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This paper develops data-driven retrospective cost adaptive control (DDRCAC). The moti-
vation for this model-free digital adaptive control technique is flight control, where the aircraft
undergoes an unknown transition from minimum-phase to nonminimum-phase dynamics.

I. Introduction

In many applications of flight control, it is extremely difficult, if not impossible, to model the vehicle dynamics with
sufficient accuracy for fixed-gain control methods. These applications are candidates for adaptive control [1–3]. The

goal of adaptive control is thus to provide reliable stabilization, command following, and disturbance rejection in the
presence of high levels of uncertainty in both the vehicle dynamics and exogenous signals.

A longstanding challenge in adaptive control irrespective of the application is the problem of nonminimum-phase
(NMP) zeros. Traditional adaptive controllers assume that the plant dynamics are minimum phase. However, longitudinal
aircraft dynamics are well known to be NMP.

Retrospective cost adaptive control (RCAC), which is a direct digital adaptive control technique, is applicable to
NMP systems [4]. However, as shown in [4], uncertainty in the knowledge of the NMP zeros can lead to NMP pole/zero
cancellation, leading to a hidden instability. It is thus of interest to extend RCAC to accommodate uncertainty in NMP
zeros of the plant.

The present paper develops an extension of RCAC that overcomes uncertainty in the NMP plant zeros. This approach,
called data-driven RCAC (DDRCAC), uses concurrent discrete-time closed-loop system identification in order to elicit
the essential modeling information needed by RCAC. The system identification is based on an extension of recursive
least squares (RLS) with variable-rate forgetting (VRF). DDRCAC is thus an indirect digital adaptive control technique.
Since DDRCAC, like RCAC, is a digital control technique, it can take advantage of modeling information obtained by
discrete-time system identification at the specified sample rate, it need not account separately for delays and phase shifts
due to sample and hold operations, and it avoids the need for controller discretization.

The goal of the present paper is to apply DDRCAC to the plants that undergo an unknown transition from
minimum-phase to NMP dynamics. In particular, DDRCAC is used to follow step and harmonic commands in the
presence of an unknown transition from MP to NMP. This problem is motivated by flight control for a hypersonic
aircraft model that transitions from MP to NMP [5–13]. RCAC was earlier applied to this problem in [14, 15] with the
time of the transition from MP to NMP dynamics known. The assumption that the onset time is known is not realistic
under real-world flight conditions, where the onset time and details of the transition would be unknown. Consequently,
no knowledge of the transition from MP to NMP dynamics is used in this paper.

Related studies on modeling and control of hypersonic vehicles with NMP zero dynamics are given in [11, 16–18].
Models of hypersonic aircraft are given in [1–3, 5, 18, 19]. These models are valid for small operating envelopes and
are typically difficult to verify experimentally. These challenges motivate the need for control techniques that are
data-driven and model free.

The contents of this paper are as follows. Section II describes the control architecture on which this paper is based.
In section III we present the DDRCAC algorithm. Section IV presents illustrative toy examples that demonstrate
DDRCAC on a SISO and SIMO plant that undergo an unknown transition from MP to NMP dynamics. Finally, section
V applies DDRCAC to a model of a hypersonic aircraft that undergoes an unknown MP to NMP transition.
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Gc,k ZOH
Ûx(t) = A(t)x(t)+B(t)u(t)+w(t),
y0(t) = Cx(t)

Ts

Ts

y0(t)

v(t)

y(t)

yk

r(t) rk
uk u(t)

w(t)

Fig. 1 Basic servo loop for the control of continuous-time, time-varying dynamics, where the measurement
y(t) is the true measurement y0(t) corrupted by sensor noise v(t). The disturbance w(t)may not be matched with
the control u(t). The sampled command rk and measurement yk are the inputs to the controller Gc,k . which is
adaptively updated at each time step. The controller produces uk, which is operated upon by a zero-order hold
to produce the continuous-time control u(t).

II. Control Architecture
Consider the continuous-time, time-varying system

Ûx(t) = A(t)x(t) + B(t)u(t) + w(t), (1)
y(t) = Cx(t) + v(t), (2)

where x(t) ∈ Rn, A(t) ∈ Rn×n, B(t) ∈ Rn×m, u(t) ∈ Rm, w(t) ∈ Rn, y(t) ∈ Rp, C ∈ Rp×n, and v(t) ∈ Rp . Equations (1),
(2) are defined to be the system G. The objective is to follow step and harmonic commands r(t) ∈ Rp asymptotically
using the architecture shown in Figure 1. As shown in Figure 1, w(t) and v(t) are continuous-time stochastic signals.
We do not specify the stochastic properties of these signals. Instead, we specify the properties of the corresponding
sampled signals wk and vk, respectively [20–22]. The system (1), (2) is simulated using the ode45 solver in Matlab
between the controller sample periods. The sampled signals are defined as

rk
4
= r(kTs), yk

4
= y(kTs), uk

4
= u(kTs), wk

4
= w(kTs), vk

4
= v(kTs), (3)

where k is the number of samples, and Ts is the sampling period. We define the command-following error as

zk
4
= rk − yk ∈ R

p, (4)

where rk ∈ Rp is the sampled command.

III. Data-Driven Retrospective Cost Adaptive Control
DDRCAC consists of two components, namely, online identification and RCAC. The online identification uses RLS

to fit an IIR IO model using yk and uk data obtained during closed-loop operation. A second implementation of RLS
is used to update the RCAC adaptive controller using a target model constructed from the latest identified model. In
particular, at each step we construct the target model Gf,k as an FIR filter whose numerator is identical to the numerator
of the latest identified IIR model. Both RLS implementations use data-dependent variable-rate forgetting (VRF). The
following result is RLS with VRF that is used to implement DDRCAC.

Proposition 1 For all k ≥ 0, let Yk ∈ RlY , Φk ∈ R
lY×lΘ , λk ∈ (0, 1], and define ρk

4
=

∏k
j=0 λj . Let Θ0 ∈ R

lΘ , and
let P0 ∈ R

lΘ×lΘ be positive definite. Furthermore, for all k ≥ 0, denote the minimizer of the function

Jk(Θ)
4
=

k∑
i=0

ρk
ρi
(Yi − ΦiΘ)

T(Yi − ΦiΘ) + ρk(Θ − Θ0)
TP−1

0 (Θ − Θ0). (5)

where Θ ∈ RlΘ, by Θk+1
4
= argmin
Θ ∈ RlΘ

Jk(Θ). Then, for all k ≥ 0, Θk+1 is given by

Pk+1 =
1
λk

Pk −
1
λk
Φ

T
k (λk IlY + ΦkPkΦ

T
k )
−1
ΦkPk, (6)

Θk+1 = Θk + Pk+1Φ
T
k (Yk − ΦkΘk). (7)
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A. Online Identification
We fit a strictly-proper linear IO model of the form

yk = −

η∑
i=1

Fi,k yk−i +

η∑
i=1

Gi,kuk−i, (8)

to yk and uk , where η is the model window length, Fi ∈ R
p×p and Gi ∈ R

p×m are the model coefficient matrices that
are to be updated. To perform this update recursively we define the plant identification error

zp,k(θp)
4
= yk − φp,kθp, (9)

where

φp,k
4
=


−yk−1
.
.
.

−yk−η
uk−1
.
.
.

uk−η



T

⊗ Ip ∈ Rp×lθp , θp,k
4
= vec

[
F1,k · · · Fη,k G1,k · · · Gη,k

]
∈ Rlθp , (10)

and lθp
4
= ηp(p + m). The cost (5) with Yk − ΦkΘ = zp,k(θp) is minimized using Proposition 1 with

Yk
4
= yk, Φk

4
= φp,k, Θ

4
= θp, λk

4
= λp,k, (11)

which recursively produces the minimizer θp,k+1.

B. Retrospective Cost Adaptive Control
Define the dynamic compensator

uk
4
= satα(φkθk), (12)

where

φk
4
=


uk−1
.
.
.

uk−nc
yk−1
.
.
.

yk−nc



T

⊗ Im ∈ Rm×lθ , (13)

nc is the controller window length, lθ = ncm(m + p), and θk is a vector of controller coefficients to be optimized. With
the definition (13) of φk, (12) represents an IIR controller whose output is saturated by a multivariable saturation
function satα . In particular, each entry xi of a vector x is independently saturated by the corresponding entry αi of α, to
produce each entry satαi (xi) of satα(x). That is

satαi (xi)
4
=

{
xi, |xi | < αi,

sign(xi)αi, |xi | ≥ αi .
(14)

Next, define the retrospective cost variable

ẑk(θ)
4
=



[
zk + Nk φ̄kθ − NkŪk

]
∈ Rp, Ru = 0,

zk + Nk φ̄kθ − NkŪk

Ru(uo,k+1 − φkθ)

 ∈ R
p+m, Ru , 0,

(15)
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where

φ̄k
4
=

[
φk−1
.
.
.

φk−η

]
∈ Rηm×lθ , Ūk

4
=

[
uk−1
.
.
.

uk−η

]
∈ Rηm, (16)

Nk
4
=


[
−1p×m 0 · · · 0

]
Gi,k+1 = 0,[

−G1,k+1 · · · − Gη,k+1
]
, otherwise,

(17)

zk
4
= rk − yk, (18)

Ru ∈ R
m×m positive-semidefinite is the control weight, Gi,k+1 ∈ R

p×m for i = 1, . . . , η are the numerator coefficients of
the identified model, Nk ∈ R

p×ηm, rk ∈ Rp is the command, and zk ∈ Rp is the command-following error and the
adaptation variable. Note that the identification update at step k can be performed before the adaptive control update
and thus Gi,k+1 are available for the construction of Nk at step k . The cost (5) with Yk − ΦkΘ = ẑk(θ) is minimized
using Proposition 1 with

Yk
4
=


zk − NkŪk ∈ R

p, Ru = 0,[
zk − NkŪk

0

]
∈ Rp+m, Ru , 0,

(19)

Φk
4
=


−Nk φ̄k ∈ R

p×lθ , Ru = 0,[
−Nk φ̄k

Ruφk

]
∈ R(p+m)×lθ , Ru , 0,

(20)

Θ
4
= θ, λk

4
= λc,k, (21)

which recursively produces the minimizer θk+1.
For all examples in this paper, θp,k and θk are initialized as 0 in order to reflect the absence of additional prior

modeling information. In addition, for both implementations of RLS P0 = p0IlΘ where p0 is a positive number to be
selected.

C. Data-Dependent Variable Rate Forgetting
To implement data-dependent variable-rate forgetting, we define

λp,k
4
=

1
1 + γ fτ1,τ2,k[zp,k(θp,k)]

, λc,k
4
=

1
1 + γ fτ1,τ2,k(zk)

, (22)

which are the time-varying data-dependent plant-identification and control forgetting factors, respectively, where

fτ1,τ2,k(xk)
4
=


ξn
ξd
− 1, ξn

ξd
> 1,

0, ξn
ξd
≤ 1 or ξd = 0,

ξn
4
=

(
1
τ1

k∑
i=k−τ1

xT
i xi

)1/2
, ξd

4
=

(
1
τ2

k∑
i=k−τ2

xT
i xi

)1/2
, (23)

xk is a vector and τ1 < τ2 are integers. The terms ξn and ξd are the average norms of xk over periods of length τ1 and τ2,
respectively. The integer τ2 is chosen to be large so that ξd approximates the long-term variation of the xk, whereas
τ1 is chosen to be small so that ξn approximates the short-term variation of the xk, Consequently, the case ξn

ξd
> 1

implies that the variation of xk is greater in the recent past than over a longer time interval. The function f is used
in DDRCAC to suspend forgetting when the variation of the error drops below a threshhold determined by the ratio
ξn
ξd
. This technique thus prevents DDRCAC from forgetting due to sensor noise rather than due the magnitude of the

noise-free command-following error.
A list of parameters to be selected for DDRCAC is presented in Table 1.
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Parameter Description Selection
η Model window length Integer ≥ 1
nc Controller window length Integer ≥ 1
Ru Control weight 0 or ru Im, ru > 0
α Control saturation level vector Actuator saturation
p0 Initial RLS covariance scaling p0 > 0
γ Forgetting parameter 0 ≤ γ < 1

τ1, τ2 Forgetting window lengths Integers τ2 > τ1

Table 1 Tuning parameters that need to be selected for DDRCAC.

IV. Illustrative Examples
Example 1. Harmonic command following for a single-input single-output system with unknown transition from

MP to NMP. Consider the continuous-time system given by (1), (2) with

A(t) =

[
`(t,−0.2,−0.1) `(t,−2,−4)

`(t, 2, 4) 0

]
, B(t) =

[
`(t,−1, 1)
`(t, 0.1, 0)

]
, (24)

C =
[

1 −0.025
]
, `(t, a, b) 4=


a, t < t1,
a + t−t1

t2−t1
(b − a), t1 ≤ t ≤ t2,

b, t > t2,
, (25)

and t1 = 40 s, t2 = 50 s. The command is given by

r(t) =

{
6 sin 1.3t, t < 80 s,
9 sin 2.1t, t ≥ 80 s.

(26)

The sequenceswk and vk are zero-mean Gaussian with covariances 0.00012I2 and 0.0012, respectively. The instantaneous
poles and zeros of G as a function of t are shown in Figure 2. The real MP zero moves towards −∞, reappears at +∞,
and converges to a point in the open-right half plane. The lightly damped poles move closer to the imaginary axis.

-0.5 0 0.5

-4

-3

-2

-1

0

1

2

3

4 $t=t
1
$

$t=t
2
$

Fig. 2 Example 1: Locations of the instantaneous poles and zeros of G during the transition from t1 to t2. The
system transitions fromMP to NMP, as shown by the minimum-phase zero that starts in the open-left half plane,
approaches −∞, reappears at +∞, and converges to a point in the open-right half plane.
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To apply DDRCAC we set Ts = 0.1 s, η = 8, nc = 10, p0 = 1000, Ru = 0, γp = γc = 0.1, α = 90, τ1 = 40, and
τ2 = 200. Figure 3 shows that asymptotic harmonic command following is achieved for a harmonic command that
abruptly changes frequency at t = 80 s. Figure 4 shows the numerator and denominator coefficients of the identified
model and the plant identification forgetting factor λp,k . Figure 5 shows the numerator and denominator coefficients of
the adaptive controller and the control forgetting factor λc,k . λp,k and λc,k fall below their maximum value of 1 for the
initial adaptation, the MP to NMP transition of G, and the command frequency change. The unknown transition from
MP to NMP is marked with red shaded regions in Figures 3–5. �

-40

-20

0

20

10-4
10-3
10-2
10-1
100
101

0 20 40 60 80 100 120
-100

0

100

Fig. 3 Example 1: Harmonic command following with an unknown transition from MP to NMP dynamics.

-0.4

-0.2

0

0.2

0.4

0.6

-5

0

5

10

0 20 40 60 80 100 120

0.9

0.95

1

Fig. 4 Example 1: Numerator and denominator coefficients of the identifiedmodel, and the plant identification
forgetting factor λp,k . Forgetting occurs for initial adaptation, the transition from MP to NMP, and the change
in command frequency.

Example 2. Multi-step command following for a single-input multiple-output system with unknown transition from
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-500

0

500

-40

-20

0

20

40

0 20 40 60 80 100 120

0.9

0.95

1

Fig. 5 Example 1: Numerator anddenominator coefficients of the adaptive controller, and the control forgetting
factor λc,k . Forgetting occurs for initial adaptation, the transition fromMP to NMP, and the change in command
frequency.

stable MP to unstable NMP. Consider the continuous-time system given by (1), (2) with

A(t) =


`(t,−0.6,−0.1) `(t,−5,−4) 0.5

`(t, 6, 4) 0 `(t,−0.1,−0.1)
`(t,−0.4,−0.1) `(t,−3.7, 0.8) `(t,−0.3, 0.3)

 , B(t) =


`(t,−0.5, 2)
`(t,−0.05, 0)
`(t,−0.9,−1)

 , (27)

C =

[
1 −0.025 0.2

0.2 −0.005 0.04

]
, (28)

and t1 = 75 s, t2 = 95 s. The command is a sequence of steps of magnitude 10 and -10, each of length 30 s. The
sequences wk and vk are zero-mean Gaussian with covariances 0.00012I3 and 0.0012, respectively. The instantaneous
poles and transmission zeros of G as a function of t are shown in Figure 6. A pair of complex transmission zeros and a
real pole in the left-half plane move to the right-half plane. A pair of complex poles near the imaginary axis changes
frequency and damping.
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-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
-6

-4

-2

0

2

4

6

$t=t
1
 $

$t=t
2
 $

Fig. 6 Example 2: Locations of the instantaneous poles and transmission zeros of the G during the transition
from t1 to t2. The system transitions from stable MP to unstable NMP.

To apply DDRCAC we set Ts = 0.1 s, η = 8, nc = 10, p0 = 1000, Ru = 0, γp = γc = 0.1, α = 90, τ1 = 40, and
τ2 = 200. Figure 3 shows that asymptotic multi-step command following is achieved. Figure 4 shows the numerator and
denominator coefficients of the identified model and the plant identification forgetting factor λp,k . Figure 5 shows the
numerator and denominator coefficients of the adaptive controller and the control forgetting factor λc,k . λp,k and λc,k fall
below their maximum value of 1 for the initial adaptation, the MP to NMP transition of G, and the changes in sign of the
command. The unknown transition from stable MP to unstable NMP is marked with red shaded regions in Figures 7–9.
�

-50

0

50

10-2

10-1

100

101

0 20 40 60 80 100 120 140 160 180

-100

0

100

Fig. 7 Example 2: Multi-step command following with an unknown transition from stable MP to unstable
NMP dynamics.
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Fig. 8 Example 2: Numerator and denominator coefficients of the identifiedmodel, and the plant identification
forgetting factor λp,k . The numerator and denominator coefficient plots are clipped and the unclipped sections
of the plot are shown as inserts on the right. Forgetting occurs for initial adaptation, the transition from stable
MP to unstable NMP, and the change in the sign of the step command. Forgetting in response to change in sign
of step command occurs only when G is unstable and NMP.

Fig. 9 Example 2: Numerator anddenominator coefficients of the adaptive controller, and the control forgetting
factor λc,k . The numerator and denominator coefficient plots are clipped and the unclipped sections of the plot
are shown as inserts on the right. Forgetting occurs for initial adaptation, the transition from stable MP to
unstable NMP, and the change in the sign of the step command.
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V. Lateral Dynamics of a Hypersonic Aircraft that transitions from MP to NMP
We consider a model, which is a 4th-order single-input single-output (SISO) linearization of the vehicle’s lateral

dynamics, which transitions from MP to NMP zero dynamics. This model is given by (1), (2) with

A(t) 4=


−0.0771 0.269 −0.9631 0.0397

`(t,−25.6,−108.8) 0.0218 0.0995 0
`(t, 0.6160, 0.4107) 0.0376 −0.2687 0

0 1 0.4202 0.0058


, B(t) 4=


−0.0002

2.519
`(t,−0.0222,−0.0665)

0


, (29)

C 4
=

[
0 0 0 1

]
, (30)

and the components of x 4=
[
β p r φ

]T
are sideslip angle in rad, body x-axis angular velocity in rad/s, body

z-axis angular velocity in rad/s, and roll angle in rad. The instantaneous poles and zeros of this model as a function of
t are shown in Figure 10. The signal u(t) = δa(t) represents the asymmetric deflection of the split flaps in rad. For
realism, we implement actuator rate and magnitude saturations at 300 deg/s and 30 deg, respectively. The sequences wk

and vk are zero-mean Gaussian with covariances 0.00012I4 and 0.0012, respectively.

Fig. 10 Instantaneous poles and zeros of the hypersonic aircraftmodel during the transition from t1 to t2.Apair
of complex MP zeros transition to one real MP and one real NMP zero. A pair of complex lightly-damped poles
moves closer to the imaginary axis and increase in frequency. Under real-world operational flight conditions,
the onset of the transition and its time-dependence are unknown.

Example 3. Multi-step command following for a hypersonic aircraft with an unknown transition from MP to NMP.
Consider the continuous-time system given by (1), (2) with (29), (30) and t1 = 90 s, t2 = 100 s. The times t1, t2 are not
known to the control algorithm. The roll-angle command is

r(t) =

{
10 sin 1.3t deg, t < 100 s,
15 sin 2.1t deg, t ≥ 100 s.

(31)

To apply DDRCAC we set Ts = 0.5 s, η = 8, nc = 10, p0 = 1000, Ru = 0, γp = γc = 0.1, α = 30 deg, τ1 = 40, and
τ2 = 200. Figure 11 shows that asymptotic harmonic command following is achieved. Figure 12 shows the numerator
and denominator coefficients of the identified model and the plant identification forgetting factor λp,k . Figure 13 shows
the numerator and denominator coefficients of the adaptive controller and the control forgetting factor λc,k . λp,k and λc,k
fall below their maximum value of 1 for the initial adaptation and the MP to NMP transition of the model. The unknown
transition from MP to NMP is marked with red shaded regions in Figures 11–13. �
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Fig. 11 Example 3: Harmonic command following with an unknown transition from MP to NMP dynamics.
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Fig. 12 Example 3: Numerator anddenominator coefficients of the identifiedmodel, and the plant identification
forgetting factor λp,k . Forgetting occurs for initial adaptation and the transition from MP to NMP.

VI. Conclusions
This paper demonstrated the application of data-driven retrospective cost adaptive control (DDRCAC), which is an

extension of RCAC to include concurrent system identification based on recursive least squares (RLS) with variable-rate
forgetting (VRF). The principal motivation for DDRCAC is the problem of controlling time-varying systems that
undergo an unknown transition from minimum-phase (MP) to nonminimum-phase (NMP) dynamics. The use of VRF
within RLS is essential for learning the key features of the plant as it changes and for facilitating the ability of DDRCAC
to readapt to the time-dependent plant dynamics.

DDRCAC was demonstrated for step and harmonic command following with noisy sensor measurements. Illustrative
examples were presented to illustrate DDRCAC. In addition, DDRCAC was applied to a hypersonic aircraft model
that transitions from MP to NMP. For this system, DDRCAC was able to follow step and harmonic commands
despite the unknown transition from MP to NMP. For all three examples, DDRCAC was applied with the same tuning
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Fig. 13 Example 3: Numerator and denominator coefficients of the adaptive controller, and the control
forgetting factor λc,k . Forgetting occurs for initial adaptation and the transition from MP to NMP.
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