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SUMMARY

In a companion paper ('Explicit construction of quadratic Lyapunov functions for the small gain,
positivity, circle, and Popov theorems and their application to robust stability. Part I: Continuous-time
theory'), Lyapunov functions were constructed in a unified framework to prove sufficiency in the small
gain, positivity, circle, and Popov theorems. In this Part II, analogous results are developed for the
discrete-time case. As in the continuous-time case, each result is based upon a suitable Riccati-like matrix
equation that is used to explicitly construct a Lyapunov function that guarantees asymptotic stability
of the feedback interconnection of a linear time-invariant system and a memoryless nonlinearity.
Multivariable versions of the discrete-time circle and Popov criteria are obtained as extensions of known
results. Each result is specialized to the linear uncertainty case and connections with robust stability for
state-space systems is explored.
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I. INTRODUCTION

In a companion paper1 Lyapunov functions were constructed in a unified framework to prove
sufficiency in the small gain, positivity, circle, and Popov theorems. In this Part II, analogous
results are developed for the discrete-time case. As in the continuous-time case, each result is
based upon a suitable Riccati-like matrix equation that is used to explicitly construct a
Lyapunov function that guarantees asymptotic stability of the feedback interconnection of a
linear time-invariant system and a memoryless nonlinearity. Multivariable versions of the
discrete-time circle and Popov criteria are obtained as extensions of known results.
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As discussed in Reference I, there are several reasons for seeking explicit Lyapunov function
constructions of these classical results. Specifically, these constructions clarify the unity of
these results while strengthening ties between the time and frequency domains for both robust
analysis and synthesis. By carrying out analogous discrete-time constructions, our intention in
this Part II paper is to provide similar benefits for discrete-time systems. Specifically, our aim
is to provide connections between these classical results and robust stability and performance
analysis for discrete-time state-space systems via quadratic fixed and parameter-dependent
Lyapunov bounds. For the linear uncertainty case, we give explicit characterization of the
uncertainty model and provide bounds based on single Riccati equations that can effectively
be used for robust discrete-time controller synthesis. Finally, it should be noted as in the
continuous-time case, the stability results of the present paper could be derived as special cases
of discrete-time passivity and non-expansivity theory.

2. PRELIMINARIES

In this section we establish definitions and notation. Let iRand C denote the real and complex
numbers, let INdenote (1,2,3, ...1, let ( )Tdenote transpose, and let I denote the n x n identity
matrix. Furthermore, we write 11'112for Euclidean norm, O"max(') for the maximum singular
value, and M ~ ° (M> 0) to denote the fact that the Hermitian matrix M is nonnegative
(positive) definite. In this paper a real-rational matrix function is a matrix whose elements are
rational functions with real coefficients. Furthermore, a transfer function is a real-rational
matrix function each of whose elements is proper, i.e., finite at z = 00. A strictly proper
transfer function is a transfer function that is zero at infinity. Finally, an asymptotically stable
transfer function is a transfer function each of whose poles is in the open unit disk. Let

O(z)- [~]
denote a state-space realization of a transfer function 0 (z), that is, 0 (z) = C(zI - A) - 1B + D.
The notation ,~D, is used to denote a minimal realization.

A transfer function O(z) is bounded reap.3 if (I) O(z) is asymptotically stable and (2)
1- O*(z)O(z) is nonnegative definite for Iz I> 1. Alternatively, a transfer function O(z) is
bounded real if and only if O(z) is asymptotically stable and II O(z) 1100 ~ I, where
II O(z) 1100 ~ SUPBE[O,2rIO"max[O(ej6)]. Furthermore, O(z) is called strictly bounded real3 if (1)
G(z) is asymptotically stable and (2) [- 0*(ej6)0(ej6) is positive definite for all (}E [0,211'].
Finally, O(z) is strongly bounded real if it is strictly bounded real and 1- DTD > 0, where
D~ 0(00).

A square transfer function O(z) is called positive real if4 -6 (I) all poles of O(z) are in the
closed unit disk, and (2) O(z) + 0 *(z) is nonnegative definite for Iz I > I. A square transfer
function O(z) is called strictly positive real if6 (1) O(z) is asymptotically stable and (2)
0(ej6) + O*(ejB) is positive definite for all 8E [0,211"].Finally, a square transfer function O(z)
is strongly positive real if it is strictly positive real and D + DT > 0, where D ~ 0(00).

Finally, in this paper G denotes an I x m transfer function with input u EfRm,output y E fRl,
and internal state x EfRn.

3. THE SMALL GAIN THEOREM

In this section we construct quadratic Lyapunov functions to prove sufficiency in the small gain
theorem for the interconnection of a dynamic system and a norm-bounded memoryless time-
varying nonlinearity. First, however, we present the discrete-time bounded real lemma. 2
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Lemma 3.1 (Discrete-time bounded real lemma)

G(z) ~n [$]
is bounded real if and only if there exist real matrices P, L, and W with P positive definite
such that

P= ATpA + CTC+LTL,

O=BTpA+DTC+ WTL,

0= /-DTD-BTpB- WTW.

(1)

(2)

(3)

Proof. Sufficiency follows from algebraic manipulation of (1)-(3) while necessity follows
from discrete-time spectral factorization theory. 7 Alternatively, the proof also follows from
the continuous-time bounded real lemma I using the bilinear transformation s = (z - 1)/ (z + 1)
which transforms G(z) (for the case in which G(z) is analytic at z = -1) into

G( )=G (
I+S

)_
[

(l+A)-I(A-l) .J2(l+A)-IB

]c S 1- S 2 C(/+A)-I D- C(l+A)-IB .
Specifically, Gc(s) defines a minimal realization and is bounded real if and only if G(z) is
bounded real. The case in which G(z) has a simple pole at z = -1 can be treated by an
expansion of G(z) that separates out this pole. For details of a similar proof see Reference 4.

Next, suppose / - DTD - BTPB > 0, where P satisfies (1)-(3). Then, since 0

WTW=/-DTD-BTpB, (4)

it follows that WTW is nonsingular. Furthermore, (2) is equivalent to

WTL = - (BTPA + DTC). (5)

W( WT W)-I WT is an orthogonal projection as in Reference I, itUsing (5) and noting that
follows from (1) that

P ~ AT PA + (BTpA +DTC)T(WTW)-I(BT PA +DTC) + CTC,

or, since (WTW)-I = (l -DTD - BTPB)-I,

P~ATpA + (BTpA +DTC)T(l-DTD-BTpB)-I(BTpA +DTC) + CTC.

(6)

(7)

Thus, in this case (1)-(3) are equivalent to the single Riccati inequality (7). The following result
characterizes the bounded real property in terms of a single Riccati equation.

Lemma 3.2

Let

G(z)"!!n[$]-
Then the following statements are equivalent:

(i) A is asymptotically stable and G(z) is strictly bounded real;
(ii) there exist positive-definite matrices P and R such that

/-DTD-BTpB> 0, (8)

P=AT PA + (BTPA +DTC)T(l-DTD- BTpB)-I(BT PA +DTC) + CTC+ R. (9)
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Proof. The proof is similar to the proof of Lemma 3.2 for the continuous-time case of
Reference 1. Alternatively, the result also follows from the results of Reference 8. 0

Now we prove sufficiency of the small gain theorem for the feedback interconnection of a
bounded real transfer function and a norm-bounded time-varying nonlinearity. For
convenience define the set

Theorem 3.1

Suppose

G(z) ~n [mJ
is strictly bounded real. Then there exist positive-definite matrices P and R satisfying

I-DTD-BTpB>O, (10)

P=ATpA + (BTpA +DTC)T(I -DTD- BTPB)-I(BTpA +DTC) + CTC+ R. (11)

Furthermore, for all q, E ~bh the function Vex) =xTPx is a Lyapunov function for the
feedback interconnection of G(z) and q,. Consequently, the feedback interconnection of G(z)
and q, is asymptotically stable for all q, E ~br'

Proof. First note that the feedback interconnection of G(z) and q,(', .) corresponds to the
state space representation

x(k + 1)= Ax(k) + Bq,(y(k), k),

y(k) = Cx(k) + Dq,(y(k), k).

(12)

(13)

Since G(z) is strictly bounded real it follows from Lemma 3.2 that there exist positive-definite
matrices P and R such that (10) and (11) are satisfied. Next, we use the Lyapunov candidate
Vex) =xTPx to show that the feedback interconnection (12), (13) is asymptotically stable. The
corresponding Lyapunov difference9 is given by

.:lVex) =xT (k + I)Px(k + 1) - xT (k)Px(k)

=(Ax+ Bq,lp(Ax+ Bq,) _xT Px

=xT(AT PA - P)x+ q,TBTPAx+xT AT PBrj>+ rj>TBTPBq" (14)

or, equivalently, using (11)

.:lV(x)= -xTRx-xT(BTpA +DTC)T(I-DTD-BTpB)-I(BTpA +DTC)x

- XTCTCX+ q,TBTPAx + xTAT PBq, + q,TBTPBq,. (15)

Next, add and subtract q,Tq" 2XTCTDrj>,and rj>TDTDq,to and from (15) so that

.:lVex) = _xT Rx- xT(BT PA + DTC)T(I - DTD- BTPB)-I(BT PA + DTC)x

_XTCTCX + q,TBTPAx + xT AT PBq, + q,TBTPBq, + q,Tq,_ q, Tq,

+ XTCTDq,+ q,TDTCx- XTCTDq,- q,TDTCx+ q,TDTDq,- q,TDTDq, (16)

or, equivalently,

.:lVex) = -xTRx_xT(BT PA +DTC)T(I - DTD_BT PB)(BTpA +DTC)x

+ xT (BTPA + DTC)Tq,+ q,T(BTPA + DTC)x _ q,T(I - DTD - BT PB)q,

+ q,Tq,_XTCTCX- q,TDTDrj>_ XTCTDq, _ q,TDTCx. (17)
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Grouping the appropriate terms in (17) yields

~V(x)= _xTRx_ZTZ+q,Tq,_yTy, (18)

where

z ~ (J - DID - BTPB)-II2(BT PA + DfC)x- (J - DTD - BT PB)II2q,.

Since R is positivedefiniteand q,Tq, - YTY ~ 0 for all q,E4>broit follows that ~ V(x) is negative
definite. Hence V(x) is a Lyapunov function for the feedback interconnection of G(z) and q,.

o

Next, we specialize Theorem 3.1 to the feedback interconnection of a strongly bounded real
transfer function and a linear bounded real gain. Hence consider the set 5=brdefined by

5=br~ IF: IN -+ IRmx/: CImax(F(k» ~ 1, kE IN J.

That is, 5=brincludes those q, in 4>brof the form q,(y,k) = F(k)y. The following corollary of
Theorem 3.1 is thus immediate.

Corollary 3.1

If

G(z) ~n [mJ
is strongly bounded real, then the feedback interconnection of G(z) and F(' ) is asymptotically
stable for all F(' ) E5=br.

Corollary 3.1 implies that A + BF( . )(J - DF( .»- IC is asymptotically stable in the sense
that the zero solution of the discrete-time time-varying system

x(k + 1)= (A + BF(k)(I - DF(k»-IC)X(k) (19)

is asymptotically stable. Recall from Lemma 2.1 of Reference 1 that (J - DF(k» -I exists for
all kE INsince CImax(D)< 1and CImax(F(k»~ 1,kE IN.This result thus impliesrobust stability
with time-varying bounded real (but otherwise unknown) uncertainty. This can be seen by
simply considering the system

x(k + 1) = (A + ~ A (k»x(k),

where ~A ( . ) E CUbrand CUbris the uncertainty set

CUbr~ I~A('): ~A(k)=BF(k)(J-DF(k»-IC, kEIN, where F(')E.<jij,rJ.

Then it follows from Corollary 3.1 and (19) that the zero solution to (20) is asymptotically
stable for all ~A ECUbr.If we restrict our attention to constant matrices F, then Corollary 3.1
implies that if G(z) is strongly bounded real, then A + BF(J - DF) -IC is asymptotically stable
for all F satisfying CImax(F)~ 1. This case was treated in Reference 10 for robust controller
analysis and synthesis with D = 0 in CUbr.

(20)

4. THE POSITIVITY THEOREM

In this section we construct quadratic Lyapunov functions to prove the positivity theorem for
the system interconnection considered in Section 3. Furthermore, we specialize the results to
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the case of linear uncertainty and draw connections with robust stability for positive real
uncertainty.

Lemma 4.1 (Discrete-time positive real lemmal.6

G(z) ~n [mJ
is positive real if and only there exist real matrices P, L, and W with P positive definite such
that

P= ATpA +LTL,

0= BTpA - C+ WTL,

O=V+VT -BTpB- WTW.

(21)

(22)

(23)

Proof. Sufficiency follows from algebraic manipulation of (21)-(23) while necessity follows
from discrete spectral factorization theory. Alternatively, the proof also follows from the
continuous-time positive real lemma I using the bilinear transformation s = (z - 1)/ (z + 1). For
details see Reference 4. 0

Suppose that D + VT - BT PB > 0 where P satisfies (21)-(23). Then, since

WTW=V+VT _BTpB, (24)

it follows that WTW is nonsingular, and (22) implies

WTL = _(BT PA - C). (25)

Using (25) and noting as in Reference 1 that LTL ~ LTW(WTW)-IWTL, it follows from
(21) that

P ~ AT PA + (BTPA - C)T(WTW)-I(BT PA - C),

or, since (WTW)-I = (D + VT- BTPB)-I,

P ~ATpA + (BTpA - Cl(D+DT _BTpB)-I(BT PA - C).

(26)

(27)

Using the Riccati inequality version of (27) to characterize positive realness, we have the
following result.

Lemma 4.2

Let

G(z) ~n [ml
Then the following statements are equivalent:

(i) A is asymptotically stable and G(z) is strongly positive real;
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(ii) there exist positive-definite matrices P and R such that

D+DT -BTpB>O, (28)

P= ATpA + (BT PA - C)T(D+ DT - BT PB)-I(BT PA - C) + R. (29)

Proof. The proof is similar to the proof of Lemma 4.2 for the continuous-time case of
Reference 1. 0

We now prove the positivity theorem for the negative feedback interconnection given a
strongly positive real transfer function and a memoryless time-varying nonlinearity. For the
statement of the next result we define the set

cl>pr~14>:IRmxlN->lRm: 4>T(y,k)y~O, yElRm, kEIN).

Theorem 4.1

Suppose

G(z) ~n [~]
is strongly positive real. Then there exist positive-definite matrices P and R satisfying

D+DT - BT PB > 0, (30)

P=AT PA + (BTPA - Cl(D+ DT - BT PB)-l(BT PA - C) + R. (31)

Furthermore, for all 4> Ecl>pr,the function Vex) = xTPx is a Lyapunovfunction for the negative
feedback interconnection of G(z) and 4>. Consequently, the negative feedback interconnection
of G(z) and 4> is asymptotically stable for all 4> E cl>pr.

Proof. First note that the negative feedback interconnection of G(z) and 4>(', .) has the
state-space representation

x(k + 1)= Ax(k) - B4>(y(k), k),

y(k) = Cx(k) - D4>(y(k), k).

(32)

(33)

Since G(z) is strongly positive real it follows from Lemma 4.2 that there exist positive-definite
matrices P and R such that (30) and (31) are satisfied. Next, we use the Lyapunov candidate
Vex) =x TPx to show that the negative feedback interconnection (32), (33) is asymptotically
stable. The corresponding Lyapunov difference is given by

LlVex) =xT (A TpA - P)x - xT AT PB4>- 4>TBT PAx + 4>TBTPB4>, (34)

or, equivalently, using (31)

LlVex) = -xTRx-xT(BT PA - Cl(D+ DT - BTPB)-l(BT PA - C)x

_xTAT PB4>- 4>TBTPAx + 4>TBTPB4>. (35)

Now add and subtract 24>TCx and 24>TD4>to and from (35) so that

LlVex) = _xT Rx-xT(BT PA - C)T(D+ DT - BTPB)-l(BT PA - C)x
- xTATPB4>- 4>TBTPAx + 4>TBTPB4>+ 4>TCx+xTCT4> (36)
- 4>TCX - xTCT4> + 4>TD4>+ 4>TDT4>- 4>TD4> - 4>TDT4>
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or, equivalently,

.1 V(x) = - xTRx- xT(BTPA - C)T(D+ DT - BTPB)- I(BTPA - C)x- xT(BTPA - C)Ttj>
_IjJT(BTPA - C)x- tj>T(D+ DT - BTPB)1jJ- 2tj>T(CX-DIjJ). (37)

Grouping the appropriate terms in (37) yields

.1V(x) = -xTRx-zTz-2tj>Ty,
where

z ~ - (D + DT - BT PB) -1/2(BT PA - C)x - (D + DT - BT PB)1I2tj>.

Since R is positivedefiniteand tj>T (y, k)y ~ 0 for all tj>E4>Phit follows that .1V(x) is negative
definite. Hence V(x) is a Lyapunov function for the feedback interconnection of G(z) and tj>.

o

Next, we specialize Theorem 4.1 to the feedback interconnection of a strongly positive real
transfer function and a linear gain F(k) satisfying F(k) + FT(k) ~ 0, k EIN. Hence define

5'pr~ (F: IN-+ fRmxm:F(k) + FT(k) ~ 0, k EIN).

Corollary 4.1

If

G(z) ~n [~]
is strongly positive real, then the negative feedback interconnection of G(z) and F(') is
asymptotically stable for all F(' ) E5'pr.

As in the bounded real case, Corollary 4.1 guarantees robust stability for the system

x(k + 1)= (A + .1A (k»x(k),

where .1A ( .) E'Upr and 'Upr is the uncertainty set characterized by

'Upr~ (.1A(. ): .1A(k) = - BF(k)(I + DF(k»-IC, k EIN, where F(' ) E5'pr).

Recall from Lemma 2.2 of Reference 1 that (l + DF(k»-1 exists, k EIN,since D + DT > 0 and
F(k) + FT(k) ~ 0, k EIN. Finally, if we further restrict our attention to constant matrices F,
then Corollary 4.1 implies that if G(z) is strongly positive real, then A - BF(l + DF) -IC is
asymptotically stable for all F satisfying F + FT ~ O.

5. THE CIRCLE CRITERION

In this section we construct quadratic Lyapunov functions to prove a multivariable
generalization of the discrete-time circle criterion. 11-14As in the continuous-time case most
of the available results on the discrete-time circle criterion are confined to scalar strictly proper
systems with a single-loop nonlinearity. Furthermore, most of the available proofs of the
discrete-time circle criterion are based upon input-output properties and function-analytic
methods 13or graphical techniques. 11,12,14A notable exception is Reference IS which provides
gain and phase margins for strictly proper discrete-time systems using quadratic Lyapunov
functions. However, the nonlinearities considered in Reference 15 are confined to scalar sector
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boundaries k.. k2. We remove these limitations and address the multivariable case for proper
systems. Application of this result to robust stability with respect to sector-bounded time-
varying uncertainty is also discussed. To begin, we define the set cl>cof sector-bounded time-
varying memoryless nonlinearities. Let KI, K2EIRmx/be given matrices and define

cl>c~ let>:lR/xN-+lRm: [et>(y,k)-KIy]T[et>(y,k)-K2Y] ";;0, YElRm, kEN).

Theorem 5. J

Suppose [I + K2G(z)] [/ + KIG(z)] -I is strongly positive real, where

G(z) ~n [ml
Then there exist positive-definite matrices P and R satisfying

2/ + (K2 - KdU + DK1)-ID+ DT(/ + DKd-T(K2 - KdT

- (/ + KID)-TBT PB(/ + KID)-I > 0, (38)

P= [A -B(/+KID)-IK1C]Tp[A -B(/+KID)-IKIC]

+ [(K2- KI)(/ + DK1)-IC - (/ + KID)-TBT P(A - B(/ + KID)-IKIC)]T

x [2/ + (K2 - KI)(/ +DK1)-ID + DT(/ + DKI)-T(K2 - KI?

- (/ + KID)-TBT PB(/ +KID)-I]-I

x [(K2-KI)(/+DKd-1C-(/+KID)-TBTp(A -B(/+KID)-IKIC] + R. (39)

Furthermore, for all et> Ecl>c,the function V(x) = xTPx is a Lyapunov function for the negative
feedback interconnection of G(z) and et>. Consequently, the negative feedback interconnection
of G(z) and et> is asymptotically stable for all et> E cl>c.

Proof. First note that the negative feedback interconnection of G(z) and et>(.,.) has the
state-space representation (32) and (33). Furthermore (see Reference I), [/ + K2G(Z)]
[l + KI G(z)] -I has a minimal realization given by

[

A -B(/+KID)-IKIC B(/+KID)-I
]

I I .
(K2-Kd(/+DKd- C /+(K2-Kd(/+DKd D

Now it follows from Lemma 4.2 that since [/ + K2G(Z)] [/ + KIG(z)] -I is strongly positive real
there exist positive-definite matrices P and R such that (38) and (39) are satisfied. Next define
the Lyapunov candidate V(x) = xT Px and let et> E cl>c. Then we obtain

d V(x) =xT(A TPA - P)x- xTAT PBet>- et>TBTPAx + et>TBTPBet>, (40)

or, equivalently, using (38)

d V(x) = - xT Rx-xTQx-XTCTKf(/ + KID)-TBT PB(/ +KID)-IKICx

+XTCTKf(/ + KID)-TBT PAx+xT AT PB(/ + KID)-IK1Cx

-et>TBTpAx-xTATpBet>+ et>TBTpBet>, (41)
where

Q ~ [(K2- KI)(/ + DKs) - IC - (/ + KID) - TBTP(A - B(/ + KID) - IKIC)] T

x [2/ + (K2-KI)(/+ DKd-ID + DT(/ +DKd-T(K2 - KdT
- (/ + KID)-TBT PBU + KID)- 1]-1

x [(K2- KI)(/ + DKd-1C- (/ + KID)-TBTp(A - B(/ + KID)-IKIC)].
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Next, add and subtract

2[(/ + K,D)4>- K,CX]T[(/ + K,D)4>- K,Cx] ,

2[(/ + K,D)4>- K,CX]T(K2 - Kd(/ + DK,)-'Cx,

2[(/ + K,D)4>- K,CX]T(K2 - Kd(/ + DKd-'D[(/ + K,D)4>- K,Cx] ,

2[(1 + K,D)4>- K,Cx]T(1 + K,D)-TBT PB(I + K.D)-'K,Cx

to and from (41) so that (after some algebraic manipulation)

A Vex) = _xT Rx-xTQx+ [(K2- KdU + DKd-'C

- (/ + K,D)-TBT peA - B(/ + K,D)-'K,C)]T[(/ + K,D)q, - K,Cx]
+ [(/ + K,D)4>- K,CX]T(K2- Kd(/ + DKd - 'c
- (/ +KDd-TBT peA -B(/ +K,D)-'K,C)]
_ [(/ + K,D)q, - K,CX]T[2/ + (K2+ Kd(l + DKd - 'D +DT(/ + DKd -T(K2- KdT
- (l + K,D)-TBT PB(l + K,D)-'] [(/ + K.D)q, - K,Cx]
+ 2[(l + K,D)4>- K,Cx]T[(/ + KlD)4>- K,Cx]. (42)

Grouping the appropriate terms in (42)yields

AVex) = - xTRx- ZTZ+ 2(q,- K,y)T (rP- K2Y), (43)

where

z ~ [2/ + (K2 - Kd(l +DKd-'D+ DT(l +DKd-T(K2 -KdT

-(l+K,D)-TBTpB(/+K,D)-'] -'/2

x [(K2- Kd(/ +DKd-'C- (l +K,D)-TBT peA - B(l + K,D)-'K,C]x

- [2/+ (K2 -Kd(l + DKd-'D+ DT(l + DKd-T(Kz - KdT

- (l +K,D)-TBT PB(l + K,D-'] ,/2 [ (l + K,D)4>- K,Cx].

Since R is positivedefiniteand (rP- K,y)T (rP- K2Y) ~ 0 for all rPE~c, it followsthat AVex)
is negative definite. Hence Vex) is a Lyapunov function for the negative feedback
interconnection of G(z) and rP. 0

Remark 5.1

As in the continuous-time case,' considerable simplification can be achieved in (39) by
setting D =0 which corresponds to a strictly proper G(z). In this case, (39) becomes

P = (A - BK,C)T peA - BK,C) + [(Kz- KdC - BTpeA - BK,C)] T(2/- BTPB)-'

x [(Kz- K,)C - BTpeA - BK,C)] + R (44)

or, equivalently, using the matrix inversion lemma and grouping terms,

P=AT PA + [(K, + Kz)C- BTPA]T(2/- BTPB)-. [(K1 + Kz)C- BTPAl

- CT(KIK. +K!Kz)C+ R. (45)

As in Reference 1, note that if KIK, + K(Kz ~ 0, then it follows from (45) that a necessary
condition for absolute stability of the negative feedback interconnection of G(z) and rPis that
A be Hurwitz.

Next, as in Sections 3 and 4, we specialize the results of Theorem 5.1 to robust stability of
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a linear time-invariant plant with a linear time-varying uncertainty. First, define

:re ~ (F: IN_lRmx/: [F(k) - Kd T[F(k) - K2] ~ 0, kE IN}

and consider the system
x(k + 1)= (A + dA(k»x(k), (46)

where dA ( . ) E'lie and the uncertainty set 'lie is defined by

'lie ~ (dA (.): dA (k) = - BF(k)(/ + DF(k»-IC, k EIN, where F(' ) E:rei.

Then it follows from Theorem 5.1, with rI>(Y,k) = F(k)y = F(k)y = F(k)(I + DF(k»-ICX,
that the zero solution to (46) is asymptoticallystable for all dA (. ) E'lie. Finally, as in the
continuous-time case 1. if Kl = - I and K2 = I, then 'lie = 'lib" while if (formally) Kl =0 and
K2 = 00, then 'lie = 'libr.

6. THE POPOV CRITERION

Ever since Popov derived a frequency-domain condition for the absolute stability of
continuous-time nonlinear feedback systems, 1 considerable work has been done to derive
similar criteria for discrete-time systems.16-30 Unlike the continuous-time case, several
different criteria have been proposed for the absolute stability of nonlinear discrete-time
systems. Specifically, Tsypkin21 has given conditions that involve slope-restricted monotonic
functions in the nonlinear element. Significant contributions were also made by Szego,22.23
Jury and Lee24.25and Pearson and Gibson26 who derived less conservative criteria for the case
of slope-bounded nonlinearities. Some extensions to monotonic, odd monotonic, and time-
varying gain functions in the feedback path using passive operator techniques have also been
considered.27 However, the results cited above are confined to scalar, SISO systems with a
single loop nonlinearity. In this section we construct Lyapunov functions to prove the discrete-
time Popov criterion as developed in References 22-24 for a multivariable plant containing an
arbitrary number of memoryless time-invarant nonlinearities. Specialization of this result to
robust stability with respect to time-invariant plant uncertainty is also considered. To begin we
define the set <Ppcharacterizing a class of sector-bounded slope-restricted time-invariant
memoryless nonlinearities. Let KE IRmxmbe a given positive-definite matrix, let JLI,...,JLmbe
positive numbers, and define

<Pp~ IrI>:IRm_lRm: rl>T(y)[K-1rI>(y)-y] ~O, YElRm,

rI>(Y)= [rI>l(YI),rl>2(Y2), rI>m(Ym)]Tand O<rI>;(y)-~;(J) <JL;, Y. yEIR, i= l ,m}.
y-y

For convenience in stating the main result we define JL~ diag [JLl,JL2, JLm].

Theorem 6.1

Suppose there exists a nonnegative-definite diagonal matrix N such that
K-1 + [I + (z - I)N] G(z) - i Iz - 112G*(z)p.NG(z) is strongly positive real, where

G(z)~n[~l
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Then there exist positive-definite matrices P and R satisfying

K-1 + NCB + (K-1 + NCB)T - BTCT/lNCB - BT PB > 0, (47)

P=AT PA + (A - I)TCT/lNC(A -l) + (C+BTCT/lNC+NCA - BTC/lNCA -NC-BTpAl

x [(K-1 + NCB) + (K-1 + NCB)T - BTCT/lNCB- BT PB] -I

x (C + BTCT/lNC + NCA - BCT/lNCA - NC - BT PA) + R. (48)

Furthermore, for all cpEcl>p,the function

m rY;(k)
V(X)=xTpx+2;~ Jo cp;(u)N;du

(49)

is a Lyapunov function for the negative feedback interconnection of G(z) and cpo

Consequently, the negative feedback interconnection of G(z) and cP is asymptotically stable for
all cpE cl>p.

Proof. First note that the negative feedback interconnection of G(z) and cp(. ) has the state-
space representation

x(k + I) =Ax(k) - Bcp(y(k»,

y(k) = Cx(k).

(50)

(51)

Next, since (z - I)G(z) has a minimal realization

(z-I)G(z) ~n [C(A~ l) ~].

it follows from Lemma 4.1 and Lemma 4.2 that if K-1 + [I + (z - I)N]
G(z) -ll z - 112G*(z)/lNG(z) is strongly positive real, then there exist P, L, W with P
positive definite and WTW> 0 satisfying

P=ATpA +LTL + (A _l)TCT/lNC(A -I), (52)

0= BTPA - C+ BTCT/lNCA - BTCT/lNC-NCA + NC+ WTL, (53)

0= (K-1 + NCB) + (K-1 + NCB)T - BTCT/lNCB - BT PB - WTw. (54)

Next, with WTW > 0, it follows that the three equations (52)-(54) collapse to (48). Hence,
since K-1 + [I + (z - I)N] G(z) -ll z - 112G*(z)p.NG(z) is strongly positive real, there exist
positive-definite matrices P and R such that (47) and (48) are satisfied. Next, for cpEcl>pdefine
the Lyapunov candidate

m rYi(k)

V(x) =xTPx + 2;~ J0 cp;(u)N; du.

Note that, since P is positive definite and cpEcl>p,V(x) is positive for all nonzero X. Then, the
corresponding Lyapunov difference is given by

Next, using the fact that

O~ cp(y) - cp(Y) ~ .;;:: ... """,Ph
y-y
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it follows from the mean value theorem that the last term in (55) is bounded from above by

m ,Yolk + I) m

2 ;~I JY,lk) cp;(u)N; du~ ;~I

X (2cp;(y;(k»N;[y;(k + 1) - y;(k)J + IL;N;[y;(k + I) - y;(k)]2)

or, equivalently,
m

1

Yo(k + I)

2 .~ cp;(u)N; du ~ 2cpT(y(k»N[y(k + I) - y(k)]
,~I Y,lk)

+ [y(k+ 1)-y(k)]TILN[y(k+ I)-y(k)].

Next, since y(k + I) = Cx(k + I) = CAx(k) - CBcp(y(k» and y(k + I) - y(k) = C(A -l)x(k)

- CBcp(y(k», using (48), (55) becomes

.:1V(x) ~ -xTRx-xT(A _l)TCTILNC(A -l)x-xTQx

+ cpTNC(A -l)x+x(A - l)TCT Ncp- cpTNCBcp- cpTBTCTNcp

+xT(A _l)TCTILNC(A -l)x-xT(A -l)TCILNCBcp

- cpTBTILNC(A - l)x + cpTBTCTILNCBcp- xTA TpBcp

- cpTBTpAx+cpTBTpBcp, (56)

where

Q~ (C+ BTCTILNC+NCA -BTCT~CA -NC- BTpA)T

x [(K-1 + NCB) + (K-1 + NCB)T - BTCTILNCB- BT PB] -I

X (C+ BTCTILNC+ NCA - BTCTILNCA - NC- BTPA).

Adding and subtracting 2cpTCx and 2cpTK -Icp to and from (56) yields

AV(x) ~ -xTRx-xTQx+cpT[C+ BTCTILNC(l-A) + NC(A -l)-BTpA]x

+xT[C+ BTCTILNC(I - A) + NC(A - l) - BT PA] Tcp

- cpT[(K-1 + NBC) + (K-1 + NCB)T - BTCT~CB- BTPB]cp

+2cpT[K-1cp-Cx] (57)

or, equivalently,

(58)

where

z ~ [(K-1 + NCB) + (K-1 + NCB)T - BTCTILNCB - BT PB] -1/2

x(C+BTCTILNC(l-A)+NC(A-l)-BTpA)x

- [(K-1 + NCB) + (K-1 + NCB)T - BTCTILNCB- BTPB] 1/2cp.

Since R is positive definite and cpT[K-1cp- y] ~ 0, it follows that .:1V(x) is negative definite.
Hence V(x) is a Lyapunov function for the negative feedback interconnection of G(z) and cpo

o

Remark 6.1

Theorem 6.1 presents a generalization of the discrete-time Popov criterion 22-24 to the case
of a multivariable plant containing an arbitrary number of memoryless time-invariant
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nonlinearities. It should also be noted that a similar proof using (52)-(54) rather than (48) can
also be constructed. In this case the condition K-1 + [I + (z - I)N] G(z) - !Iz - 112G*(z)pNG(z)
can be relaxed from strongly positive real to positive real. However, we present the form of
(48) since it provides an algebraic formulation in terms of a matrix Riccati equation which can
be used to synthesize robust feedback controllers in the spirit of References 31 and 32.

Now we specialize the results of Theorem 6.1 to linear parameter uncertainty, in which case
V(x) becomes quadratic. Define the set

5'p ~ (FE (Rmxm: F= diag[FI, ..., Fm], 0 ~ F; ~ /L;, i = I, ..., ml

of constant diagonal matrices F where /LI,..., /Lmare positive constants. Next consider the
system

x(k + I) = (A + .:lA )x(k),

where the constant matrix .:lA satisfies .:lA E'Up, where

5'P~ (.:lA: .:lA= -BFC, where FE5'pl.

It now follows from Theorem 6.1 by setting <p(y)=Fy =FCx that A +.:lA is asymptotically
stable for all .:lA E'UP.

As in the continuous-time case, 1 the results of this section differ from the previous sections
in that the elements of the set 'Up are constant rather than time-varying. Once again this is due
to the form of the Lyapunov function that establishes robust stability, i.e.,

m

1

Yi(k)

V(x) =xTPx + 2 ~ F;a da, y; = C;x,
;;( 0

or, equivalently,

V(x) = xTPx + XTCTFCx.

This quadratic Lyapunov function is parameter-dependent. 31,32The form of V(x) is critical
since the presence of F restricts the allowable time-varying uncertain parameters thus reducing
conservatism for the real-parameter uncertainty problem, 33

7. CONCLUSION

In this two-part paper we constructed Lyapunov functions for the small gain, positivity, circle,
and Popov theorems for both continuous-time and discrete-time settings for interconnections
involving a linear time-invariant transfer function and a memory less nonlinearity. Each result
was then specialized to the problem of robust stability involving linear uncertainty. As in the
continuous-time case, it can be shown that the results of this paper also apply to the problem
of robust H2 performance. To see this, consider the discrete-time asymptotically stable
nominal linear system

x(k + I) =Ax(k) (59)

with quadratic Lyapunov function

V(x) =xTPx,

where the positive-definite matrix P is given by

P=ATpA + R,

(60)

(61)
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where R is positive definite. Next, to address additive disturbances for a system of the form

x(k + I) =Ax(k) + w(k), (62)

consider the dual equation
Q=AQAT + V, (63)

where V is interpreted as the covariance of the disturbance w(. ). As in the continuous-time
case, the matrix Q can be viewed as a discrete-time controllability Gramian or covariance
matrix with associated quadratic H2 performance measure J =tr QR =tr PV.

Now suppose A is uncertain so that

x(k + I) = (A + ~A)x(k), ~A E'U,

where 'U is a set of perturbations. To determine whether A + ~A remains stable, we replace
(61) by

(64)

where 0(. ) satisfies

ATP~A + ~AT PA + ~AT P~A :;;;O(P), ~A E'U, (65)

and for all positive-definite P. Rewriting (65) as

P= (A + ~A)Tp(A + ~A) + O(P) - (AT P~A + ~AT PA + ~ATp~A) + R (66)

shows that A + ~A is stable and

Pt>A:;;;P, ~A E 'U, (67)

where Pt>Asatisfies

(68)

Thus, as in the continuous-time O-bound framework, 1 tr PV provides a worst case bound for
the actual H2 performance tr Pt.AV.

Although the O-bound framework discussed above applies to problems in which A is
perturbed by an uncertainty ~A, a reinterpretation of this framework yields the well-known
system-theoretic criteria discussed in this paper. Specifically, assuming ~A to be of the form,

~A = BFC, umax(F) :;;;I, (69)

where F is an uncertain real matrix and Band C are known matrices denoting the structure
of the uncertainty, it follows from Corollary 3.1 that

O(P)=CTC+ATpB(l-BTpB)-IBTpA (70)

satisfies (65) with 'U ='Ubr (for the case D =0). Similar constructions apply for the positivity
and circle theorems.

As in the continuous-time case, similar remarks on conservatism apply when ~ A is constant
since, using this framework, stability is guaranteed even if ~A is a function of k. Once again,
however, to address the constant real parameter uncertainty problem one needs a more refined
discrete-time O-bound. An immediate application of this framework is a reinterpretation of the
classical discrete-time Popov criterion as a parameter-dependent Lyapunov function.

To demonstrate this in discrete-time, consider the Lyapunov function V(x, ~A) =
x T(p + Po(~A»x where the (parameter-independent) matrix P satisfies

P=ATpA +Oo(P)+ R (71)
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and Oo(P) satisfies

Ar PLlA + LlA TPA + LlA TP~A ~ Oo(P) - [(A + LlA? Po(LlA)(A + LlA) - Po(LlA»), (72)

for all LlA E CU. Letting

O(P, LlA) ~ Oo(P) - [(A + LlA)T Po(~A)(A + LlA) - Po(LlA)]

it follows from (71) that

P + Po(LlA) = (A + LlA)T(P + Po(LlA »(A + LlA) + O(P,LlA)

-(ATpLlA +LlATp+LlATpLlA)+ R, (73)

which implies that A + .:lA is stable for all LlA ECU.One can now show that the discrete-time
Popov criterion presented in Theorem 6.1 fits the above framework. Furthermore subtracting
(68) from (73) yields Pt.A ~ P + Po(LlA ) and hence tr [(P + Po) V] provides a worst case bound
for the actual H2 performance tr Pt.AV where Po ~ Po(LlA) for all LlA ECU.

The underlying intention of this two-part paper is the unification and extension of the
absolute stability criteria for linear time-invariant dynamic systems with loop nonlinearities
which were developed in the early 1960s and the modern-day robust stability and H2
performance problems for state-space systems using fixed and parameter-dependent Lyapunov
functions. This exposition thus demonstrates that these results are all derivable from the same
principles and are part of the same mathematical framework.
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