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Abstract— In applications, it is usually desirable to imple-
ment the simplest controller in terms of signal interconnec-
tions and controller order. In accordance with this goal, this
paper presents an adaptive output-feedback control technique
for MIMO systems, where the order and structure of each
SISO entry of the controller can be assigned an arbitrary
parameterization. The first parameterization is based on a
MIMO input-output model of fixed window length. The second
parameterization constrains all SISO entries of each row of
the controller to have the same denominator of specified order;
the third parameterization constrains all SISO entries of the
controller to have the same denominator of specified order;
and the fourth parameterization allows complete flexibility in
setting the structure and order of each SISO entry of the con-
troller. PID, infinite impulse-response, finite impulse-response,
and sparsely parameterized controllers can be specified as
special cases. This paper 1) defines the regressor structure for
each parameterization; 2) enumerates the number of updated
coefficients of each parameterization; 3) provides bounds on the
McMillan degree of each parameterization; and 4) provides
numerical examples to illustrate the relative effectiveness of
each parameterization.

I. INTRODUCTION

A well-known feature of dynamic output-feedback con-
trollers based on the classical separation principle is the fact
that the order of the controller is equal to the order of the
plant. The same property applies to optimal controllers based
on H2 and H∞ performance criteria. Consequently, the order
of the controller is generically equal to the order of the plant.
If, in addition, the command or disturbance is generated by
Lyapunov-stable or unstable exogenous dynamics (represent-
ing, for example, steps, ramps, or sinusoids), then the internal
model principle can be used to augment the plant with the
exogenous dynamics, and thus the order of the resulting
controller is greater than the plant order.

For plants of very high order, which occur, for example, in
structural vibration, it is desirable to implement controllers
of reduced order. Consequently, the literature on controller
reduction is extensive [1]. An alternative approach to reduc-
ing a full-order controller is to directly construct a controller
of fixed order [2], [3]. This nonconvex optimization problem
is computationally demanding, however, and global conver-
gence to the global minimizer is difficult to ensure.

Beyond controller reduction and fixed-order controller
synthesis, it is often desirable in practice to construct con-
trollers of fixed structure. For example, if a PID controller is
required, then the PID gains can be determined within a fixed
PID controller structure. Likewise, in MIMO applications, it
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may be desirable to seek a controller with internal structure
in the sense that some entries—such as those that represent
coupling paths of less importance—are of lower order than
others. In some cases, it may desirable to simplify the
controller by omitting certain controller entries, which can
be done by constraining them to be zero, and thus obtaining
sparse controllers [4]. In the extreme case, communication
constraints may require a decentralized controller structure,
where only the diagonal entries of a square MIMO controller
are nonzero [5], [6]. Decentralized control is highly relevant
to applications but remains a longstanding challenge in
feedback control. Fixed-structure control problems such as
decentralized control are typically challenging due to the
nonconvexity of the underlying optimization problem. At
the same time, because of computational constraints and
implementation simplicity, control practitioners invariably
seek the simplest possible controllers that meet performance
and robustness criteria. These controllers are thus fixed-gain,
fixed-structure control laws.

Although the literature on adaptive control is extensive
[7]–[9], output-feedback adaptive control with arbitrary but
fixed controller structure has not been considered. The con-
tribution of the present paper is thus the development of an
adaptive control technique for MIMO controllers of fixed-but-
arbitrary order and structure. This technique for adaptive-
gain, fixed-structure control is based on retrospective cost
adaptive control (RCAC) [10]. RCAC is based on a retro-
spective cost function, which is optimized at each step to
update the controller coefficients for use at the next step.

The contribution of the present paper is an extension of the
controller structure used in [10] to provide greater flexibility
in the implementation of RCAC. In particular, the controller
structure used in [10] is a MIMO input-output model. The
number of matrix coefficients in the input-output model is
chosen by the user, and all entries are subject to optimization.
We thus refer to the controller structure used in [10] as the
dense parameterization. In the present paper, we consider
three variations of the dense parameterization. In the second
formulation, called the diagonal denominator parameteriza-
tion, we constrain the structure of the MIMO input-output
model so that its “denominator” is diagonal. This means, in
effect, that each row of the MIMO transfer function has the
same denominator. In the third formulation, called the scalar
denominator parameterization, we constrain the structure of
the MIMO input-output model so that its “denominator” is a
polynomial multiplying the identity matrix. This parameter-
ization is thus a specialization of the diagonal denominator
parameterization. Finally, in the fourth formulation, called
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the entrywise parameterization, we constrain the structure of
the MIMO input-output model so that each entry can have
a different parameterization and order in terms of both its
numerator and denominator. This means that a given entry
could be chosen, for example, to be PID, infinite impulse
response (IIR), or finite impulse response (FIR) of a specified
order. Within the entrywise parameterization, it is possible
to constrain chosen entries to be zero, and thus, sparsify the
structure of the MIMO controller. Although the entrywise
parameterization can be used to synthesize square MIMO
controllers all of whose off-diagonal entries are zero, these
controllers are not technically decentralized due to the use of
a centralized information structure. A decentralized extension
of RCAC is considered in [11] and RCAC was applied using
entrywise parameterization in [12].

II. PROBLEM FORMULATION

Consider a discrete-time system modeled by

xk+1 = Axk +Buk +Bwk, y0,k = Cxk + vk, (1)

yk = y0,k + vk, zk
4
= rk − yk, (2)

where k ≥ 0 is the step, xk ∈ Rn is the state, uk ∈ Rlu is the
control input, wk ∈ Rlu is the disturbance, y0,k ∈ Rly is the
plant output, yk ∈ Rly is the measurement, rk ∈ Rly is the
command, vk ∈ Rly is the sensor noise, and the command-
following error zk ∈ Rlz is the performance variable. Note
that lz = ly .

Gc,k G
uk

wk

rk zk y0,k

vk
yk

−

Fig. 1: Block diagram of the adaptive servo problem with the adaptive
controller Gc,k and plant G.

The goal is to develop an adaptive output-feedback con-
troller

uk = Gc,k(q)zk, (3)

where q is the forward-shift operator, and Gc,k is a time-
varying matrix of strictly proper, rational polynomials in q
that minimizes zk in the presence of the disturbance signal
dk with limited modeling information about (1), (2). Note
that each entry of Gc,k can be represented as a time-domain
transfer function at each step k.

III. CONTROLLER PARAMETERIZATIONS

We write (3) as

uk = φkθk, (4)

where φk ∈ Rlu×lθ is the regressor matrix constructed
using the past error measurements zk and control inputs
uk, and θk ∈ Rlθ is the vector of controller coefficients.
There are multiple ways to parameterize (3) as (4). In this
paper, we present and compare four such parameterizations
of Gc,k. Namely, dense parameterization (DP), diagonal

denominator parameterization (DDP), scalar denominator pa-
rameterization (SDP), and entrywise parameterization (EP).
Table I lists salient features of each parameterization. As
all four controller parameterizations are expressed as (4),
RCAC presented in [10] can be used to adapt the controller
coefficients.

A. Dense Parameterization (DP)

Consider a controller constructed as a strictly proper input-
output model with an lc-step data window, such that the
control uk is given by

uk =

lc∑
i=1

Pi,kuk−i +

lc∑
i=1

Qi,kzk−i, (5)

where Pi,k ∈ Rlu×lu and Qi,k ∈ Rlu×lz are the fully-
populated controller coefficient matrices. The parameteriza-
tion in (5) is called dense since the denominator coefficient
matrices Pi,k are nonsparse. In terms of the forward-shift
operator q, the lu× lz controller transfer function Gc,k from
zk to uk is given by

Gc,k(q) =
(
Iluq

lc − P1,kq
lc−1 − · · · − Plc,k

)−1
·
(
Q1,kq

lc−1 + · · ·+Qlc,k
)
. (6)

Equation (5) can be expressed as (4) by defining

θk
4
= vec [P1,k · · · Plc,k Q1,k · · · Qlc,k] ∈ Rlθ , (7)

φk
4
=


uk−1...
uk−lc
zk−1

...
zk−lc


T

⊗ Ilu ∈ Rlu×lθ , (8)

where lθ
4
= lclu(lu + lz).

Let p̄k(q) denote the least common denominator of
Gc,k(q) in (6). It follows from [13, p. 522] that the order
of p̄k(q) is bounded from above by lclu. Consequently, the
McMillan degree of (5) is bounded from above by lclulz .

B. Diagonal Denominator Parameterization (DDP)

Next, consider a controller constructed as a strictly proper
input-output model with lc-step data window, such that the
control uk is given by

uk =

lc∑
i=1

Pi,kuk−i +

lc∑
i=1

Qi,kzk−i, (9)

where Pi,k ∈ Rlu×lu and Qi,k ∈ Rlu×lz are the controller
coefficient matrices, and Pi,k are diagonal.

In terms of the forward-shift operator q, the controller
transfer function Gc from zk to uk is given by

Gc,k(q) =
(
Iluq

lc − P1,kq
lc−1 − · · · − Plc,k

)−1
·
(
Q1,kq

lc−1 + · · ·+Qlc,k
)
. (10)

Note that the denominator matrix in (10) is diagonal, and
thus all entries in each row of Gc have the same poles.
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Parameterization Controller coefficient
size lθ

Maximum order of
each SISO entry

Maximum McMillan
degree Remarks

Dense lcl2u + lclulz lclu lclulz Same denominator in all entries

Diagonal
Denominator lclu + lclulz lc lclulz Same denominator in all entries of each row

Scalar
Denominator lc + lclulz lc lclz Same denominator in all entries

Entrywise
∑lu
i=1

∑lz
j=1 2lij lij lz

∑lu
i=1

∑lz
j=1 lij Different denominator in each entry

TABLE I: Properties of the four controller parameterizations. The bound on the MIMO McMillan degree for each parameterization is based on the order
of a possibly nonminimal state space realization of Gc.

We write (9) as

uk = φkθk = φu,kθu,k + φz,kθz,k, (11)

where

φk
4
=
[
φu,k φz,k

]
∈ Rlu×

(
lulc+lulzlc

)
, (12)

φu,k
4
=
[

dguk−1 · · · dguk−lc
]
∈ Rlu×lulc , (13)

φz,k
4
=

[
zk−1...
zk−lc

]T
⊗ Ilu ∈ Rlu×lulzlc , θk

4
=

[
θu,k

θz,k

]
∈ Rlθ ,

(14)

θu,k
4
= vec

[
dg−1P1,k · · · dg−1Plc,k

]
∈ Rlulc , (15)

θz,k
4
= vec

[
Q1,k · · · Qlc,k

]
∈ Rlulzlc , (16)

dg : Rlx → Rlx×lx maps a vector into a diagonal-square
matrix with diagonal entries of the vector, dg−1 : Rlx×lx →
Rlx maps a square matrix into a vector of its diagonal entries,
and lθ

4
= lulc + lulzlc.

Let p̄k(q) denote the least common denominator of
Gc,k(q) in (10). It follows from [13, p. 522] that the order
of p̄k(q) is bounded from above by lclu. Consequently, the
McMillan degree of (9) is bounded from above by lclulz .

C. Scalar Denominator Parameterization (SDP)

Next, consider a controller constructed as a strictly proper
input-output model with lc-step data window, such that the
control uk is given by

uk =

lc∑
i=1

pi,kuk−i +

lc∑
i=1

Qi,kzk−i, (17)

where pi,k ∈ R, and Qi,k ∈ Rlu×lz are the controller
coefficients.

In terms of the forward-shift operator q, the controller
transfer function Gc from z to u is given by

Gc,k(q) =
Q1,kq

lc−1 + · · ·+Qlc,k
qlc − p1,kqlc−1 − · · · − plc,k

. (18)

We write (17) as

uk = φkθk = φu,kθu,k + φz,kθz,k, (19)

where

φk
4
=
[
φu,k φz,k

]
∈ Rlu×

(
lc+lulzlc

)
, (20)

φu,k
4
=
[
uk−1 · · · uk−lc

]
∈ Rlu×lc , (21)

φz,k
4
=

zk−1...
zk−lc


T

⊗ Ilu ∈ Rlu×lulzlc , θk
4
=

θu,k
θz,k

 ∈ Rlθ ,

(22)

θu,k
4
=
[
p1,k · · · plc,k

]T
∈ Rlc , (23)

θz,k
4
= vec

[
Q1,k · · · Qlc,k

]
∈ Rlulzlc , (24)

and lθ
4
= lc + lulzlc.

Let p̄k(q) denote the least common denominator of
Gc,k(q) in (18). It follows from [13, p. 522] that the order
of p̄k(q) is bounded from above by lc. Consequently, the
McMillan degree of (17) is bounded from above by lclz .

D. Entrywise Parameterization (EP)
Finally, we consider an adaptive controller such that

Gc,k(q)
4
=

 Gc,11,k(q) . . . Gc,1lz,k(q)
...

. . .
...

Gc,lu1,k(q) . . . Gc,lulz,k(q)

 , (25)

where each entry Gc,ij,k of the lu× lz transfer function Gc,k

is an IIR or FIR controller of order lij , or a PID controller.
For each SISO controller entry Gc,ij we define

uij,k
4
= Gc,ij,k(q)zj,k, (26)

and construct φij,k ∈ Rlθ,ij ,

φij,k
4
=

 zj,k−1∑k−1
p=1 zj,p

zj,k−1 − zj,k−2

 , φij,k 4=

uij,k−1

...
uij,k−lij
zj,k−1

...zj,k−lij

 , (27)

φij,k
4
=

[
zj,k−1

...zj,k−lij

]
, (28)

for a PID, IIR, or FIR Gc,ij,k(q), respectively, where

lθ,ij =


3, PID Gc,ij,k(q),

2lij , IIR Gc,ij,k(q),

lij , FIR Gc,ij,k(q).

(29)
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Additionally, we define

φi,k
4
=

φi1,k...
φilz,k

 ∈ Rlθi , θi,k
4
=

θi1,k...
θilz,k

 ∈ Rlθi , (30)

where lθi
4
=
∑lz
j=1 lθ,ij . Finally, define

φk
4
=

 φ
T
1,k · · · 0
...

. . .
...

0 · · · φTlu,k

∈ Rlu×lθ , θk
4
=

θ1,k...
θlz,k

∈ Rlθ , (31)

where lθ
4
=
∑lu
i=1

∑lz
j=1 lθ,ij . Note that fixed-structure con-

troller parameterization allows us to separately specify the
structure of each entry (25) of Gc through the construction
of φk.

Let p̄k(q) denote the least common denominator of
Gc,k(q) in (25). It follows from [13, p. 522] that the
order of p̄k(q) is bounded from above by

∑lu
i=1

∑lz
j=1 lij .

Consequently, the McMillan degree of (25) is bounded from
above by

∑lu
i=1

∑lz
j=1 lij lz .

Note that, because D(q) in EP is not diagonal, the
coefficients of the MIMO transfer function are not directly
optimized by RCAC. In contrast, in DDP, SDP, and EP,
RCAC directly updates each numerator and denominator
coefficient of Gc. Table I summarizes the key features of
the parameterizations discussed above.

To illustrate the parameterizations, consider the MIMO
transfer function

Gc(q) =

 1

q+ 1

1

q+ 2
1

q+ 3

1

q+ 4

 , (32)

which is written in entrywise parameterization, where lc = 1
and lθ = 2lulzlc = 8. The diagonal denominator parameter-
ization of (32) is

Gc(q) =

[
q2 + 3q+ 2 0

0 q2 + 7q+ 12

]−1[
q+ 2 q+ 1

q+ 4 q+ 3

]
, (33)

where lc = 2 and lθ = lclu + lulzlc = 12. The scalar
denominator parameterization of (32) is

Gc(q) =
1

q4 + 10q3 + 35q2 + 50q + 24

·

[
q3 + 9q2 + 26q+ 24 q3 + 8q2 + 19q+ 12

q3 + 7q2 + 14q+ 8 q3 + 6q2 + 11q+ 6

]
, (34)

where lc = 4 and lθ = lc + lulzlc = 20. Finally, the dense
parameterization of (32) is

Gc(q) =

[
D11 D12

D21 D22

]−1 [
N11 N12

N21 N22

]
, (35)

where

N11(q)
4
=

2

3
q3 + 5q2 − 34

3
q + 8, (36)

N12(q)
4
=

2

3
q3 + 5q2 − 34

3
q + 7, (37)

N21(q)
4
= −2q4 − 20q3 − 70q2 − 100q− 48, (38)

N22(q)
4
= −2q4 − 20q3 − 70q2 − 100q− 48, (39)

D11(q)
4
= −1

3
q5 − 7

2
q4 − 40

3
q3 − 45

2
q2 − 49

3
q− 4, (40)

D12(q)
4
=

1

3
q5 +

29

6
q4 +

80

3
q3 +

415

6
q2 +

83

3
q + 36, (41)

D21(q)
4
= q6 + 13q5 + 67q4 + 175q3 + 244q2 + 172q + 48, (42)

D22(q)
4
= −q6 − 17q5 − 117q4 − 415q3 − 794q2 − 768q− 288, (43)

where lc = 6 and lθ = lcl
2
u + lulzlc = 48.

This example shows that, for a given controller transfer
function Gc, the dense, diagonal denominator, scalar de-
nominator, and entrywise parameterizations of Gc may be
different in terms of the data window lc and the number of
coefficients lθ that are optimized. In particular, the McMillan
degree of Gc given by (32) is 4, which means that a minimal
state space realization of Gc has 4 states. For EP, DDP, SDP,
and DP, lc is given by 1, 2, 4, and 6, respectively, and lθ is
given by 8, 12, 20, and 48, respectively. These numbers show
that EP is the most efficient representation of Gc given by
(32). However, this observation is specific to Gc given by
(32), since DP with lc = 6 and lθ = 48 can represent a
much larger class of 2 × 2 transfer functions than EP can
represent with lc = 1 and lθ = 8.

Each of the four parameterizations of an lu× lz controller
transfer function is represented as an input-output model with
an lc-step data window. This is in contrast to a state space
controller representation (Ac, Bc, Cc), where Ac is of size
nc×nc. If (Ac, Bc, Cc) is minimal, then nc is the McMillan
degree of the transfer function corresponding to (Ac, Bc, Cc)
[14, p. 319].

Although the relationship between the order lc and the
McMillan degree of a controller in state space form is
straightforward, the relationship is more complicated for a
controller in input-output model form. Writing (32) as

Gc(q) = Dc(q)−1Nc(q), (44)

it follows that, if Dc and Nc are left coprime, then the
McMillan degree of Gc is given by deg detDc. Note,
however, that, for the scalar denominator parameterization
(34), deg detDc = 16, which is not equal to the McMillan
degree of Gc, and thus (34) is not left coprime.

IV. NUMERICAL EXAMPLES

In this section we compare the controller complexity
needed to achieve step-command following for a 2×2 system
using LQG and RCAC with each of the four parameteriza-
tions described in the preceding section. In particular, we
consider two oscillators connected in series with springs and
dampers, as shown in Figure 2. Forces fa, fb can be applied
on masses ma,mb, respectively, and positions measurements
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qa, qb of the two masses ma,mb are available. Thus, the
system has two inputs and outputs. The objective is to follow
setpoint commands to qa, qb.

ma mb

qa qb
fa fb

ca cb

ka kb

Fig. 2: Series dual-mass oscillator. Position measurements qa, qb of the
masses ma,mb are available. Forces fa and fb are applied to masses ma
and mb, respectively.

m (kg) c (N/m2) k (N/m)

a 1 7 4

b 0.8 3.5 10

TABLE II: Values of coefficients used to construct the oscillator model.

For the values of masses, stiffnesses, and damping co-
efficients listed in Table II an exact discretization of the
continuous-time system using zero-order hold with a sample
rate of 5 Hz is given by (1), (2) where

A
4
=


0.8777 0.0847 0.0777 0.0338

−0.7630 0.1363 0.4241 0.2262

0.1436 0.0423 0.8429 0.1333

1.0741 0.2827 −1.2433 0.4077

 , (45)

B
4
=


0.0112 0.0034

0.0847 0.0423

0.0034 0.0191

0.0423 0.1666

 , C 4=


1 0

0 0

0 1

0 0


T

, (46)

xk
4
=
[
qa,k q̇a,k qb,k q̇b,k

]T
, (47)

uk
4
=
[
fa,k fb,k

]T
. (48)

We specify wk ∼ (0, 0.012), vk ∼ (0, 0.0012), x0 = 0, and
the command is

rk =


[

1 2
]T
, t < 50 sec,[

−1 −3
]T
, t ≥ 50 sec.

(49)

Example 1. Discrete-time LQG controller. A discrete-
time LQG controller with integral action is designed for the
plant using the MATLAB command lqg with the weights

Qxu = I6, Qwv = I6, Qi = 100I2. (50)

The resulting controller is given by

xc,k+1 = Acxc,k +Bczk, (51)
uk = Ccxc,k, (52)

where xc,k ∈ R6, Ac ∈ R6×6, Bc ∈ R6×2, and Cc ∈ R2×6.
As shown in Figure 3, step-command following is achieved.

�

0 50 100 150 200

-2

0

2

0 50 100 150 200

-20

-10

0

10

Fig. 3: Example 1: Step-command following using a discrete-time LQG
controller with integral action.

Example 2. RCAC with dense parameterization. RCAC
is applied with dense parameterization with lc = 3, P0 =
103I,Ru = 10−5I. The number of controller coefficients
adapted is 24. The maximum achievable McMillan degree
of the adaptive controller is lulzlc = 12. For this and all
examples that follow we set Gf(q) = − 1

qCB. As shown in
Figure 4, step-command following is achieved. �
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-1
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0

Fig. 4: Example 2: Step-command following with RCAC using the dense
parameterization.

Example 3. RCAC with diagonal denominator param-
eterization. RCAC is applied with diagonal denominator
parameterization with lc = 7, P0 = 103I,Ru = 10−5I.
The number of controller coefficients adapted is 18. The
maximum achievable McMillan degree of the adaptive con-
troller is lulzlc = 28. As shown in Figure 5, step-command
following is achieved. �

Example 4. RCAC with scalar denominator parameteri-
zation. RCAC is applied with scalar denominator parameter-
ization with lc = 8, P0 = 103I,Ru = 10−5I. The number of
controller coefficients adapted is 35. The maximum achiev-
able McMillan degree of the adaptive controller is lzlc = 16.
As shown in Figure 6, step-command following is achieved.
�

Example 5. RCAC with entrywise parameterization.
RCAC is applied with entrywise parameterization with P0 =
0.1I,Ru = 0, where Gc has the structure
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Fig. 5: Example 3: Step-command following with RCAC using the diagonal
denominator parameterization.
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Fig. 6: Example 4: Step-command following with RCAC using the scalar
denominator parameterization.

Gc,k(q) =

[
PID 6th-order IIR

0 PID

]
. (53)

The number of controller coefficients adapted is 18. The
maximum achievable McMillan degree of the adaptive con-
troller is lz

∑lu
i=1

∑lz
j=1 lij = 24. As shown in Figure 7,

step-command following is achieved. �
V. DISCUSSION AND CONCLUSIONS

This paper presented four parameterizations for MIMO
controllers—dense (DP), diagonal denominator (DDP),
scalar denominator (SDP), and entrywise (EP)—that can be
used with retrospective cost adaptive control (RCAC). The
three new parameterizations, which constitute the contribu-
tion of this paper, provide greater flexibility in constrain-
ing the internal structure of the compensator. For a fixed
number of optimized parameters, each parameterization can
potentially produce a controller of different McMillan de-
gree. To compare the efficacy of these parameterizations, all
four parameterizations were applied to a setpoint command-
following problem for a two-input, two-output, LTI system.
Similar performance was obtained for DP, DDP, SDP, and
EP using 24, 18, 35, and 18 parameters, respectively.

For a sufficiently large data-window size lc, each param-
eterization can represent a controller of arbitrary McMillan

-2

0

2

-20

-10

0

10

0 50 100

0

0.2

0.4

0 50 100

10
-4

10
-3

10
-2

10
-1

10
0

Fig. 7: Example 5: Step-command following with RCAC using the entrywise
parameterization.

degree. However, the required value of lc depends on the
choice of parameterization. In addition, since lθ also depends
on the choice of parameterization, it is of interest to compare
the performance of DP, DDP, SDP, and EP for the same
value of lθ. A key question for future research is thus to
determine which parameterization is the most effective for
a given number of controller parameters. A related question
concerns the class of controllers that are achievable by each
parameterization for a given value of lc. The examples in this
paper suggest that EP is potentially the most effective since
it allows independent poles in each entry of Gc, and thus
the largest achievable McMillan degree for a given number
of controller parameters.
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