≜ Ŝ(1/z), and S2(z) ≜ Ŝ2(1/z). Following the same
steps given in the proof of Theorem 4.1 yields G = WS∞V , where
W ≜ S1, V ≜ DvS2, S∞ is given by (17), and Dv is given by
(15) with ρ replaced by m. Since Ŝ1 and Ŝ2 are unimodular, it
follows that Ŝ−1

1 and Ŝ−1
2 are unimodular and thus Lemma 4.1

implies thatW−1
= S−1

1 and S−1
2 are FIR. Since G has zero nonzero

zeros, it follows from Lemma 4.2 that Ĝ has zero nonzero zeros.
Hence, Ŝ has zero nonzero zeros. Hence, for all i = 1, . . . ,m,
Ni = 1 in (15). Hence D−1

v is FIR. Thus V−1
= S−1

2 D−1
v is

FIR, and hence H∞ is FIR. Next, it follows from Proposition 4.2
that ηG = ι1. Hence, z−ηGST

∞
(1/z) is proper. Note that W−1 and

V−1 are biproper and thus H∞ is proper. Since H∞(z)G(z) =

z−ηGV−1(z)ST
∞
(1/z)W−1(z)W (z)S∞(z)V (z) = z−ηG Im, it follows

that H∞ is an FIR delayed left inverse of G with delay ηG. □

5. Input reconstruction using FIR delayed left inverse

The main result in this section shows that, in the presence of
an arbitrary unknown initial condition, finite-time input recon-
struction is possible using a delayed left inverse H if and only if
H is FIR. The following lemma will be needed.

Lemma 5.1. Let G ∈ R(z)p×m
prop and H ∈ R(z)m×p

prop , with minimal
state space realizations (1)–(5). Assume that H is FIR and that H is
a delayed left inverse of G with delay d. Define K (z) ≜ H(z)CG(zI −

AG)−1. Then K is FIR.
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Proof. For the state space realization of HG given by (6)–(9), note
that spec(A) = spec(AG) ∪ spec(AH ). Since H is FIR, it follows that
spec(AH ) = {0}. Therefore, each nonzero eigenvalue of A is an
eigenvalue of AG. Since HG is FIR, it follows that each nonzero
eigenvalue of A (including multiplicity) is either an uncontrollable
eigenvalue of (A, B) or an unobservable eigenvalue of (A, C). How-
ever, since (AG, BG) is controllable, each nonzero eigenvalue of A
is contained in spec(AG), and A is lower triangular, it follows from
the PBH test that each nonzero eigenvalue of A is a controllable
eigenvalue of (A, B) and thus an unobservable eigenvalue of (A, C).
Defining

B0 ≜

[
InG
0

]
, D0 ≜ 0,

where nG ≜ Mcdeg G, note that (A, B0, C,D0) is a state space
realization of K . Since each nonzero eigenvalue of A is an unob-
servable eigenvalue of (A, C), it follows that none of the nonzero
eigenvalues of A are poles of K . Hence, every pole of K is zero,
and thus K is FIR. □

Theorem 5.1. Let G ∈ R(z)p×m
prop and H ∈ R(z)m×p

prop with minimal
state space realizations (1)–(5), assume that H is a delayed left
inverse of G with delay d, and define K (z) ≜ H(z)CG(zI − AG)−1.
Then the following statements hold:

(i) If there exists a nonnegative integer ν such that, for all k ≥ ν

and all initial conditions xG(0) and xH (0), z(k) = u(k − d),
then H is FIR.

(ii) If H is FIR, then for all k ≥ ν = max{indH, ind K , d} and
all initial conditions xG(0) and xH (0), z(k) = u(k − d). If, in
addition, xH (0) = 0, then ν = max{ind K , d}.

Proof. Note that, for all k ≥ 0, z(k) = zfree(k) + zforced(k), where
zfree and zforced denote the free response and forced response,
respectively, of (6)–(9). Since H(z)G(z) = z−dIm, it follows that,
for all k ≥ d, zforced(k) = u(k − d). Next, note that, for all k ≥ 0,

zfree(k) = CAkx(0)

=
[
DHCG CH

]⎡⎢⎣ Ak
G 0

k−1∑
i=0

Ai
HBHCGAk−i−1

G Ak
H

⎤⎥⎦[xG(0)

xH (0)

]
(18)

= zG(k) + zH (k),

where

zG(k) ≜
(
DHCGAk

G + CH

k−1∑
i=0

Ai
HBHCGAk−i−1

G

)
xG(0),

zH (k) ≜ CHAk
HxH (0).

To prove (i), note that there exists a nonnegative integer ν

such that, for all k ≥ ν and all xG(0), xH (0), zfree(k) = 0. Hence
it follows from (18) that, for all k ≥ ν,

[
DHCG CH

]⎡⎢⎣ Ak
G 0

k−1∑
i=0

Ai
HBHCGAk−i−1

G Ak
H

⎤⎥⎦ = 0,

and thus, for all k ≥ ν, CHAk
H = 0. Hence H is FIR.

To prove (ii), note that since H is FIR and thus AH is nilpotent,
it follows that, for all k ≥ indH, zH (k) = 0. Noting that zG is the

output of (6), (7) in the case where u ≡ 0 and xH (0) = 0, it follows
that the Z transform of zG is given by

ẑG(z) = CH x̂H (z) + DH ŷ(z)
=

(
CH (zI − AH )−1BH + DH

)
ŷ(z)

=
(
CH (zI − AH )−1BH + DH

)
CGx̂G(z)

= z
(
CH (zI − AH )−1BH + DH

)
CG(zI − AG)−1xG(0)

= zK (z)xG(0)
= zŵG(z),

where ŵG(z) ≜ K (z)xG(0). Note that the inverse Z transform
wG of ŵG is a linear combination of the single-channel impulse
responses of K . Lemma 5.1 implies that K is FIR and thus, for all
k ≥ ind K + 1, wG(k) = 0. Since zG(k) = wG(k + 1), it follows
that, for all k ≥ ind K , zG(k) = 0. Hence, for all k ≥ ν =

max{indH, ind K , d}, z(k) = u(k − d).
Finally, consider the case where xH (0) = 0. In this case, it

follows that, for all k ≥ 0, zH (k) = 0, and thus, for all k ≥ 0, z(k) =

zfree(k) + zforced(k) = zG(k) + zH (k) + zforced(k) = zG(k) + zforced(k).
Therefore, for all k ≥ max{ind K , d}, z(k) = u(k − d). □

Theorem 5.1 shows that, for all k ≥ max{indH, ind K , d}, the
output z is equal to the input u delayed by d steps. However,
if max{indH, ind K } > d, then, for all k = 0, . . . ,max{indH,

ind K } − d − 1, the input u(k) is not reconstructed. Note that
Theorem 5.1 does not assume any stability condition, and thus
the result holds even in the case where both G and H are unstable.

6. Existence of FIR delayed left inverse

The following result restates part of Theorem 4.2 and provides
its converse. In particular, Theorem 6.1 shows that a transfer
function with full column normal rank has an FIR delayed left
inverse with the minimal delay if and only if it has zero nonzero
zeros. It follows from this fact and Theorem 5.1 that finite-time
input reconstruction is possible if and only if the system has zero
nonzero zeros.

Theorem 6.1. Let G ∈ R(z)p×m
prop , and assume that G has full column

normal rank. Then, for all d ≥ ηG, there exists an FIR H ∈ R(z)m×p
prop

such that H is a delayed left inverse of G with delay d if and only if
G has zero nonzero zeros.

Proof. Sufficiency follows from Theorem 4.2. To prove neces-
sity, suppose that z0 is a nonzero zero of G. Since H is FIR, it
follows that z0 is not a pole of H . Note that rankH(z0)G(z0) =

rank z−d
0 Im = m. Since z0 is a nonzero zero of G, it follows

that rankG(z0) < m. Hence rankH(z0)G(z0) ≤ min{rankH(z0),
rankG(z0)} < m, which is a contradiction. Hence G has zero
nonzero zeros. □

Consider the case where G has at least one zero zero and
zero nonzero zeros. With z0 = 0, it follows from Proposition 3.1
that, if y ≡ 0, then either u is an impulse or u ≡ 0. Hence,
the initial input u(0) cannot be reconstructed. However, the in-
ability to reconstruct the initial input cannot be inferred from
Theorem 5.1. As discussed at the end of this section, the following
result strengthens Theorem 5.1 by implying that u(0) cannot be
reconstructed.

Proposition 6.1. Let G ∈ R(z)p×m
prop and H ∈ R(z)m×p

prop with minimal
state space realizations (1)–(5). Assume that H is an FIR left inverse
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Fig. 1. (a) shows the input and output of (6), (7) with zero initial conditions.
(b) shows the input and output of (6), (7) with nonzero initial conditions.

of G, define K (z) ≜ H(z)CG(zI − AG)−1, and assume that G has at
least one zero zero. Then K ̸= 0.

Proof. Since HG = Im, it follows that DHDG = Im and hence
rankDH = rankDG = m. Thus there exists a nonsingular matrix
S ∈ Rp×p such that D̂H ≜ DHS =

[
Im 0

]
. Define nG ≜

Mcdeg G, and define ĈG ≜ S−1CG =

[
Ĉ1

Ĉ2

]
, where Ĉ1 ∈ Rm×nG

and ĈG ∈ R(p−m)×nG . Similarly, define D̂G ≜ S−1DG =

[
D̂1

D̂2

]
,

where D̂1 ∈ Rm×m and D̂2 ∈ R(p−m)×m. Let Ĝ ∈ R(z)p×m, where

Ĝ∼

[
AG BG

ĈG D̂G

]
. Let O and Ô denote the observability matrices

corresponding to (AG, CG) and (AG, ĈG), respectively. Note that

rank Ô = rank

⎡⎢⎢⎢⎣
S−1CG

S−1CGAG
...

S−1CGA
nG−1
G

⎤⎥⎥⎥⎦
= rank (InG ⊗ S−1)O = rankO = nG.

Thus Ĝ
min
∼

[
AG BG

ĈG D̂G

]
. Note that

D̂1 =
[
Im 0

] [
D̂1

D̂2

]
= D̂H D̂G = DHSS−1DG = Im. (19)

Now, suppose that K = 0. Since K (z) = H(z)CG(zI − AG)−1
= 0,

it follows that (CH (zI − AH )−1BH + DH )CG = H(z)CG = 0. Letting
z → ∞ implies that DHCG = 0. Then

Ĉ1 =
[
Im 0

] [
Ĉ1

Ĉ2

]
= D̂H ĈG = DHSS−1CG = 0. (20)

Let Z denote the Rosenbrock system matrix of the minimal re-
alization (1) of G. Since G has at least one zero zero, it follows
that

nG + m > rankZ(0) = rank
[
−AG BG
CG −DG

]

Fig. 2. (a) shows the input and output of (6), (7) with zero initial conditions.
(b) shows the input and output of (6), (7) with nonzero initial conditions.

= rank
[
I 0
0 S−1

][
−AG BG
CG −DG

]
= rank

[
−AG BG

ĈG −D̂G

]
. (21)

It follows from (19)–(21) that

nG + m > rank
[
−AG BG

ĈG −D̂G

]
= rank

⎡⎣−AG BG
0 −Im
Ĉ2 −D̂2

⎤⎦
= rank

⎡⎣−AG 0
0 Im
Ĉ2 0

⎤⎦ . (22)

Since (AG, ĈG) is observable, it follows from the PBH test that

rank
[
−AG

ĈG

]
= nG. Hence rank

⎡⎣−AG 0
0 Im
Ĉ2 0

⎤⎦ = nG + m, which

contradicts (22). Therefore, K ̸= 0. □

It can be noted from Theorem 5.1 that, if d ≥ 1, then it
is not possible to reconstruct u(0). In the case where d = 0
and G has at least one zero zero, Proposition 6.1 implies that
ind K ≥ 1 and thus it follows from Theorem 5.1 that u(0) cannot
be reconstructed.

7. Illustrative examples

Example 7.1. Let

G(z) =

⎡⎢⎢⎣
1
z2
1

z + 1

⎤⎥⎥⎦ , H(z) =

[
z

z + 1
1
z2

]
, (23)

so that H(z)G(z) = z−2 and thus H is a delayed left inverse of G
with delay 2. Fig. 1 shows the input and output of (6), (7) with
zero initial conditions and with nonzero initial conditions. Note
that H , which is an IIR transfer function, fails to reconstruct the
input in the case where the initial conditions are nonzero. Now,
let

H(z) =

[
0

z + 1
z

]
, (24)
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H∞(z) =

⎡⎢⎢⎣−
2z3 + 7z2 + 7z + 2

2z3
4z4 + 11z3 + 3z2 − 8z − 4

2z4
2z3 + 7z2 + 7z + 2

2z4

−
1
2

−
z + 2
2z

2z + 1
2z

⎤⎥⎥⎦
Box III.

so that H(z)G(z) = z−1, and thus H is a delayed left inverse of
G with delay 1. Fig. 2 shows the input and output of (6), (7)
with zero and nonzero initial conditions. Note that H , which is
an FIR transfer function, correctly reconstructs the input in the
case where the initial conditions are nonzero.

Example 7.2. Let G ∈ R(z)3×2
prop, where

G(z) =

⎡⎢⎢⎢⎢⎢⎢⎣

z
z + 1

1
z

z
z + 2

0

z
z + 1

1

⎤⎥⎥⎥⎥⎥⎥⎦ . (25)

Then

S∞(z) =

⎡⎣1 0
0 1
0 0

⎤⎦ ,W (z) =

⎡⎢⎢⎢⎢⎢⎢⎣

z + 2
2z

2(z + 1)
z2

2(2z + 1)
z

z + 1
2z

z + 1
z2

2z + 1
z

z + 2
2z

z2 + z + 2
z2

3z + 2
z

⎤⎥⎥⎥⎥⎥⎥⎦ ,

V (z) =

⎡⎣1 −
z2 + 3z + 2

z3
0 1

⎤⎦ ,

(26)

where S∞ is the Smith–McMillan form at infinity of G and G =

WS∞V . It follows from Proposition 4.1 that ηG = 0. Evaluating
the expression for H∞ given in Theorem 4.2 yields the equation
given in Box III, which satisfies H∞(z)G(z) = I2. Hence, H∞ is
an FIR left inverse of G. Constructing minimal realizations of H∞

and K shows that indH∞ = ind K = 4, where K is defined in
Theorem 5.1 with H replaced by H∞. Theorem 5.1 thus implies
that ν = max{indH∞, ind K , d} = 4 and hence, for all k ≥ 4,
z(k) = u(k), where u and z are defined in (6), (7). Fig. 3 shows
the input and output of (6), (7) with nonzero initial conditions.
Note that, in this example, G is unstable and has a zero at
zero.

8. Conclusions

It was shown that, in the presence of an arbitrary unknown
initial condition, finite-time input reconstruction is possible using
a delayed left inverse H if and only if H is FIR. It was also shown
that an FIR delayed left inverse with the minimal delay exists
for systems with full column normal rank if and only if the
system has zero nonzero zeros. A procedure for constructing an
FIR delayed left inverse with the minimal delay was presented.
Examples were provided for illustration. As part of future work,
robustness of the obtained results to parameter uncertainties and
noise will be analyzed.

Fig. 3. Input and output of (6), (7), where u = [u1 u2]
T and z = [z1 z2]T . Note

that, for all k ≥ 4, z1(k) = u1(k), and, for all k ≥ 1, z2(k) = u2(k). Hence, for all
k ≥ 4, z(k) = u(k).
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