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This paper applies retrospective cost adaptive control (RCAC) to spacecraft attitude controlwith a rotation-matrix

attitude parameterization using constant-speed single-gimbal control moment gyroscopes. Unlike control laws that

use torque-steering laws to synthesize torque requests while avoiding gimbal singularities, the adaptive control law

requests the rate of each gimbal. Because no torque request is provided, there is no need to invert the mapping from

the gimbal rates to the control torque, and thus no attempt is made to avoid gimbal singularities. The RCAC

implementation is based on a target model involving a single Markov parameter corresponding to the initial gimbal

configuration. The parameters and weights for RCAC are based on nominal-model tuning, which uses no explicit

knowledge of the nonlinear equations of motion. This paper investigates the robustness of RCAC to off-nominal

conditions of commands, noise, andunknownbus inertia; and it examines the performance ofRCAC in the casewhere

an approximately singular gimbal configuration occurs during attitude command, following as well as the case of an

initial gimbal-lock singularity. The performance of the adaptive controller in the presence of sensor/actuator

misalignment is also investigated.

Nomenclature

A = attitude parameter matrix diag�a1; a2; a3�
a1; a2; a3 = attitude parameters
BCMG; B1; B2 = control input matrices
c = center of mass of the spacecraft
ci = center of mass of the ith wheel
e = rotation eigenaxis for the rotated bus inertia

matrix J
⇀

B;rot

ei = ith column of the 3 × 3 identity matrix I3
e 0 = misalignment eigenaxis from FB to FB 0

FB = bus-fixed frame
FB 0 = sensor-fixed frame
FC = frame representing the attitude command forFB
FGi

= frame fixed to gimbal Gi

FI = inertial frame
FWi

= frame fixed to wheelWi

Gi = ith gimbal
Gf�q� = finite impulse response filter used by

retrospective cost adaptive control
H = matrix that models the initial gimbal configu-

ration used in Gf

I3 = 3 × 3 identity matrix

J = inertia tensor J
!

SC∕c of the spacecraft relative

to c resolved in FB
JB = inertia tensor J

!
B∕c of the bus relative to c

resolved in FB
JB;rot = rotated bus inertia matrix
Ji = inertia tensor J

!
Wi∕ci of Wi relative to ci

resolved in FWi

Ji;c = inertia tensor J
!

Wi∕c ofWi relative to c resolved
in FB

Ĵk�Θ̂� = retrospective cost function

k = discrete-time step
kw = initial waiting period
lz = dimension of z
lu = dimension of u
lΘ = dimension of Θ
mi = mass ofWi

n = number of the gimbals
nc = controller order
OB∕Gi

= direction cosine matrix obtained by resolving
R
!

Gi∕B in FB
OB 0∕B = direction cosine matrix obtained by resolving

R
!

B∕B 0 in FB 0

OB 0∕Gi
= direction cosine matrix obtained by resolving

R
!

Gi∕B 0 in FB 0

Oi = OB∕Gi

Oi 0 = OB 0∕Gi

Pi;k = controller coefficient matrix
Qi;k = controller coefficient matrix
q = forward shift operator
RB∕I = direction cosine matrix obtained by resolving

R
!

B∕I in FB
RC∕I = direction cosine matrix obtained by resolving

R
!

C∕I in FC
Ru = control weighting matrix ηuIlu
Rz = performance weighting matrix ηzIlz
RΘ = regularization weighting matrix ηΘIlΘ
~R = attitude-error rotation matrix betweenRB∕I and

RC∕I
R
!

B∕B 0 = rotation tensor that rotates FB 0 into FB

R
!

B∕I = rotation tensor that rotates FI into FB

R
!

C∕I = rotation tensor that rotates FI into FC

R
!

Gi∕B = rotation tensor that rotates FB into FGi

R
!

Gi∕B 0 = rotation tensor that rotates FB 0 into FGi

ri = position of ci relative to c resolved in FB
S = vector representation of the attitude error ~R
s = scalar attitude-error metric
Ts = settling time to bring and maintain ϕeig within

ϕ∞
t = continuous-time variable
u = vector of gimbal rates
ui = gimbal rate of Gi around ĵGi

relative to FB
Wi = ith wheel
z = performance variable
ẑk = retrospective performance variable
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αi = moment of inertia of Wi around the spin axis
îWi

β = pyramidal face angle
βi = moment of inertia of Wi around ĵWi

and k̂Wi

Θk = controller coefficient vector
Θ̂ = retrospectively optimized controller coefficient

vector
θ = rotation eigenangle for the rotated bus inertia

matrix JB;rot
θi = rotation angle of Gi

θ 0 = misalignment eigenangle from FB to FB 0 .
νi = spin rate of the frame FWi

relative to FGi
around

îWi

ξC = commanded eigenaxis resolved in FI
τCMG = torque applied to the spacecraft by the control

moment gyroscopes
τdist = torque applied to the spacecraft by the

disturbances
τGi

= torque applied to the spacecraft by Gi

Φk = regressor matrix
ϕC = commanded eigenangle
ϕeig = rotation angle around the eigenaxis that rotates

RB∕I�t� to RC�t�
ϕ∞ = bound on ϕeig

ωB = angular velocity of FB relative to FI resolved in
FB

ωC = angular velocity of FC relative to FI resolved in
FC

~ωB = angular velocity of FB relative to FC resolved in
FB

ω
⇀
B∕I = angular velocity of FB relative to FI

ω
⇀
C∕I = angular velocity of FC relative to FI

I. Introduction

A CONTROL moment gyroscope (CMG) consists of a spinning
wheel mounted on one or two gimbals; the wheel may

spin at either a constant or variable rate. The gimbal or gimbals
rotate the wheel’s spin axis relative to the spacecraft bus, thereby
applying a reaction torque to the spacecraft. The high torque levels and
accuracy providedbyCMGsmake themwell suited for attitude control
of large space stations, orbiting telescopes, and agile spacecraft [1–3].
CMGs are typically operated using torque-steering laws [2–6]. In

Fig. 1,§ the controller requests the torque τreq, and the torque-steering
law synthesizes the requested gimbal-rate control inputu, resulting in
the actuation torque τCMG applied to the spacecraft. When the control
input matrix BCMG becomes rank deficient, the torque τCMG along
one direction cannot be generated, and thus all possible torque
vectors are coplanar [4], which indicates a singular gimbal
configuration. In Ref. [7], geometric methods are used to determine
the CMG singular surfaces. If a CMG singularity can be reconfigured
by null motion �BCMG�t�u�t� � 0� into a nonsingular gimbal
configuration, it is called hyperbolic or passable; otherwise, it is
called elliptic or impassable [8].
Singularities are inherent in every array of constant-speedCMGs [5].

At the expense of greater hardware complexity, gimbal singularities do
not arisewith variable-speedCMGs [9,10]. Alternatively, Refs. [11,12]
consideredCMGs under rotor offset to avoid singularities. Singularities
can bemitigated using singularity-avoidance torque-steering laws [13–
23]. In particular, rapid escape from impassable internal singularities
was discussed in Refs. [18,19,24].
Torque-steering laws based on adaptive control algorithms have

been applied to both constant-speed and variable-speed CMGs. In
particular, adaptive control of constant-speed single-gimbal CMGs
was considered in Refs. [25–27]; adaptive control of double-gimbal
CMGs was considered in Ref. [28]; and adaptive control of variable-
speed CMGs was considered in Refs. [29,30].

In contrast to CMG-driven attitude control laws based on torque-
steering laws, the present paper focuses on direct gimbal-rate-requested
adaptive control of single-gimbal constant-speed CMGs without a
torque-steering law. In Fig. 2, the controller directly requests the gimbal
rates u without a torque-steering law, and thus without specifying a
requested torque. The gimbal motors implement the requested gimbal
rates u that, as a result of the CMG dynamics, produce the actuation
torque τCMG applied to the spacecraft. Because no torque request is
specified, there is no need to invert themapping from thegimbal rates to
the control torque, and thus no attempt is made to avoid gimbal
singularities. The direct gimbal-rate approach was used in Refs. [31–
33]. In particular, the approach of Ref. [31] was confined to open-loop
control, Ref. [32] linearized the nonlinear system and applies an
optimal control law, and Ref. [33] applied sliding mode control.
Nevertheless, approximate gimbal singularities can occur using

the direct gimbal-rate approach. In these cases, the impact of
singularities encountered during amaneuver is limited due to the fact
that the control input matrix BCMG is time dependent, and thus rank-
deficient conditions tend to hold at only isolated points. This property
thus facilitates a simplified approach to the use of constant-speed
CMGs for spacecraft attitude control.
The adaptive control law adopted in the present paper is

retrospective cost adaptive control (RCAC). RCAC was developed
for linear systems in Refs. [34–36]. As shown in the present paper,
RCAC requires extremely limited modeling information for a
spacecraft with CMG actuation, namely, geometric information
concerning the initial gimbal configuration. The ability of RCAC to
control the spacecraft with limited modeling information is
demonstrated by tuning RCAC in numerical simulations based on a
nominalmodel and by subsequently evaluating its performance using
a perturbed model. In this approach, the spacecraft equations of
motion are used only for numerical simulation; no explicit
knowledge of these equations is used by RCAC. Closed-loop
stability for linear systems using RCAC was addressed in Ref. [35].
Proof of closed-loop stability for nonlinear systems in general and
CMG control of spacecraft is an open problem.
A pyramidal CMG arrangement consisting of four CMGs is

considered in this paper. The RCAC law is based on a rotation-matrix
attitude parameterization, which avoids singularities arising with
Euler angles andRodrigues parameters aswell as the double covering
arising from quaternions. These issues and their ramifications were
discussed in Refs. [37,38].
The specific contributions of this paper are as follows:
1) In contrast with torque-steering laws, a gimbal-rate controller is

shown to achieve approximate singularity passthrough and escape
from a singularity.
2) The adaptive controller uses no explicit knowledge of the

spacecraft equations of motion, including the bus inertia and
nonlinearities.
3) A robustness study demonstrates the performance of the

adaptive controller over a wide range of unknown inertia matrices,
and in the presence of sensor/actuator misalignment. These results
extend preliminary results given in Refs. [39,40] and complement the
application of RCAC to spacecraft with reaction wheels, magnetic
torquers, and an appendage in Refs. [41–43].
The contents of the paper are as follows. Section II enumerates

assumptions for a spacecraft actuated by a collection of constant-
speed single-axis CMGs, and it summarizes the equations of motion.
Section III defines the performance variable for the attitude control
problem. Section IV briefly reviews RCAC. Section V describes the
pyramidal arrangement of fourCMGs and constructs the targetmodel
needed by RCAC for an initial gimbal configuration. Section VI
investigates the performance of RCAC for a spacecraft controlled by
CMGs in the pyramidal arrangement with sensor noise, off-nominal
commands, an unknown bus inertia matrix, an approximate
singularity passthrough, escape from an initially singular gimbal
configuration, and sensor/actuator misalignment. Finally, the
Appendix provides a derivation of the equations of motion for the
spacecraft controlled byCMGs. This derivation shows explicitly how
each assumption is used to arrive at the equations of motion used for
nominal-model tuning and perturbed-model testing.

§Note that eatt � attitude error and ratt � attitude command inFigs. 1 and2
only.
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II. Spacecraft Attitude Dynamics with Direct Gimbal-
Rate Request

Thedynamics of a spacecraft SC consisting of a busB andn single-
gimbal constant-speed CMGs in an arbitrary arrangement are
considered. For i � 1; : : : ; n, CMGi is composed of wheel Wi

mounted on gimbal Gi as shown in Fig. 3. Vectors denoted by r
⇀
and

second-order tensors denoted by R
!

are component free.¶

Differentiation of component-free vectors and tensors is performed
with respect to a frame; differentiation of resolved vectors and tensors
does not require a frame.

A. Kinematics and Frames

Let FI be an inertial frame, and let FB be a bus frame defined by the
pyramidal CMG arrangement as discussed in Sec. V. The rotational
attitude kinematics of the bus are described by Poisson’s equation

R
!B•

B∕I � R
!

B∕Iω
⇀×
B∕I (1)

whereB• denotes the frame derivativewith respect to FB, R
!

B∕I is the
rotation tensor that rotates FI into FB (see footnote ¶), ω

⇀
B∕I is the

angular velocity of FB relative to FI, and the superscript “×” denotes
the skew-symmetric cross-product matrix. For all i � 1; : : : ; n, the
frame FGi

is fixed to Gi, and the frame FWi
is fixed to Wi.

Resolving the second-order tensor R
!

B∕I yields the rotation matrix

RB∕I ≜ R
!

B∕I

����
B

� R
!

B∕I

����
I

(2)

which is a 3 × 3 direction cosinematrix. The second equality is due to
the fact that the rotation tensor represents a rotation about an
eigenaxis that is fixed in both frames. The orientation matrixOB∕I is
defined by

OB∕I � RT
B∕I � RI∕B (3)

which is also a 3 × 3 direction cosine matrix. If x
⇀
is a coordinate-free

vector, then

x
⇀jB � OB∕Ix

⇀jI (4)

and, if J
⇀
is a second-order tensor, then

J
!jB � OB∕I J

!jIOI∕B (5)

The following assumptions are made.

Assumption 1: The bus and wheels are rigid bodies.
Assumption 2: The gimbals are massless.
Assumption 3: For all i � 1; : : : ; n, the center of mass ci ofWi is

fixed in the bus.
Assumption 4: For all i � 1; : : : ; n, the direction of the axis îWi

is
fixed in FGi

. In particular, îWi
� îGi

.
Assumption 5: For all i � 1; : : : ; n, the wheel Wi is inertially

symmetric around îWi
.

Assumption 6:For all i � 1; : : : ; n, the frameFWi
spins around îWi

at the constant rate νi > 0 relative to FGi
.

Assumption 7: For all i � 1; : : : ; n, gimbal Gi is actuated by
requesting its rate ui around ĵGi

relative to FB.
Figure 3 and Assumptions 4 and 5 imply that the inertia matrix of

Wi relative to ci resolved in both FGi
and FWi

is given by

Ji ≜ J
!

Wi∕ci jGi
� J

!
Wi∕ci jWi

�
2
4 αi 0 0

0 βi 0

0 0 βi

3
5 (6)

where αi is the moment of inertia of Wi around the spin axis
îWi

� îGi
, and βi is the moment of inertia around the remaining axes

of FWi
and FGi

. Therefore,

J
!

Wi∕ci jB � Oi J
!

Wi∕ci jGi
OT

i � OiJiOT
i (7)

and the 3 × 3 orientation matrix Oi is defined by

Oi ≜ OB∕Gi
� R

!
Gi∕BjGi

� R
!

Gi∕BjB (8)

where R
!

Gi∕B is the rotation tensor that rotates FB into FGi
. For a

coordinate-free vector x
⇀
, x
⇀jB � Oi x

⇀jGi
.

Next, define

Ji;c ≜ J
!

Wi∕cjB � OiJiOT
i −mir

×2
i ; ri ≜ r

⇀
ci∕cjB (9)

wheremi is themass ofWi. Note that ri is the position of ci relative to
c resolved in FB. Define the bus inertia matrix

JB ≜ J
!

B∕cjB

Then, the inertia tensor of the spacecraft relative to its center of mass
resolved in FB is given by

Controller Torque-Steering Law Spacecraft

Fig. 1 The controller requests the torque τreq, and the torque-steering law requests the gimbal rates u.

Controller Spacecraft

Fig. 2 The controller directly requests the gimbal rates u without a
torque-steering law.

Fig. 3 Notation and conventions for CMGi.

¶Kovecses, J., “Dynamics of Mechanical Systems Part 1: Concepts,
Geometry and Kinematic Considerations,” 2017, https://hal.archives-
ouvertes.fr/hal-01534010 [retrieved 01 June 2019].
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J ≜ J
!

SC∕cjB � J
!

B∕cjB �
Xn
i�1

J
!

Wi∕cjB � JB �
Xn
i�1

Ji;c (10)

B. Dynamics

In equation (4.81) of Ref. [4], setting the inertial derivative of the
spacecraft angular momentum

NdH
⇀

dt

to be τCMG and setting thewheel angular accelerations to be zero yield

J _ωB � ωB ×
�
JωB �

Xn
i�1

αiνiOie1

�
� τCMG � τdist (11)

where

ωB ≜ ω
⇀
B∕IjB

Note that τdist is the torque disturbance applied to the spacecraft, and
the torque τCMG applied to the spacecraft by the CMGs is given by

τCMG ≜ BCMGu� B1 _u (12)

BCMG ≜ ω×
BB1 − B2 ∈ R3×n (13)

where the ith column of B1 ∈ R3×n is given by

B1i � −βiOie2 ∈ R3 (14)

and the ith column of B2 ∈ R3×n is given by

B2i � Oi�e×2 Ji − Jie
×
2 �OT

i ωB − αiνiOie3 ∈ R3 (15)

where ei denotes the ith column of the 3 × 3 identity matrix I3. As in
Ref. [4] (p. 80), the term B1 _u is not considered in the subsequent
development.
In Ref. [44], the equations of motion for a spacecraft controlled by

constant-speed single-gimbal CMGs are derived where, in the
notation ofRef. [44],B1 _u in Eq. (12) is expressed asB�σ andBCMGu is
expressed as �D1 �D2 �D3�_σ. Various torque-steering laws
involving B�σ, D2, and D3 were considered in Ref. [44]. In
equation (4.81) in Ref. [4], the term

Xn
i�1

Jg;i
�δiĝi

is equivalent to B1 _u in Eq. (12). Related developments appeared in
Refs. [29,45].

III. Performance Variable for the Attitude Control
Problem

A. Commanded Attitude and Attitude Error

Let FC be a frame that represents the commanded attitude for FB.
The control objective is to have the spacecraft attitude

RB ≜ R
!

B∕IjB
follow the commanded attitude maneuver given by

_RC∕I �
d

dt
�R!C∕IjC� � R

!C•
C∕IjC � R

!
C∕IjCω

⇀
C∕Ij×C � RC∕Iω

×
C (16)

where R
!

C∕I is the rotation tensor that rotates FI into FC, ω
⇀
C∕I is the

angular velocity of FC relative to FI,C• indicates the frame derivative
with respect to FC, and

RC∕I ≜ R
!

C∕IjC � R
!

C∕IjI; ωC ≜ ω
⇀
C∕IjC (17)

The error betweenRB∕I andRC∕I is given in terms of the attitude-
error rotation matrix

~R ≜ R
!

B∕CjB � R
!

B∕IjB R
!

I∕CjB � RB∕I R
!

B∕IjTB R
!

C∕IjTI R
!

B∕IjB
� RT

C∕IRB∕I

(18)

which satisfies

_~R � R
!B•

B∕CjB � R
!

B∕CjBω
⇀
B∕Cj×B � ~R ~ω×

B (19)

where R
!

B∕C is the rotation tensor that rotates FC into FB, ω
⇀
B∕C is the

angular velocity of FB relative to FC, and the angular-velocity error
~ωB is defined as

~ωB ≜ ω
⇀
B∕CjB � �ω⇀B∕I − ω

⇀
C∕I�jB � ωB − ~RTωC (20)

B. Performance Variable

The objective of the attitude control problem is to align FB with the
attitude-command frame FC. To follow attitude commands, a
performance variable z is defined and used for adaptive control. A
vector representation of the attitude error ~R in Eq. (18) is given by

S ≜
X3
i�1

ai� ~RTei� × ei �
2
4 a3 ~R32 − a2 ~R23

a1 ~R13 − a3 ~R31

a2 ~R21 − a1 ~R12

3
5 ∈ R3 (21)

where a1, a2, anda3 are real numbers. Note that S depends on the off-
diagonal entries of the error matrix ~R in Eq. (19).
Lemma 1: Assume that a1, a2, and a3 are distinct, positive

numbers. Then, S � 0 if, and only if,

~R ∈ fI3; diag�1;−1; 1�; diag�−1; 1; 1�; diag�1; 1;−1�g
Proof: See lemma 3 of Ref. [38]. □

Lemma 1 shows that using S as the sole metric of attitude error
gives rise to three spurious attitude equilibria. These equilibria can be
removed by considering the additional attitude-error metric

s ≜ trace�A − A ~R� � a1�1 − ~R11� � a2�1 − ~R22� � a3�1 − ~R33�
(22)

where the attitude parameter matrix A ≜ diag�a1; a2; a3� is positive
definite; and ~R11, ~R22, and ~R33 are the diagonal entries of ~R. In
contrast to S, which depends on the off-diagonal entries of ~R, the
error metric s depends on the diagonal entries of ~R. The following
result is needed.
Lemma 2: For all i; j ∈ f1; 2; 3g, the �i; j� entry Rij of a rotation

matrix R satisfies jRijj ≤ 1.
Proof: See fact 4.13.14 of Ref. [46]. □

The following result shows that S and s can be used together to
ensure ~R � I3.
Proposition 1: Assume that a1, a2, and a3 are distinct, positive

numbers. Then, S � 0 and s � 0 if, and only if, ~R � I3.
Proof: Sufficiency is immediate. To prove necessity, note that

s � 0 implies that

a1�1 − ~R11� � a2�1 − ~R22� � a3�1 − ~R33� � trace�A − A ~R� � 0

Lemma 2 implies that, for i � 1; 2; 3, ai�1 − ~Rii� ≥ 0, and
thus a1�1 − ~R11� � a2�1 − ~R22� � a3�1 − ~R33� � 0.
Because a1, a2, and a3 are positive, it follows that

~R11 � ~R22 � ~R33 � 1. Because, by Lemma 1, ~R is diagonal, it
follows that ~R � I3. □

To apply RCAC to attitude control, Lemma 1 and Proposition 1 are
used to define the performance variable z by
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z ≜
� ~ωB

S
s

�
∈ R7 (23)

where ~ωB is the angular-velocity error defined by Eq. (20).
Proposition 2: Assume that a1, a2, and a3 are distinct, positive

numbers. Then, z � 0 if, and only if, ωB � ωC and RB∕I � RC∕I.
Proof: For necessity, assume that z � 0. Then, S � 0, s � 0, and

Proposition 1 imply that ~R � I3. Therefore, Eq. (18) yieldsRB∕I �
RC∕I ~R � RC∕I. If, in addition, ~ωB � 0, then ωB � ~RTωC�
~ωB � ωC. Thus,RB∕I � RC∕I and ωB � ωC.
To prove sufficiency, assume that RC∕I � RB∕I. Then, Eq. (18)

implies ~R � I3. Thus, Lemma 1 implies that S � 0, and Proposition
1 implies that s � 0. Next, let ωB � ωC. Then, ~ωB � ωB−
~RTωC � ωB − ωC � 0. Thus, RB∕I � RC∕I and ωB � ωC imply
that s � 0 and S � ~ωB � 0. Hence, z � 0. □

IV. RCAC Algorithm

This section summarizes the RCAC algorithm as used in the
present paper. Because RCAC is a discrete-time control algorithm, it
is used to update the coefficients of a discrete-time controller that
operates on sampled data. The sampled values of the performance
variable z�t� are given by zk ≜ z�kTs�. Likewise, the continuous-time
control input u�t�, which is the vector of gimbal rates, is given by a
zero-order-hold device. In particular, for all t ∈ �kTs; �k� 1�Ts�, it
follows that u�t� � uk, where uk is given by the feedback controller.

A. Controller Structure

Define the strictly proper discrete-time dynamic compensator of
order nc given by

uk �
Xnc
i�1

Pi;kuk−i �
Xnc
i�1

Qi;kzk−i (24)

where, for all i � 1; : : : ; nc and all k ≥ 1, Pi;k ∈ Rlu×lu and Qi;k ∈
Rlu×lz are controller coefficient matrices. The control law [Eq. (24)]
can be rewritten in regressor form as

uk �
�
0; k < kw;
ΦkΘk; k ≥ kw

(25)

where the regressor matrixΦk, which contains past performance and
control data, is defined by

Φk ≜

2
666666664

uk−1
..
.

uk−nc
zk−1
..
.

zk−nc

3
777777775

T

⊗ Ilu ∈ Rlu×lΘ (26)

where lΘ ≜ lunc�lu � lz�, and kw is an initial waiting period during
whichΦk is populated with data. The controller coefficient vectorΘk

is defined as

Θk ≜ vec�P1;k · · · Pnc ;kQ1;k · · · Qnc;k�T ∈ RlΘ (27)

B. Retrospective Performance Variable

The retrospective performance variable is defined by

ẑk�Θ� ≜ zk �Gf�q��ΦkΘ̂ − uk� (28)

where Θ̂ ∈ RlΘ is the retrospectively optimized controller coefficient
vector obtained from the optimization in the following. The updated
controller is given byΘk�1 � Θ̂. As explained inRef. [36],Gf ∈ Rlz×lu

is a finite-impulse response filter that contains the essential plant
modeling information, and q is the forward shift operator. For linear
single-input single-output systems, Gf contains modeling information

about the leading sign of the numerator, the relative degree, and
nonminimum-phase zeros [36]. For linear multi-input multioutput
systems, information about the transmission zeros is captured by using
Markov parameters of the plant. For nonlinear systems, Gf can be
constructed by using Markov parameters from of the linearized
dynamics [47]. In the present paper,Gf is constructed by analyzing the
effect of the control input on the performance variable z for the
initial gimbal configuration. Additional parameters and weights needed
by RCAC are determined from the closed-loop response of a fully
nonlinear nominal simulationmodel; RCACuses no explicit knowledge
of the spacecraft equations of motion. No linearized model of the
spacecraft dynamics is needed, created, or used for any purpose in
this paper.

C. Retrospective Cost

To update the controller parameter Θk, the retrospective cost
function is defined by

Ĵk�Θ̂� ≜
Xk
i�1

ẑi�Θ̂�TRzẑi�Θ̂� � �ΦiΘ̂�TRuΦiΘ̂

� �Θ̂ − Θ0�TRΘ�Θ̂ − Θ0� (29)

where, for all i ≥ 1,Rz � ηzIlz ,Ru � ηuIlu , andRΘ � ηΘIlΘ ; and ηz,
ηu, and ηΘ are positive numbers. As in Ref. [36], the updated
controller coefficient matrixΘk�1 that minimizes Eq. (29) is given by
recursive least squares. Let P0 � R−1

Θ and, for all k ≥ 1, let Θk�1 be
the unique global minimizer of the retrospective cost function
[Eq. (29)]. Then, Θk�1 is given by

Θk�1 � Θk − PkΦT
f;kΓ−1

k �Φf;kΘk � �Rz � Ru�−1Rz�zk − uf;k��
(30)

Pk�1 � Pk − PkΦT
f;kΓ−1

k Φf;kPk (31)

where Φf;k ≜ Gf�q�Φk, uf;k ≜ Gf�q�uk, and Γk ≜ �Rz � Ru�−1�
Φf;kPkΦT

f;k.

V. Construction of Gf

A. Pyramidal Arrangement of Four CMGs

Consider a spacecraft actuated by n � 4 CMGs mounted in the
pyramidal arrangement shown in Fig. 4. Because the CMGs apply a
pure torque to the bus, the location of the pyramidal arrangement on
the bus is immaterial. The pyramid has a square base, for which the
sides define the axes îB and ĵB of the bus. Consequently, the sides of
the pyramidal base are aligned with îB and ĵB, and β is the angle
between a vector orthogonal to each face and the apex direction k̂B.
The CMGs are arranged such that, for i � 1; 2; 3; 4, each axis ĵGi

of
rotation of gimbal Gi relative to the bus is perpendicular to the
corresponding face; each axis îGi

of rotation of wheelWi relative to
the gimbal is parallel with the corresponding edge of the base.
Therefore, the angular momentum ofWi, which aligns with îGi

, lies
in the plane spanned by the corresponding face. A counterclockwise
gimbal angular velocity ui around ĵGi

is defined to be positive, and
thus ui � _θi. The initial orientation matrices corresponding to this
CMG arrangement are given by

O1�θ1�0�� � R
�
β −

π

2
; e1

�
T

R�θ1�0�; e2�;

O2�θ2�0�� � R
�
β −

π

2
; e2

�
T

R
�
−
π

2
; e3

�
T

R�θ2�0�; e2�;

O3�θ3�0�� � R
�
π

2
− β; e1

�
T

R�−π; e3�TR�θ3�0�; e2�;

O4�θ4�0�� � R
�
π

2
− β; e2

�
T

R
�
π

2
; e3

�
T

R�θ4�0�; e2� (32)

where R�ϕ; ξ� is given by Rodrigues’s formula
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R�ϕ; ξ� � �cosϕ�I3 � �1 − cosϕ�ξξT � �sinϕ�ξ× (33)

ξ ∈ R3 is a unit vector, and ϕ ∈ �−π; π�.

B. Construction of Gf

For the pyramidal arrangement of four CMGs and with the initial

gimbal configuration θ1�0� � θ2�0� � θ3�0� � θ4�0� � 0, note

that this initial gimbal configuration is nonsingular in the sense that

there is no constraint on the achievable torque vectors. Also, ui
changes the direction of the angular momentum of Wi, which

produces the gimbal torque τGi
. For gimbal Gi, τGi

for the initial

gimbal configuration lies in a face of the pyramid, orthogonal to îGi
,

as shown in Fig. 5. The vector sum of τG1
, τG2

, τG3
, and τG4

is τCMG

in Eq. (12).
For the initial gimbal configuration θ1�0� � θ2�0� � θ3�0� �

θ4�0� � 0, Fig. 5 shows that τG1
can be decomposed in the directions

ĵB and −k̂B; τG2
can be decomposed in the directions −îB and −k̂B;

τG3
can be decomposed in the directions−ĵB and−k̂B; and τG4

can be

decomposed in the directions îB and −k̂B. Based on these

observations, Gf is chosen to be

Gf�q� �
1

q
H (34)

where H captures the effect of the gimbal control input on the

performance variable z for the given initial gimbal configuration.H is

thus given by

H � −

2
666666664

0 −1 0 1

1 0 −1 0

−1 −1 −1 −1
0 −1 0 1

1 0 −1 0

−1 −1 −1 −1
0 0 0 0

3
777777775

(35)

where the leadingminus sign is due to the error junction in Fig. 2. For
all numerical examples, Gf is fixed and given by Eq. (34), with H
given by Eq. (35).

VI. Numerical Examples

A. Numerical Integration of the Sampled-Data Dynamics

RCAC updates the coefficients of the discrete-time controller
[Eq. (24)] for which the output uk is applied to the continuous-time
spacecraft dynamics using a zero-order-hold device. The closed-loop
system thus has sampled-data dynamics. To capture the intersample
dynamics, theMATLAB functionODE45 is usedwith a variable step
size in order to ensure integration accuracy. In addition, ODE45 is
applied in each sampling interval t ∈ �kTs; �k� 1�Ts� with a fixed
integration interval of length Ts in order to ensure that the integration
is synchronous with updates of the zero-order-hold control signal.

B. Simulation Performance Metric

The accuracy of RCAC is assessed by using the eigenangle ϕeig of
~R as the error metric, where

ϕeig ≜ cos−1
1

2
�tr ~R − 1� (36)

The eigenangle ϕeig is the rotation angle around the eigenaxis that
rotatesRB∕I�t� to the attitude commandRC∕I�t�. Using Rodrigues’s
formula [Eq. (33)], RC∕I can be represented by the commanded
eigenangle ϕC and the commanded eigenaxis ξC resolved in FI. The
transient performance is given by the settling time Ts to be the time
needed to bring andmaintain ϕeig within a specified boundϕ∞ for all
t ≥ Ts,

ϕeig�t� ≤ ϕ∞ (37)

where ϕ∞�Δ 3 deg. The final error metric is the value of ϕeig�t�
averaged over the last 1 s of simulation.
For all examples, the controller coefficients are initialized at

Θ�0� � 0. This choice reflects the absence of prior modeling
information. If additional modeling information is available, this
information may be advantageous for initializing Θ�0�.

C. Nominal-Model Tuning

Nominal-simulation tuning refers to the tuning of RCAC based on
simulation of a nominal model. Instead of attempting to identify the
system, the simulation is run a small number of times to tune the
parameters of RCAC to the nominal simulation. No attempt is made
to optimize the response.
To demonstrate this approach, consider a rest-to-rest maneuver,

where the spacecraft is assumed to be initially at rest with
RB∕I�0� � I3, ωB�0� � 0, and u�0� � 0; and the attitude and
angular-velocity commands are given byRB∕I � RC∕I and ωC � 0.
For nominal-model tuning, the commanded eigenangle is ϕC �
−150 deg around the commanded eigenaxis ξC � � 1 1 1 �T.
The nominal simulation model assumes the following parameter

values. The bus inertia matrix is JB � diag�10; 25∕3; 5� kg ⋅m2,
which implies that FB is a principal-axis frame for the bus inertia of
the nominal simulation model. For i � 1; 2; 3; 4, the wheel inertia is
Ji � diag�0.02; 0.012; 0.012� kg ⋅m2, the wheel mass is mi �
0.001 kg, and the wheel spin speed is νi � 600 rad∕s.
The gimbal positions are r1 � � 0 0.1 0 �T m, r2 �
�−0.1 0 0 �T m, r3 � � 0 −0.1 0 �T m, and r4 �
� 0.1 0 0 �T m. The pyramidal face angle is β � 54 deg, and the
initial gimbal angles are θ1�0� � θ2�0� � θ3�0� � θ4�0� � 0 deg.
The attitude parameter matrix is chosen to be A � diag�1; 2; 3�.
Nominal-model tuning with the sample time of 0.1 s yields the

parameter choices nc � 2, ηz � ηu � 1, ηΘ � 0.01, and kw � 5
steps. These values reflect the fact that the nominal-model tuning is
limited to a small number of runs with no attempt to optimize the
response. With these tuning parameters, the settling time is Ts �
12.3 s with the final error of 1.1 × 10−7 deg.

Fig. 4 Pyramidal arrangement of four CMGs.

Fig. 5 Gimbal torque directions for the initial gimbal configuration.
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D. Perturbed-Model Testing

In perturbed-model testing, the parameters and weights obtained

under nominal-model tuning are fixed, and the robustness and

performance of RCAC are evaluated through simulations based on

perturbations of the nominal model. These perturbations are chosen

to reflect off-nominal conditions of the model, commands, sensor

noise, actuator misalignment, and the singularities that can

potentially occur in real-world operations.

1. Rest-to-Rest Rotation Maneuvers with Sensor Noise

The commanded eigenangle ϕC varies from −180 to 180 deg

around the commanded eigenaxes � 1 1 1 �T, � 1 0 0 �T,
� 0 1 0 �T, and � 0 0 1 �T. Zero-mean Gaussian white noise

with a covariance of 0.01I3 is assumed to corrupt the sensors that

measure the angular velocity ωB of the bus. Figure 6 shows the

settling time and error at 50 s.

2. Rest-to-Rest Rotation Maneuver

The commanded attitudemaneuver is a rest-to-rest rotation around

the eigenaxis ξC � � 0 1 0 �T, beginning at 0.5 s, ending at 15 s,

and with the constant rate of 0.18 rad∕s. Figure 7a compares the

actual attitude to the attitude command; and Fig. 7b shows the

corresponding eigenangle error.

3. Robustness to Diagonal Perturbations of the Bus Inertia Matrix

The robustness of RCAC to uncertainty in the principal moments

of inertia is assessed by considering a collection of diagonal bus

inertia matrices JB � diag�λ1; λ2; λ3�. Figure 1 in Ref. [48] provided
a convenient classification of all possible principal moments of

inertia in relation to the underlying geometry. In particular, the

triangular shaded region shows all feasible values of λ2 and λ3 in

terms of the largest principal moment of inertia λ1. The vertices of the
region correspond to a sphere, a thin disk, and a thin pencil. For

additional details, see Ref. [48].
The attitude command is to rotate −150 deg around

ξC � � 1 1 1 �T. The unknown bus inertia matrix diag�λ1; λ2; λ3�

is assumed to be diagonal and is given by the 422 points of the

triangular regions in Fig. 8,which correspond to the shaded triangular

region in figure 1 in Ref. [48]. Figure 8 shows the settling time for

each bus inertia matrix. For all simulations, the measurements of ωB

are corrupted by zero-mean Gaussian white sensor noise with

covariance of 0.01I3.

4. Robustness to Off-Diagonal Perturbations of the Bus Inertia Matrix

As shown in Fig. 9, the rotated bus inertiamatrix JB;rot is defined as

JB;rot ≜ R�θ; e�TJBR�θ; e� (38)

where R�θ; e� is given by Rodrigues’s formula [Eq. (33)] with

e � � 1 1 1 �T. Consequently, FB is no longer a principal-axis

frame of the bus. For the simulation, zero-meanGaussianwhite noise

with covariance of 0.01I3 is assumed to corrupt the measurements of

ωB. The end time for all simulations in Fig. 9 is 300 s. The

nonmonotonic trend suggests a complex relationship between the

initial gimbal configuration and the rotated inertia matrix.

5. Approximate Singularity Passthrough

Rerunning the 422 maneuvers tested in Fig. 8 in the absence of

sensor noise, there are 32 times at which the minimum singular value

of BCMG is less than 0.1. Of these 32 cases, the smallest minimum

singular value of BCMG occurs for the inertia matrix

diag�30; 22; 15� kg ⋅m2 shown in Fig. 10. In particular, Fig. 10b

shows that, at the time resolution of 0.1 s of the numerical integration,

an approximate singularity passthrough occurs at a time of 31.2 s,

when theminimum singular value ofBCMG reaches its smallest value,

namely, 0.0313. A closer approach to a singularity occurs in Fig. 11

where, at a time of 27.5 s, theminimum singular value reaches 0.0038

without any adverse effect. Because the control input matrix BCMG is

time dependent, rank-deficient conditions tend to hold at only

isolated points, and thus the use of requested gimbal rates is able to

overcome singularities encountered instantaneously during attitude

command following.

-200 -100 0 100 200
0

5

10

15

20

-200 -100 0 100 200
0

0.2

0.4

0.6

0.8

a) b)
Fig. 6 Plots of a) settling time Ts and b) error at 50 s.

Fig. 7 Plots of a) commanded and actual eigenangles, and b) eigenangle error.
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6. Escape from an Initial Gimbal-Lock Singularity

To consider the case of an exact, impassable gimbal singularity, the

initial gimbal configuration is chosen to be different from the initial
gimbal configuration considered in the previous subsections;
however, no change is made to H defined by Eq. (35) for

θ�0� � � 0 0 0 0 � deg. The attitude command is to rotate the
spacecraft −150 deg around the eigenaxis � 0 0 1 �T. Letting
θ�0� � �−90 90 −90 90 � deg, no torque can be generated in

the direction of k̂B. Therefore, the initial torque required for the
commanded attitudemaneuver is not in the range ofBCMG, and thus it

is a singular direction of the initial gimbal configuration.
Consequently, it is impossible for the spacecraft to initially rotate
in the commanded direction; this case represents an impassable

singularity corresponding to gimbal lock.
The minimum singular value of BCMG during the first five steps is

1.4 × 10−15 (due to numerical roundoff) because RCAC must wait
five steps due to Eq. (25), where kW � 5. The minimum singular

value of BCMG at t � 0.6 s is 0.24. As shown in Fig. 11b, RCAC
initially takes an indirect route in following the attitude command in
order to escape from the gimbal lock. For the same initially singular

gimbal configuration, a nonsingular torque request is used in
Ref. [24] to escape the singularity.
To assess the performance degradation due to the initial gimbal

singularity, RCAC is applied to the spacecraft with thruster actuation

only: that is, without CMGs. Based on the response of the nominal
model, H is redefined to be H � �−I3 −I3 03×1 �T; all of the
remaining parameters and weights of RCAC are the same as in the

case of CMGs. Using RCAC, the spacecraft with thrusters is

simulated with the same bus inertia, initial conditions, and attitude
command as the spacecraft with CMGs. Figure 11b shows that, under
thruster control, the attitude of the spacecraft generally decreases,
where the oscillations indicate that the attitude overshoots the
setpoint but eventually damps out. In contrast, due to the initial
gimbal-lock singularity, RCAC drives the attitude in the opposite
direction, as evidenced by the increasing eigenangle. At a time of
330 s, however, the eigenangle decreases monotonically and rapidly
to the attitude command, which it reaches at a time of 357.8 s with a
final error of 3.88 × 10−5 deg.

7. Robustness to Sensor/Actuator Misalignment

In all previous simulations, the attitude sensors are assumed to be
perfectly alignedwith the pyramidal CMGs. In particular, the sensing
axes are assumed to be exactly aligned with the axes of the bus frame
FB, which also defines the directions of the CMGs. However, sensor/
actuator misalignment can occur in practice; in which case, the
sensing axes may be different from the axes that define the gimbal
directions [49,50]. This misalignment is assumed to be unknown to
RCAC, and it is of interest to determine the effect of the sensor/
actuator misalignment on the attitude error.
To determine the performance degradation due to sensor/actuator

misalignment, it is assumed, as in previous sections, that the base of
the CMG pyramid is aligned with the axes of the bus frame FB.
However, the sensors, which are misaligned with the CMGs, are
aligned with a rotated frame F 0

B. The rotation tensor R
!

B 0∕B thus
determines the alignment of the CMGs relative to the attitude
sensors; this rotation tensor is assumed to be unknown to RCAC. In

Fig. 8 Settling time Ts as a function of the bus inertia matrix diag�λ1; λ2; λ3� for λ2 in the ranges [4, 8], [5, 10], [10, 20], and �15; 30� kg ⋅m2.
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a) b)
Fig. 9 Plots of a) settling time Ts, and b) error at 300 s.
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the absence of misalignment, R
!

B 0∕B is the identity second-order

tensor.

Because the attitude error is determined by the sensor

measurements, the goal is to determine the performance degradation

due to the misalignment between FB and F 0
B. Note that, due to the

misalignment, Eq. (8) is replaced by

Oi 0 ≜ OB 0∕Gi
� R

!
Gi∕B 0 j

B 0 � OB 0∕BOB∕Gi
� R�θ 0; e 0�TOB∕Gi

(39)

where θ 0 and e 0 are the misalignment eigenangle and misalignment

from FB to FB 0 . The commanded attitude maneuver is to rotate
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a) b)

c) d)

Fig. 10 Plots of a) minimum singular value, b) approximate singularity passthrough between 31.0 and 31.4 s, c) eigenangle error, and d) control input u.
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Fig. 11 Plots of a) minimum singular value, b) eigenangle error, c) gimbal-rate control input u, and d) CMG and thruster torques.
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−150 deg around ξC � � 1 1 1 �T. The misalignment eigenangle
θ 0 varies from−40 to 25 deg around four choices of the eigenaxis e 0,
namely, � 1 1 1 �T, � 1 0 0 �T, � 0 1 0 �T, and � 0 0 1 �T.
Figure 12 shows the settling time and error at 50 s.

VII. Conclusions

Adaptive control of a rigid spacecraft controlled by a pyramidal
arrangement of four single-gimbal constant-speed CMGs was
considered. Retrospective cost adaptive control was used with
gimbal-rate-requested CMGs; no torque-steering law was used. The
RCAC implementation was based on a target model involving a
single Markov parameter corresponding to the initial gimbal
configuration. The parameters and weights for RCACwere based on
a nominal simulation; no explicit knowledge of the nonlinear
equations of motion was used by the adaptive controller.
Numerical simulations with a perturbed model showed that the

adaptive controller is robust to large variations in the spacecraft inertia
in the presence of gyroscope noise. The performance across these
variations shows the robustness of RCAC to the choice of the target
model. The controller was able to escape from an initial gimbal-lock
singularity and not suffer from close approach to a gimbal singularity.
An open problem is to consider the effect of the gimbal angular

acceleration _u on the closed-loop performance. Although this term is
typically neglected in the analysis of torque-steering laws ([4] p. 80),
its effect on the performance of CMG-controlled spacecraft remains
to be investigated.

Appendix: Derivation of the Equations of Motion

Assumptions 1, 2, and 3 imply that the center of mass c of the

spacecraft is fixed in B. Therefore, the angular momentumH
⇀

B∕c∕I of

B relative to c with respect to FI is given by

H
⇀

B∕c∕I � J
!

B∕cω
⇀
B∕I (A1)

where J
!

B∕c is the inertia tensor of the bus relative to c. The angular

momentum H
⇀

Wi∕c∕I ofWi relative to c with respect to FI is given by

H
⇀

Wi∕c∕I � H
⇀

Wi∕ci∕I � r
⇀
ci∕c ×mi r

⇀
I•

ci∕c (A2)

whereH
⇀

Wi∕ci∕I is the angularmomentumofWi relative to its center of

mass ci with respect to FI, r
⇀
ci∕c is the position of ci relative to c,mi is

the mass of Wi, and I• denotes the derivative with respect to FI.

Applying the transport theorem to r
⇀
I•

ci∕c in Eq. (A2) yields

H
⇀

Wi∕c∕I � H
⇀

Wi∕ci∕I � r
⇀
ci∕c ×mi� r⇀

B•

ci∕c � ω
⇀
B∕I × r

⇀
ci∕c� (A3)

where B• denotes the derivative with respect to FB. Because c and ci

are fixed in the bus, it follows that r
⇀
B•

ci∕c � 0. Therefore,

H
⇀

Wi∕c∕I � H
⇀

Wi∕ci∕I �mi r
⇀
ci∕c × �ω⇀B∕I × r

⇀
ci∕c�

� H
⇀

Wi∕ci∕I −mi r
⇀×2
ci∕cω

⇀
B∕I (A4)

Because, by Assumption 3, ci is fixed inWi, H
⇀

Wi∕ci∕I is given by

H
⇀

Wi∕ci∕I � J
!

Wi∕ciω
⇀
Wi∕I (A5)

where J
!

Wi∕ci is the inertia tensor ofWi relative to ci, andω
⇀
Wi∕I is the

angular velocity of FWi
relative to FI. Expanding ω

⇀
Wi∕I in Eq. (A5)

yields

H
⇀

Wi∕ci∕I � J
!

Wi∕ci�ω
⇀
Wi∕B � ω

⇀
B∕I� (A6)

� J
!

Wi∕ci�ω
⇀
Wi∕Gi

� u
⇀
i � ω

⇀
B∕I� (A7)

where, by Assumption 7, the control vector u
⇀
i for CMGi is the

angular velocity of FGi
relative to FB; that is,

u
⇀
i ≜ ω

⇀
Gi∕B (A8)

Substituting Eq. (A7) into Eq. (A4) yields

H
⇀

Wi∕c∕I � J
!

Wi∕ci�ω
⇀
Wi∕Gi

� u
⇀
i� � J

!
Wi∕cω

⇀
B∕I (A9)

where, by the parallel axis theorem,

J
!

Wi∕c � J
!

Wi∕ci −mi r
⇀×2
ci∕c (A10)

By Assumption 2, the angular momentum H
⇀

Gi∕c∕I of Gi relative to c
with respect to FI is zero. Therefore, the angular momentumH

⇀

SC∕c∕I
of the spacecraft relative to c with respect to FI is given by

H
⇀

SC∕c∕I � H
⇀

B∕c∕I �
Xn
i�1

H
⇀

Wi∕c∕I (A11)

Using Eqs. (A1) and (A9), Eq. (A11) can be rewritten as

H
⇀

SC∕c∕I � J
!

SC∕cω
⇀
B∕I �

Xn
i�1

J
!

Wi∕ci�ω
⇀
Wi∕Gi

� u
⇀
i� (A12)

where the inertia tensor of the spacecraft relative to its center of mass

is given by

J
!

SC∕c � J
!

B∕c �
Xn
i�1

J
!

Wi∕c (A13)
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a) b)
Fig. 12 Plots of a) settling time Ts, and b) error at 50 s.
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A. Dynamics

A.1. Euler’s Equation for the Angular Momentum of the Spacecraft

Applying the angular momentum theorem to the spacecraft yields

H
⇀
I•

SC∕c∕I � M
⇀

SC (A14)

whereM
⇀

SC is the sum of all external torques acting on the spacecraft.

Applying the transport theorem to the left side of Eq. (A14) yields

H
⇀
I•

SC∕c∕I � H
⇀
B•

SC∕c∕I � ω
⇀
B∕I ×H

⇀

SC∕c∕I (A15)

Hence, Eqs. (A14) and (A15) imply

H
⇀
B•

SC∕c∕I � ω
⇀
B∕I ×H

⇀

SC∕c∕I � M
⇀

SC (A16)

which is Euler’s equation for the angular momentum of the

spacecraft.

A.2. Derivatives of the Wheel Angular Momenta with Respect to FB

Differentiating Eq. (A11) with respect to FB yields

H
⇀
B•

SC∕c∕I � H
⇀
B•

B∕c∕I �
Xn
i�1

H
⇀
B•

Wi∕c∕I (A17)

Because, by Assumption 1, the inertia J
!

B∕c is constant with

respect to FB, differentiating Eq. (A1) with respect to FB yields

H
⇀
B•

B∕c∕I � J
!

B∕cω
⇀
B•

B∕I (A18)

Furthermore, differentiating Eq. (A9) with respect to FB and using

Eq. (A10) yields

H
⇀
B•

Wi∕c∕I � J
!B•

Wi∕ci�ω
⇀
Wi∕Gi

� u
⇀
i� � J

!
Wi∕ci�ω

⇀
B•

Wi∕Gi
� u

⇀
B•

i�

� � J!
B•

Wi∕ci −mi r
⇀×2
ci∕c

z}|{B•

�ω⇀B∕I � J
!

Wi∕cω
⇀
B•

B∕I (A19)

Next, using Eq. (A8), the derivative of J
!

Wi∕ci with respect to FB is
given by

J
!B•

Wi∕ci � J
!Gi•

Wi∕ci � ω
⇀×
Gi∕B J

!
Wi∕ci − J

!
Wi∕ciω

⇀×
Gi∕B

� u
⇀×
i J
!

Wi∕ci − J
!

Wi∕ci u
⇀×
i (A20)

where

J
!Gi•

Wi∕ci � 0

due to Assumptions 1, 5, and 6. Furthermore, Assumptions 4 and 6

imply that

ω
⇀
Gi•

Wi∕Gi
� 0

Thus, using Eq. (A8), the angular acceleration of FWi
relative to

FGi
with respect to FB is given by

ω
⇀
B•

Wi∕Gi
� ω

⇀
Gi•

Wi∕Gi
� ω

⇀
Gi∕B × ω

⇀
Wi∕Gi

� ω
⇀
Gi∕B × ω

⇀
Wi∕Gi

� u
⇀×
i ω
⇀
Wi∕Gi

(A21)

Because

r
⇀
B•

ci∕c � 0

thederivative of the cross term inEq. (A19)with respect toFB is givenby

r
⇀×2
ci∕c

z}|{B•

� r
⇀×
ci∕c r

⇀×
ci∕c

z}|{B•

� r
⇀×
ci∕c

z}|{B•

r
⇀×
ci∕c � r

⇀×
ci∕c� r

⇀
B•

ci∕c�× � � r⇀
B•

ci∕c�× r
⇀×
ci∕c

� 0 (A22)

Substituting Eqs. (A20–A22) into Eq. (A19) yields the derivative of
Eq. (A9) with respect to FB; that is,

H
⇀
B•

Wi∕c∕I � �u⇀×
i J
!

Wi∕ci − J
!

Wi∕ci u
⇀×
i ��ω⇀B∕I � ω

⇀
Wi∕Gi

� u
⇀
i� � J

!
Wi∕ci�u

⇀×
i ω
⇀
Wi∕Gi

� u
⇀
B•

i� � J
!

Wi∕cω
⇀
B•

B∕I

� �u⇀×
i J
!

Wi∕ci − J
!

Wi∕ci u
⇀×
i �ω⇀B∕I � u

⇀×
i J
!

Wi∕ci�ω
⇀
Wi∕Gi

� u
⇀
i� � J

!
Wi∕ci u

⇀
B•

i � J
!

Wi∕cω
⇀
B•

B∕I

(A23)

B. Resolving the Equations of Motion in FB

Resolving Poisson’s equation [Eq. (1)] in FB yields

_RB∕I �
d

dt
�R!B∕IjB� � R

!B•
B∕IjB � R

!
B∕IjBω

⇀
B∕Ij×B � RB∕Iω

×
B (B1)

where

RB∕I ≜ R
!

B∕IjB � R
!

B∕IjI; ωB ≜ ω
⇀
B∕IjB (B2)

Resolving Eq. (A1) in FB yields

H
⇀

B∕c∕IjB � JBωB (B3)

where

JB ≜ J
!

B∕cjB (B4)

Furthermore, resolving Eq. (A18) in FB yields

H
⇀
B•

B∕c∕IjB � d

dt
�H⇀B∕c∕IjB� � JB _ωB (B5)

where

_ωB � ω
⇀
B•

B∕IjB (B6)

Using Fig. 3 and Assumptions 4, 5, and 6 to resolve the angular
velocity of FWi

relative to FGi
in FGi

yields

ω
⇀
Wi∕Gi

j
Gi

� νie1 (B7)

where νi > 0 is the angular rate of Wi around îWi
relative to FGi

.

Similarly, the gimbal angular velocity u
⇀
i defined by Eq. (A8) and the

gimbal angular acceleration u
⇀
i

Gi•

of FGi
relative to FB resolved in FGi

are given by
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u
⇀
ijGi

� uie2; u
⇀
i

Gi⋅

jGi
� d

dt
�u⇀ijGi

� � _uie2 (B8)

where ui is the gimbal-rate request for CMGi, and _ui is its derivative.
Because ui is the spin rate of gi, the corresponding gimbal angle θi is
defined such that

_θi � ui (B9)

It thus follows from Eqs. (A8) and (B8) that

ω
⇀
Gi∕BjGi

� _θie2 (B10)

Defining the gimbal angle vector θ�Δ �θ1 · · · θn�T yields _θ � u,

where u�Δ �u1 · · · un�T ∈ Rn is the control input. Furthermore, Fig. 3

and Assumptions 4 and 5 imply that the inertia matrix ofWi relative

to ci resolved in both FGi
and FWi

is given by

Ji ≜ J
!

Wi∕ci jGi
� J

!
Wi∕ci jWi

�
" αi 0 0

0 βi 0

0 0 βi

#
(B11)

whereαi is themoment of inertia ofWi around the spin axis îWi
� îGi

and βi is the moment of inertia around the remaining axes of FWi

and FGi
.

Next, note that

u
⇀
i

B•

� u
⇀
i

Gi•

� ω
⇀
Gi∕B × u

⇀
i � u

⇀
i

Gi•

(B12)

Resolving Eqs. (B7), (B8), and (6) in FB and using Eq. (B12) yield

ω
⇀
Wi∕Gi

j
B
� νiOie1; u

⇀
ijB � ω

⇀
Gi∕BjB � uiOie2;

u
⇀
i

B•

jB � u
⇀
i

Gi•

jB � _uiOie2

(B13)

where

J
!

Wi∕ci jB � Oi J
!

Wi∕ci jGi
OT

i � OiJiOT
i (B14)

and the orientation matrix Oi is defined by

Oi ≜ R
!

Gi∕BjGi
� R

!
Gi∕BjB (B15)

where R
!

Gi∕B is the rotation tensor that transforms FB into FGi
.

Resolving Eq. (A9) in FB and using the fact thatOT
i Oi � I3 yields

H
⇀

Wi∕c∕IjB � OiJiOT
i �νiOie1 � uiOie2� � �OiJiOT

i −mir
×2
i �ωB

� Oi�αiνie1 � βiuie2� � Ji;cωB

(B16)

Furthermore, define

Ji;c ≜ J
!

Wi∕cjB � OiJiOT
i −mir

×2
i ; ri ≜ r

⇀
ci∕cjB (B17)

Using Eq. (B16) to resolve the sum in Eq. (A11) in FB yields

Xn
i�1

H
⇀

Wi∕c∕IjB �
Xn
i�1

�Oi�αiνie1 � βiuie2� � Ji;cωB�

�
Xn
i�1

�αiνiOie1 � Ji;cωB� − B1u (B18)

where the ith column of B1 ∈ R3×n is given by

B1i � −βiOie2 ∈ R3 (B19)

Using Eqs. (1) and (A8), it follows that

_Oi � R
!Gi•

Gi∕BjGi
� R

!
Gi∕Bu

⇀×
i jGi

� Oiuie
×
2 (B20)

Therefore,

_B1i � −βi _Oie2 � −βiOiuie
×
2 e2 � 0 (B21)

which implies that B1 in Eq. (B18) is constant.
Resolving Eq. (A23) in FB yields the derivative of Eq. (B16),

which is given by

d

dt
�H⇀Wi∕c∕IjB� � H

⇀
B•

Wi∕c∕IjB � uiOi�e×2 Ji − Jie
×
2 �OT

i ωB

�Oi�uie2�×OT
i OiJi�uie2 � νie1� � _uiOiJie2 � Ji;c _ωB

� uiOi�e×2 Ji − Jie
×
2 �OT

i ωB � uiOi�e×2βiuie2 � e×2αiνie1�
� _uiOiβie2 � Ji;c _ωB

� �Oi�e×2 Ji − Jie
×
2 �OT

i ωB − αiνiOie3�ui � βi _uiOie2 � Ji;c _ωB

(B22)

Using Eqs. (B19) and (B22) to resolve the sum in Eq. (A17) in FB
yields Xn

i�1

H
⇀
B•

Wi∕c∕IjB �
Xn
i�1

�Ji;c _ωB − B1i _ui � B2iui�

�
�Xn

i�1

Ji;c _ωB

�
− B1 _u� B2u (B23)

where _u � � _u1 · · · _un�T, and the ith column ofB2 ∈ R3×n is given by

B2i � Oi�e×2 Ji − Jie
×
2 �OT

i ωB − αiνiOie3 ∈ R3 (B24)

Using Eqs. (B3) and (B18) to resolve Eq. (A11) in FB yields

HSC ≜ H
⇀

SC∕c∕IjB � JωB �
Xn
i�1

αiνiOie1 − B1u (B25)

where, using Eq. (A13),

J ≜ J
!

SC∕cjB � JB �
Xn
i�1

Ji;c (B26)

Using Eqs. (B5) and (B23) to resolve Eq. (A17) in FB yields

_HSC � d

dt
�H⇀SC∕c∕IjB� � H

⇀
B•

SC∕c∕IjB � J _ωB − B1 _u� B2u (B27)

Resolving Eq. (A16) in FB using Eqs. (B25) and (B27) yields

J _ωB − B1 _u� B2u � −ωB ×
�
JωB �

Xn
i�1

αiνiOie1 − B1u

�
� τdist

(B28)

where the torque applied to the spacecraft by the disturbances is given

by

τdist ≜ M
⇀

distjB (B29)

Rearranging Eq. (B28) yields the dynamics for a spacecraft

actuated by n angular-velocity-requested single-gimbal constant-

angular-rate CMGs subject to external torque disturbances; that is,
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J _ωB � ωB ×
�
JωB �

Xn
i�1

αiνiOie1

�
� τCMG � τdist (B30)

where the torque τCMG applied to the spacecraft by theCMGs is given
by

τCMG ≜ BCMGu� B1 _u (B31)

where

BCMG ≜ ω×
BB1 − B2 ∈ R3×n (B32)

If the wheel angular rate νi is much larger than the maximum
component of the bus angular velocity (that is,
jνij ≫ jmaxfω1;ω2;ω3gj), then it follows from Eqs. (B19), (B24),
and (B32) that

BCMG;i ≈ αiνiOie3 (B33)

which is not necessarily constant due to Oi. The simplified matrix
[Eq. (B33)] is the Jacobian used in Refs. [5,13] to formulate torque-
steering laws and analyze gimbal singularities.

C. Time Dependence of J and BCMG

The rotation rate of the gimbals due to the requested gimbal rates u
changes the gimbal configuration, and thus the inertia of the
spacecraft. Therefore, J may be time varying. Using Eqs. (B17) and
(B26), the spacecraft inertia is expressed as

J � JB �
Xn
i�1

�OiJiOT
i −mir

×2
i � (C1)

where Assumption 1 implies that JB and Ji are constant. Therefore,

_J �
Xn
i�1

_OiJiOT
i �OiJi _O

T
i �

Xn
i�1

uiOi�e×2 Ji − Jie
×
2 �OT

i (C2)

The control input matrix BCMG defined by Eq. (B32) has a similar
dependence on u. Using Eqs. (B21) and (B30) to rewrite the
derivative of Eq. (B32) yields

_BCMG � _ω×
BB1 − _B2 (C3)

Solving Eq. (B30) for _ωB yields

_ωB � J−1
�
−ω×

B

�
JωB �

Xn
i�1

αiνiOie1

�
� BCMGu� B1 _u� τdist

�
(C4)

Note that the term _ω×
BB1 in Eq. (C3) depends on u and τdist due to

Eq. (C4). The derivative of the ith column B2i of B2, defined by
Eq. (B24), is given by

_B2i � uiOi�e×2 �e×2 Ji − Jie
×
2 � − �e×2 Ji − Jie

×
2 �e×2 �OT

i ωB

�Oi�e×2 Ji − Jie
×
2 �OT

i _ωB − αiνiOiuie1 (C5)

Therefore, the term _B2 in Eq. (C3) depends on u directly as well as
indirectly through its dependence on _ωB given by Eq. (C4).
Furthermore, Eq. (C5) also depends on τdist due to Eq. (C4). Hence,
both terms in Eq. (C3) depend on the control input u and the external
torque τdist. Consequently, BCMG may be time varying.
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