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»   L E C T U R E  N O T E S

Transfer functions model input–output relationships 
in linear systems. For example, viewing force as an 
input, velocity can be seen as an output. Likewise, 

voltage from a battery gives rise to current flow. The gain, 
poles, and zeros of these transfer functions provide insight 
into the response to inputs.

Transfer functions can be derived by applying the laws 
of dynamics and circuits, such as Newton’s and Kirch-
hoff’s laws. An alternative approach to obtaining them is 
to develop models of mechanical and electrical compo-
nents and connect them by accounting for power (the flow 
of energy) by means of power-conjugate variables (variables 
whose product is power). In mechanical systems, force and 
velocity are power-conjugate variables; in electrical sys-
tems, voltage and current are power-conjugate variables.

Input–output models can be used to relate effort and flow 
variables, which are power conjugate. In structural model-
ing, power-conjugate variables are force and velocity in 
translational motion and moment and angular velocity in 
rotational motion; in electrical systems, they are voltage and 
current, respectively; in fluid and acoustic systems, they are 
pressure and volume velocity; and in thermodynamic sys-
tems, they are temperature difference and entropy flow rate.

Since power-conjugate variables occur in pairs, they are 
connected by power transmission matrices (PTMs), which are 
2 2#  transfer functions. PTMs have a variety of forms and 
names arising from the way the variables are defined and 
ordered. They are called four-terminal structures, four-terminal 
networks, quadripole, transfer matrices, and two-port networks. 
Depending on the choice of input and output signals, the 
entries of the matrices are known as ABCD parameters, 
cascade parameters, chain parameters, four-pole param-
eters, impedance parameters, admittance parameters, 
hybrid parameters, inverse hybrid parameters, scatter-
ing parameters, scattering transfer parameters, and trans-
mission parameters [1, pp. 28–31], [2, pp. 69, 70, 315–317],  
[3, pp. 56–58], [4, pp. 243–257], [5, pp. 3–15], [6, pp. 312–330], 

[7, pp. 10-35–10-37], [8, pp. 132–134], [9, pp. 16–32] [10, pp. 49–57], 
[11, Ch. 3], [12, pp. 208–214], [13, Ch. 12], [14, Ch. 11], [15, Ch. 11], 
[16, pp. 24–27]. Reference [17] includes detailed definitions 
and further references for these matrices. Transformations 
among six versions of these parameters are given in [6, 
p. 317], where the b parameters are most closely related to 
power transmission matrices for electrical circuits as they are 
defined in the present article.

PTMs and their variants have been used in diverse 
mechanical and electrical applications. PTMs are employed 
in [11] to derive equations of motion for lumped mechani-
cal systems as well as continuum structures, such as shafts 
and beams. For mechanical applications, the use of PTMs 
circumvents the necessity of free-body analysis and elimi-
nates the need to determine reaction forces and torques. 
On the electrical side, PTMs are used to model distrib-
uted networks, including transmission lines [3], [5, Ch. 1, 
pp. 200–218], [12, pp. 212–214], [13, pp. 361–362].

As described in “Summary,” a benefit of power trans-
mission matrices is that analogous models can be derived 
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Summary

Power transmission matrices (PTMs) for structures are 

2 2#  matrices that relate force and velocity at one ter-

minal to force and velocity at another terminal. This tech-

nique provides an elegant approach to deriving transfer 

functions for structures consisting of masses, springs, and 

dashpots, that is, dampers. PTMs were developed during 

the 1970s and 1980s, but they are rarely mentioned today 

except briefly in textbooks. The first goal of this tutorial is to 

highlight the utility of this modeling technique. A related aim 

is to bring inerters into this framework. The article revisits 

the classical topic of analogies by deriving PTMs for two-

port networks. The across-through analogy is used to con-

struct circuits whose transfer functions match those of the 

analogous structure. This article is intended for all students 

and practitioners of control systems who may benefit from 

awareness of this modeling technique.
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across domains of application. The study of analogies 
between mechanical and electrical systems has a long 
history. The classic book [18], which remains the unique 
reference devoted to the topic, encompasses mechanical, 
electrical, and acoustic systems. Circuit models for struc-
tures are discussed within the context of analog computa-
tion in [19, Ch. 9]. A recent survey [20] provides a detailed 
history of the development of electromechanical analogies.

In an electrical circuit, potential can be defined relative 
to a constant potential level, such as an earth ground. Analo-
gously, the velocity of a point in a structure can be defined 
relative to a point that has constant inertial velocity, for exam-
ple, a point on an inertially nonrotating massive body [21]. 
Such a point provides an inertial ground. Voltage and velocity 
are relative (across) variables, whereas force and current are 
absolute (through) variables [22, pp. 18–22], [23, p. 20], [24, 
pp. 45–47], [25, p. 21], [26, pp. 39–58]. In electrical applica-
tions, an earth ground provides an approximately infinite 
volume that can transfer electrons without losing its charge 
neutrality. Analogously, in structural applications, an iner-
tially nonrotating massive body has approximately infinite 
mass and does not accelerate translationally or rotationally 
in response to reaction forces and torques. A physical ter-
minal is a physical point of attachment, such as the wires 
emanating from a resistor or the ends of a spring, while a 
reference terminal is an inertial or earth ground [27], [28].

There are two competing analogies between electrical 
and mechanical systems, denoted in this article by fE-vI and 
fI-vE, each of which (for historical reasons) has at least four 
names. For example, fE-vI is called the Maxwell analogy, 
direct analogy, impedance analogy, and effort-flow analogy, 
and it associates force with potential and velocity with cur-
rent. On the other hand, fI-vE is known as the Firestone anal-
ogy, inverse analogy, mobility analogy, and across-through 
analogy, and it pairs force with current and velocity with 
potential. Early papers [29]–[31] discuss various aspect of 
these analogies. With voltage and current taken as analo-
gous to velocity and force, respectively, we note that mass 

,m  damping ,c  and stiffness k  are related to capacitance 
,C  resistance ,R  and inductance L  by ,m C=  / ,c R1=  and 

/ .k L1=  Observe that capacitors and masses store energy 
provided by the across variables voltage and velocity, respec-
tively, whereas inductors and springs store energy provided 
by the through variables current and force, respectively.

Bond graph modeling is based on the effort-and-flow 
analogy fE-vI [2, pp. 343–418], [32, pp. 260–270], [33], [34], 
[35, p. 123–167], [25, pp. 113–129]. Bond graphs are related to 
transmission matrices that are based on fE-vI in [2, pp. 69, 
70, 315–317]. In contrast, the present article focuses on fI-vE; 
the reason for this choice is the analogy between inertial 
and earth grounds as well as the preservation of series and 
parallel connections across domains.

This article encompasses the inerter as a distinct 
mechanical component [36]–[38], in which the reaction force 
is proportional to the relative acceleration of the physical 

terminals rather than the inertial acceleration of a mass 
as explained in “What Is an Inerter?” Mechanical net-
works can be built from four components (masses, inert-
ers, springs, and dashpots), whereas electrical networks 
can be constructed from only three (resistors, inductors, 
and capacitors). Some brief remarks are provided on the 

What Is an Inerter?

The relationship between the acceleration of a mass and 

the force applied to the mass is given by Newton’s second 

law. The acceleration vector is the second derivative of a posi-

tion vector, where the position vector is defined relative to an 

unforced particle, and the derivative is taken with respect to an 

inertial frame. In the absence of a force, an unforced particle 

moves with constant speed along a straight line with respect 

to an inertial frame; consequently, any unforced particle can 

be used as a reference point for defining inertial acceleration.

It is possible to consider acceleration relative to an arbi-

trary point and with respect to a noninertial frame. An inert-

er is a device that has two physical terminals with the prop-

erty that the difference between the reaction forces applied 

to the physical terminals is proportional to the acceleration 

of one of the physical terminals relative to the other, which 

also serves as the reference terminal [36]–[38]. Unlike the 

case of a mass shown in Figure 2, the reference terminal 

for an inerter need not have constant inertial velocity; its 

motion is simply the motion of one of the physical terminals.

As discussed in [37], an inerter can be realized using a 

ball screw or a rack and pinion. Figure S1(a) shows a ball-

screw inerter where the forces applied to the physical ter-

minals are converted to a torque, which is applied to the nut 

flywheel. The push-top toy in Figure S1(b) operates essen-

tially by the same principle as the ball-screw inerter.

FIGURE S1 (a) A ball-screw inerter. Physical terminal T1 is con-
nected to a ball screw, and physical terminal T2 is connected 
to the housing. The difference Tf = f2 - f1 between the forces 
applied to the physical terminals is proportional to the torque x 
applied to the nut flywheel; the torque x is proportional to the 
angular acceleration of the nut flywheel; and the angular ac-
celeration of the nut flywheel is proportional to the acceleration 
Ta of T2 relative to T1. Consequently, Tf is proportional to Ta. 
(b) A push-top toy operates essentially by the same principle 
as the ball-screw inerter.

T1T2

Ball Screw
Nut Flywheel

Thrust Bearing

(a) (b)
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memristor and memdashpot, which are hysteretic compo-
nents that relate charge to flux density and momentum to 
position, respectively.

This article provides a tutorial on power transmission 
matrices. It derives power transmission matrices for the 
basic mechanical components and shows how they can be 
combined by series and parallel connections to obtain trans-
fer functions for specified inputs and outputs. Power trans-
mission matrices are formulated in terms of the differential 
operator p rather than the Laplace s or its harmonic steady-
state specialization ;.~  this setting offers time-domain 
equations that account for arbitrary initial conditions [39].

MODELING MECHANICAL SYSTEMS USING 
TRANSFER FUNCTIONS
In mechanical systems, the transfer functions from force to 
position, force to velocity, and force to acceleration are called 
compliance, admittance, and accelerance, respectively. Their 
reciprocals are called stiffnance, impedance, and inertance, 
respectively. Thus, for example, impedance is the transfer 
function from velocity to force. Note that stiffnance, imped-

ance, and inertance are improper transfer functions, that 
is, the degree of the numerator is greater than that of the 
denominator. This terminology is summarized in Table 1.

A transmissibility is a relationship between two vari-
ables of the same type [40], [41], [42, 30 pp. 2-31–2-36]. Force-
to-force, velocity-to-velocity, and position-to-position 
relationships constitute a force transmissibility, velocity 
transmissibility, and position transmissibility, respectively. 
As shown in [43], transmissibilities can be represented in 
terms of behaviors [27], [44].

To represent dynamics in the time domain, the transfer 
functions in this article are expressed in terms of the differ-
ential operator td/dp =

3  rather than the complex Laplace 
variable .s  To clarify this distinction, note that the mass-
spring system

 mq kq f+ =p  (1)

can be written as

 ,m q kq fp2 + =  (2)

whose solution can be represented as

 .q
m k

f1
p2=
+

 (3)

Note that (3) is a representation of the time-domain solu-
tion of (1), which includes the free response due to ( )q 0  and 
( )q 0o  as well as the forced response due to .f  In contrast, the 

Laplace-domain equation

 ( ) ( )q s
ms k

f s1
2=
+

t t  (4)

accounts for the forced response of (1) but assumes that ( )q 0  
and ( )q 0o  are zero. In fact, an additional term is needed to 
represent the free response in the Laplace domain. Con-
sequently, although ( )G p  in (3) and ( )G s  in (4) have the 
same form, their meaning is different. Modeling based on 
p  is used in behaviors as discussed in [44]. Of particular 
relevance to this article, a similar approach is used in [8] 
within the context of power transmission matrices. Further 
discussion about the distinction between the Laplace s and 
the operator p  can be found in [39].

POWER TRANSMISSION MATRICES FOR 
MECHANICAL SYSTEMS
A power transmission matrix of a structure is a 2 2#  matrix 
that relates the force and velocity at one physical terminal 
to the force and velocity at another physical terminal. Fig-
ure 1 shows a structure with force f1  at physical terminal T1  
and force f2  at physical terminal .T2  Force f1  is the reaction 
force applied by the structure to the structure on its right, 
whereas f2  is the reaction force applied to the structure by 

Force to Motion Motion to Force

Position Compliance Stiffnance

Velocity Admittance Impedance

Acceleration Accelerance Inertance

TABLE 1 The names of the transfer functions for structures. 
Admittance is the transfer function from force to velocity; 
impedance is its reciprocal.

f2 f1T2 T1

T0

v2 v1

f2

v2

f1

v1

P

Structure

(a)

(b)

FIGURE 1 (a) A structure relating force f1 and velocity v1 to force f2 
and velocity v2. The forces f1 and f2, which are absolute (through) 
variables, are applied to physical terminals T1 and T2, respective-
ly. The velocities v1 and v2 of T1 and T2, respectively, are relative 
(across) variables that are defined relative to the reference terminal 
T0. Since the axis direction is to the left, positive values of f1 and f2 
indicate pushing or pulling to the left. Specifically, f1 is the reaction 
force applied by the structure to the structure on its right, whereas 
f2 is the reaction force applied to the structure by the structure on 
its left. By Newton’s third law, these reaction forces are equal and 
opposite in relation to the adjacent structures. (b) The power trans-
mission matrix P of the structure relates the force and velocity at 
one terminal to the force and velocity at the other terminal.
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the structure on its left. This convention allows all positive 
forces to point to the left and avoids an excessive number 
of minus signs. Unlike the usual convention, the positive 
real axis points to the left, and positive values of f1  and f2  
indicate that these forces are pushing to the left. The choice 
of axis direction has the pleasant feature that series connec-
tions constructed from right to left correspond to products 
of PTMs constructed from right to left. Figure 1 also shows 
velocities v1  and v2  of T1  and T2  relative to the reference 
terminal, ,T0  respectively.

The power transmission matrix P, depicted in Figure 1, is 
the 2 2#  matrix that relates ( , )f v1 1  to ( , )f v2 2  according to

 
( )
( ) ( )

( )
( ) .

f t
v t P

f t
v tp

2

2

1

1
== =G G  (5)

Since the entries of P  are functions of the differential oper-
ator ,p  (5) is a time-domain equation that fully accounts for 
the initial conditions of all variables. Writing

 ,P
p
p

p
p

11

21

12

22
= ; E  (6)

it follows that p11  is a force transmissibility (force/force), 
p12  is an impedance (force/velocity), p21  is an admittance 
(velocity/force), and p22  is a velocity transmissibility (veloc-
ity/velocity). The entries of a power transmission matrix 
consist of two transmissibilities, one impedance and one 
admittance. Power transmission matrices are closely related 
to admittance and impedance matrices. For details, see 
“Admittance and Impedance Matrices.”

THE ELEMENTARY POWER TRANSMISSION 
MATRICES
In this section, the power transmission matrices are derived 
for the mass, inerter, spring, and dashpot; the correspond-
ing transmission matrices are the elementary power trans-
mission matrices. All forces and motion are assumed to 
occur along a line, with the positive direction in all figures 
taken to be toward the left. This convention leads to block 
diagrams that are consistent with matrix multiplication.

Consider the mass ,m  shown in Figure 2, whose physi-
cal terminals T1  and T2  are fixed attachment points on the 
body. The reference terminal T0  coincides with a point with 
an inertial velocity that is constant and corresponds to the 
motion of an unforced particle [21], which may be embed-
ded in an inertially nonrotating massive body; in analogy 
with circuits, an inertially nonrotating massive body can 
be viewed as an inertial ground. It follows from Newton’s 
third law that

 ( ) ( ) ( ),ma t f t f t1 2 1= -  (7)

where ( )f t1-  is the reaction force on the structure due to the 
body on its right, and ( )ta1  is the inertial acceleration of the 
mass relative to .T0  It thus follows that

 ( ) ( ) ( ),f t f t m v tp2 1 1= +  (8)

 ( ) ( ) .v t v t2 1=      (9)

The elementary power transmission matrix of a mass with 
inertia m  is thus given by

Admittance and Impedance Matrices
power transmission matrix maps the force and velocity 

at one terminal to the force and velocity at another ter-

minal. A nice feature of this formulation is that series con-

nections can be modeled simply by forming the product of 

matrices of this type. Variations of these matrices map forc-

es to velocities and velocities to forces. Specifically, by as-

suming that p 012 !  and rearranging (5) and (6) we derive

 ,
v
v p

p
p

f
f

1
1

11

2 12

11

22

1

2
=

-

-
; ; ;E E E  (S1)

where the coefficient matrix is an admittance matrix. As-

suming that ,p 021 !  the inverse relation is given by

 ,
f
f p

p
p

v
v

1
1

11

2 21

22

11

1

2
=-

-

-
; ; ;E E E  (S2)

where the coefficient matrix is an impedance matrix.

As an example, the impedance matrix for a spring satis-

fies

 .
f
f

v
v

k
1

11
1p

1

2

1

2
=

-

-
; ; ;E E E  (S3)

Since this matrix is singular, it follows that the spring does 

not have an admittance matrix. Similarly, the admittance 

matrix for a mass satisfies

 .
v
v m

f
f

1 1
1

1
1p

1

2

1

2
=

-

-
; ; ;E E E  (S4)

Since this matrix is singular, it follows that the mass does 

not have an impedance matrix.

Under ,f vEI-  the impedance matrix, which is the analog 

of the mechanical admittance, can be written as

 .
E
E

Z
Z

Z
Z

I
I

1

2

11

21

12

22

1

2
=; ; ;E E E  (S5)

Now, assume that ,E Z IL2 2=  where ZL  is the load imped-

ance from I2  to .E2  The resulting input impedance, ,Z in  

from I1  to E1  is given by

 .Z Z Z Z
Z Z
L

11
22

12 21
in = +

-
 (S6)

Alternatively, assume that ,E Z IS1 1=  where ZS  is the 

source impedance from I1  to .E1  The corresponding output 

impedance, ,Zout  from I2  to E2  results from

 .Z Z Z Z
Z Z
S

22
11

12 21
out = +

-
 (S7)

A
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 ( , ) .P m
m1

0 1p
p

m =
3 ; E  (10)

A mass can be connected to other structures using one 
or both of its terminals. In the former case, it is a sprung 
mass, and the force on its free terminal is zero; otherwise, 
it is unsprung.

Next, consider the inerter shown in Figure 2 that has 
physical terminals T1  and T2  and reference terminal .T0  
Unlike a mass, the reference terminal of an inerter need not 
be an inertial ground. The relative inertia b can be realized 
as an inerter (see “The Power Transmission Matrix of an 
Inerter”) and satisfies

 ( ( ) ( )) ( ) ( ),b a t a t f t f t2 1 1 2- = =  (11)

where a1  and a2  are the accelerations of T1  and T2  relative 
to ,T0  respectively. Therefore,

 ( ) ( ),f t f t2 1=       (12)

 ( ) ( ( ) ( )),f t b v t v tp2 2 1= -  (13)

and thus the elementary power transmission matrix of an 
inerter with relative inertia b  is given by

 ( , ) .P b
b

1
1

0
1p

p
in =

3 > H  (14)

Next, for the spring with stiffness k  shown in Figure 2, 
note that

 ( ) ( ),f t f t2 1=       (15)

 ( ) ( ( ) ( )),f t k q t q t1 2 1= -  (16)

where q1  and q2  are the positions of T1  and T2  relative to 
,T0  respectively. It thus follows that

 ( ) ( ( ) ( )) ( ( ) ( )),f t k q t q t k v t v tp p p1 2 1 2 1= - = -  (17)

which implies that

 ( ) ( ) ( ).v t k f t v t
p

2 1 1= +  (18)

The elementary power transmission matrix of a spring 
with stiffness k  is thus given by

 ( , ) .P k
k

1 0

1p ps =
3 > H  (19)

Next, for the dashpot with viscosity c  shown in Fig-
ure 2, it follows that

 ( ) ( ),f t f t2 1=      (20)

 .( ) ( ( ) ( ))f t c v t v t1 2 1= -  (21)

Therefore,

 ( ) ( ) ( ),v t c f t v t1
2 1 1= +  (22)

and thus the elementary power transmission matrix of a 
dashpot with viscosity c  is produced by

 ( ) .P c
c

1
1

0
1d =

3 = G  (23)

Figure 3(a) shows a shunted spring ,k  which is a spring 
connected to an inertial ground. The corresponding ele-
mentary power transmission matrix is calculated by

 ( , ) .P k
k1

0 1
p p,shs =

3 > H  (24)

Similarly, Figure 3(b) shows a shunted dashpot ,c  which is a 
dashpot connected to an inertial ground. The corresponding 
elementary power transmission matrix is given by

 ( ) .P c
c1

0 1,shd =
3 ; E  (25)

Note that

f2

v2 v1

T2 T1 f1 f1m

f2

v2 v1

T2 T1 f1
k f2

v2 v1

T2
T1 f1

c

f2

v2 v1

T2 T1b

(a) (b)

(c) (d)

FIGURE 2 (a) A mass m with forces f1 and f2 acting on its physical 
terminals T1 and T2, which are rigidly attached to the body at its 
center of mass. The dynamics of a mass require that the refer-
ence terminal T0 have constant inertial velocity. (b) An inerter b 
with forces f1 and f2 acting on its physical terminals T1 and T2. The 
physical terminals translate relative to each other, with velocities 
v1 and v2 relative to the reference terminal T0. For all t $ 0, f1(t) = 
f2(t). (c) A spring with forces f1 and f2 acting on its physical termi-
nals and velocities v1 and v2 relative to the reference terminal T0. 
For all t $ 0, f1(t) = f2(t). (d) A dashpot with forces f1 and f2 acting on 
its physical terminals and velocities v1 and v2 relative to the refer-
ence terminal T0. For all t $ 0, f1(t) = f2(t).

f2 f1
v1v2

T2 T1

k f2

v2
T2 T1

f1
v1

c

(a) (b)

FIGURE 3 (a) A shunted spring. (b) A shunted dashpot. For both 
structures, T1 and T2 are rigidly connected to each other.
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( , ) ( , ) ( , ) ( )

( , ) ( ) .
det det det det

det det
P m P b P k P c

P k P c 1
p p p

p
in

,sh ,sh

m s d

s d

= = =

= = =
 

(26)

It will be shown that all power transmission matrices 
formed from series and parallel connections of masses, 
inerters, springs, dashpots, shunted springs, and shunted 
dashpots share this property. Additional mechanical com-
ponents are the lever and gyrator. The power transmis-
sion matrix for the lever as well as its electrical analog, the 
transformer, is derived in “Power Transmission Matrices 
for Levers and Transformers.” A brief description of the 
gyrator is given in “What Is a Gyrator?”

RECIPROCITY
Consider the structure modeled by the power trans-
mission matrix in Figure 1. Suppose that terminal T2  is 
fixed to the reference terminal .T0  Therefore, v2  = 0, and 
(5) becomes

 .
f p

p
p
p

f
v0

2 11

21

12

22

1

1
=; ; ;E E E  (27)

It follows that

 f p
p

v1
21

22
1=-  (28)

and

 f p f p v2 11 1 12 1= +      (29)

 .p
p p p p

v
21

12 21 11 22
1=

-
 (30)

Hence, the transfer function G12  from f2  to v1  is given by

 .G p p p p
p

12
12 21 11 22

21
=

-
 (31)

Alternatively, suppose that terminal T1  is fixed to refer-
ence terminal .T0  In that case, ,v 01 =  and (5) becomes

 .
f
v

p
p

p
p

f
0

2

2

11

21

12

22

1
=; ; ;E E E  (32)

Therefore,

 ,v p f2 21 1=  (33)

and the transfer function G21  from f1-  to v2  results from

 ,G p21 21=-  (34)

where f1-  is the force on the structure.
The structure is reciprocal if transfer functions G12  and 

G21  are equal. Therefore, the structure is reciprocal if and 
only if

 .p p p p
p

p
12 21 11 22

21
21-

=-  (35)

Power Transmission Matrices for Levers 
and Transformers

Consider a lever of length l  with endpoints e1  and ,e2  

whose distances from the fulcrum are l1  and ,l l l2 1= -  

respectively. Letting ( )t~  denote the angular velocity of 

the lever around the fulcrum, it follows that ( ) ( )v t t l1 1~=  

is the velocity of 1e  along a circular arc with radius ,l1  and 

( ) ( )v t t l2 2~=  is the velocity of e2  along a circular arc with 

radius .l2  Hence, ( ) ( / ) ( ),v t v t12 1m=  where /l l1 2m =
3

 is the 

velocity ratio. Assume that forces f1-  and f2  are applied 

orthogonally to the lever at e1  and ,e2  respectively, and 

( )t~  is constant. The total moment on the lever is zero, and 

thus ( ) ( ) .f t l f t l 01 1 2 2- + =  Hence, ( ) ( ),f t f t2 1m=  where m  is 

the mechanical advantage. The power transmission matrix 

for the lever is given by

 ( ) .P 0

0
1l m

m

m
=
3 > H  (S8)

The circuit analog of the lever is the transformer, which 

consists of primary and secondary windings that transfer 

electrical energy. Let I1  and E1  denote the current through 

the primary windings and the potential drop across the pri-

mary windings, respectively; similarly, let I2  and E2  denote 

the current through the secondary windings and the poten-

tial drop across the secondary windings, respectively. Then,

 ( ) ( ),I t aI t2 1=  (S9)

 ( ) ( ),E t a E t1
2 1=  (S10)

where the turns ratio a is the ratio of the number of turns 

in the primary winding to the number of turns in the sec-

ondary winding. For ,a 1>  the transformer is step-down; 

for ,a 1<  it is step-up. The power transmission matrix of a 

transformer is produced by

 ( ) .P a
a

a0

0
1t =

3 = G  (S11)

What Is a Gyrator?
gyrator is an idealized electrical component whose 

power transmission matrix is given by

 ( ) .P a
a

a0 1

0
g =

3 > H  (S12)

Since only the off-diagonal entries of Pg  are nonzero, it fol-

lows that the gyrator converts currents to potential and vice 

versa. In effect, a gyrator can be used to make a capaci-

tor emulate the signal processing ability of an inductor and 

vice versa. In practice, a gyrator can be approximately real-

ized using resistors and operational amplifiers.

A
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Hence, the structure is reciprocal if and only if

 .detP 1=  (36)

The following result follows from properties of series 
and parallel connections discussed in subsequent sections.

Proposition 1
All structures constructed from series and parallel connec-
tions of masses, inerters, springs, dashpots, and transform-
ers are reciprocal.

Since ,detP 1=  inverting (5) yields

 
( )
( ) ( )

( )
( ) ,

f t
v t P

f t
v tp

1

1

1 2

2
= -= =G G  (37)

where

 .P
p
p

p
p

1 22

21

12

11
=
-

-- ; E  (38)

Consequently, p11  and p22  can be viewed as force and 
velocity transmissibilities.

SYMMETRY
Let P  be the power transmission matrix of the structure S  
with inputs ( , )vf1 1  and outputs ( , )f v2 2  diagrammed in Fig-
ure 1 and modeled by (5). Now, let Srev  be the structure, with 
T1  relabeled as T2  and vice versa. This relabeling is equivalent 
to reversing the direction of the positive axis, which replaces 
v1  and v2  with v2-  and ,v1-  respectively. Furthermore, f1  
and f2  become f2-  and ,f1-  respectively. The interpretation 
of these forces is the opposite of the convention for defining 
forces along the positive axis; under that convention, f2-  and 

f1-  are equivalent to f2  and ,f1  respectively. Therefore, the 
power transmission matrix Prev  of Srev  satisfies

 .
f
v P

f
v

1

1

2

2
rev

-
=

-
; ;E E  (39)

Prev  is the reverse power transmission matrix of ,S  and the 
structure is symmetric if .P Prev =

Next, multiplying (39) by ,D
1
0

0
1=
-

3 ; E  it follows that

 .
f
v DP D

f
v

1

1

2

2
rev=; ;E E  (40)

On the other hand, inverting P  yields

 .
f
v P

f
v

1

1

1 2

2
= -; ;E E  (41)

Hence, .DP D P 1
rev = -  The structure is symmetric if and 

only if P DPD1 =-  and the diagonal entries of P  are iden-
tical. It follows from the symmetry condition P DPD1 =-  
that .detP 1; ;=  By reciprocity, the stronger condition 
detP 1=  holds.

Intuitively, the mass, inerter, spring, and dashpot are 
symmetric structures, since the effect of applying a force and 
velocity at one terminal on the other terminal does not change 
if the terminals are relabeled. In fact, ( , ) ( , ) ,P m DP m Dp p1

m m=-  
( , ) ( , ) ,P b DP b Dp p1

in in=-  ( , ) ( , ) ,P k DP k Dp p1
s s=-  and ( ,P cd  

) ( , ) .DP c Dp p1
d=-  However, many structures are not sym-

metric, as shown by Example 1.

POWER TRANSMISSION MATRICES  
FOR SERIES CONNECTIONS
The series connection of a pair of structures requires 
that the neighboring physical terminals be rigidly joined. 
Because of the convention that left-side arrows point left 
and right-side arrows point right, it follows from Newton’s 
third law that adjacent forces at the common physical ter-
minal must be equal, that is, have the same sign and mag-
nitude. A single common reference terminal is assumed 
for the entire structure. The reference terminal must have 
constant inertial velocity in the case where at least one 
structure in the series connection is a mass; otherwise, it 
may be arbitrary.

Consider the series connection of the structures shown 
in Figure 4, where, for all , , ,i n1 1f= -

 ,f f, ,i i2 1 1= +  (42)
 ,v v, ,i i2 1 1= +  (43)

where f ,i 1  and f ,i 2  and v ,i 1  and v ,i 2  are the forces and veloci-
ties of the ith  structure in the figure. For all , , ,i n1 f=  let Pi  
be the power transmission matrix of the ith  structure, that is,

 ,
f
v P

f
v

,

,

,

,

i

i
i

i

i

2

2

1

1
=; ;E E  (44)

where

 .P
p
p

p
p

,

,

,

,
i

i

i

i

i

11

21

12

22
=
9 ; E  (45)

Note that, for convenience, the arguments of Pi  are omitted. 
Henceforth, the time argument will also be excluded.

To find the equivalent transmission matrix that relates 
( , )f v1 1  to ( )v2 2,f  in Figure 4, note that

f2

f2

v2

v2

T2 T1 f1

P1P2Pn

f1

v1

v1

Structure
n

Structure
2

Structure
1

(a)

(b)

FIGURE 4 A series connection of n structures. (a) The structures 
are connected in series by rigidly joining their physical terminals, 
where T1 and T2 are the physical terminals of the first and last 
structure, respectively. (b) A block diagram of the series connec-
tion in terms of transmission matrices.
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.

f
v P

f
v

P P
f
v

P P P
f
v

,

,

,

,

n
n

n

n n
n

n

n n

2

2

1

1

1
1 1

1 1

1 1
1

1
g

=

=

=

-
-

-

-

; ;

;

;

E E

E

E

 

(46)

Therefore, the power transmission matrix that results from 
connecting , ,P Pn1 f  in series is given by

 .P P P Pn n 1 1ser g=
3

-  (47)

Note that the ordering of the factors in (47) depends on the 
left-to-right ordering, from ( , )f v1 1  to ( ),v2 2,f  of the struc-
tures with the power transmission matrices , , ,P Pn1 f  
respectively, depicted in Figure 4. Since transmission 
matrices may not commute, the product (47) depends on 
the physical ordering of the structures in the series con-
nection. Observe that, if Pser  is the product of elementary 
power transmission matrices, .det P 1ser =

Example 1: Series Connections
Consider the series connection of two springs with 
stiffnesses k1  and k2  illustrated in Figure 5(a). The 
power transmission matrix of this series connection is 
given by

 

( ) ( , ) ( , )

,

P P k P k

k k k k

k k

1 0

1

1 0

1

1
1 1

0
1

1

1 1

0

1

p p p

p p p

p

s s2 1

2 1 1 2

1 2

1

ser =

= = +

=
+

-

c

c

m

m
R

T

S
S
SS

> > >

V

X

W
W
WW

H H H 

(48)

wh ic h  s hows  t h at  t he  e q u iva le nt  s t i f f ne s s  i s 
(( )k1 1 +  .( ))k1 2

1-  The equivalent viscosity of the 
series connection of two dashpots with viscosities 1c  
and c2  shown in Figure  5(b) is .(( ) ( ))c c1 11 2

1+ -  The 
power transmission matrix of the series connection of a 
dashpot with viscosity c  and a spring with stiffness k  in 
Figure 5(c) results from

 

( ) ( , ) ( , )

,
k k

P P k P c

c c

1 0

1

1
1

0
1

1
1

0

1

p p p

p p

s dser =

= = +> > >H H H  
(49)

which shows that the admittance of a spring and dashpot 
in series is given by ( ) ( ) .k c1p 1 +  Note that these three 
series connections are symmetric structures. The power 
transmission matrix of the series connection of a spring 
with stiffness k  and a mass with inertia m  in Figure 5(d) 
is produced by

 

( ) ( , ) ( , )

,
k k

P P k P m

m
m

m
k

1 0

1
1
0 1

1

1

p p p

p p
p

p
p

s m

2

ser =

= =
+

> ; >H E H  
(50)

which is not symmetric. Finally, the power transmission 
matrix of the series connection of a spring with stiffness k  
and an inerter with relative inertia b  in Figure 5(e) is calcu-
lated by

 

( ) ( , ) ( , )

,
k k

P P k P b

b b

1 0

1

1
1

0
1

1
1

0

1

p p p

p
p

p
p

sser in=

= = +> > >H H H  
(51)

which is symmetric.

POWER TRANSMISSION MATRICES  
FOR PARALLEL CONNECTIONS
The parallel connection of two structures requires that the 
physical terminals on each side of the structures be rigidly 
joined together. Consequently, on each side of a parallel 
connection, the velocities of the physical terminals relative 
to the reference terminal are equal.

f2

v2

T2

k2
k1

T1 f1

v1

f2

v2

T2
c2 c1 T1 f1

v1

f2

v2

T2

k c
T1 f1

v1

f2

v2

T2

k
m T1 f1

v1

f2

v2

T2
k

b T1 f1

v1

(a)

(b)

(c)

(d)

(e)

FIGURE 5 (a) A series connection of two springs with stiffnesses k1 
and k2. (b) A series connection of two dashpots with viscosities c1 
and c2. (c) A series connection of a dashpot with viscosity c and 
a spring with stiffness k. (d) A series connection of a mass with 
inertia m and a spring with stiffness k. (e) A series connection of 
an inerter with relative inertia b and a spring with stiffness k.
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Consider the parallel connection of the structures illus-
trated in Figure 6, where, for all , { , , },i j n1d f

 ,v v, ,i j1 1=  (52)
 ,v v, ,i j2 2=  (53)

and

 ,f f ,i
i

n

1 1
1

=
=

/  (54)

 ,f f ,i
i

n

2 2
1

=
=

/  (55)

where f ,i 1  and f ,i 2  are the forces at the common physical 
terminals, and v ,i 1  and v ,i 2  are the velocities of the common 
physical terminals. Let

 P
p
p

p
p

,

,

,

,
i

i

i

i

i

11

21

12

22
=
3 ; E (56)

be the power transmission matrix that represents the ith  
structure in the parallel connection in Figure 6.

If two masses with inertias m1  and m2  are connected 
in parallel, the resulting structure is a mass with inertia 

.m m1 2+  If a mass is connected in parallel with a spring, 
it constrains the motion of the physical terminals, and the 
spring cannot be compressed. The same situation occurs 
where a mass is connected in parallel with a dashpot. The 
instance where one of the structures in parallel is a mass is 
not considered. However, each structure in a parallel con-
nection may be a series connection of masses and at least 
one inerter, spring, or dashpot in series.

As shown in “The Derivation of ,Ppar ” the power trans-
mission matrix Ppar  that relates ( , )f v1 1  to ( , )f v2 2  in Figure 6 
is calculated by

 ,P 1
1

2

par
b

a ac b

c
=

-= G  (57)

where

 , , .p
p

p p
p1

,

,

, ,

,

i

i

i

n

ii

n

i

i

i

n

21

11

1 211 21

22

1
a b c= = =
3 3 3

= = =

/ / /  (58)

Note that division by zero would occur if one of the struc-
tures were a mass; however, as discussed above, this case is 
not allowed. The expressions of (58) are given in [45], [46], 
and [7, pp. 10–36]. Related expressions are given in [13, pp. 
342, 343] and [47].

Example 2: Parallel Connection
Consider the parallel connection of two structures, where one 
structure is the series connection of a mass with inertia m1  
and a spring with stiffness ,k  and the other one is the series 
connection of a mass with inertia m2  and a dashpot with vis-
cosity ,c  shown in Figure 7. The power transmission matrix of 
the series connection of the mass and the spring is given by

 ( )
k

P
m

m
m

k k

1 0

1
1
0 1

1

1
p p p

p
p

p1
1

1

1
2= =
+

,> ; >H E H  (59)

while the power transmission matrix of the series connec-
tion of the dashpot and the mass is given by

 ( ) .

c

P
m

m
m

c
c1

0 1

1 0
1

1

1 1
1p

p
p

p
1

2

2
2

= =
+

R

T

S
S
SS

; >

V

X

W
W
WW

E H  (60)

Applying (57) and (58) to (59) and (60) yields

 
,( )

( ) ( )
P c k

m c k m m m m c k
m c k

1p p
p p

p
p p p

p p
2

2
1 2

3
1 2

2

1
2par =

+
+ + + + +

+ +
G=

 
(61)

which is the power transmission matrix of the parallel con-
nection in Figure 7. It can be seen that ;det P 1par =  however, 
the structure is not symmetric. 

f2 T2

v2

k

m2

m1

c

T1 f1
v1

FIGURE 7 The series connection of a mass and spring is linked in 
parallel with the series connection of a dashpot and mass.

f2 f1T2 T1

v2 v1

Structure
1

Structure
2

Structure
n

FIGURE 6 The parallel connection of n structures. The structures 
are connected in parallel by rigidly joining their right physical ter-
minals to the physical terminal T1 and their left physical terminals 
to the physical terminal T2.

f

m

f2 + f T2 T1 f1

v1v2

m

(a) (b)

FIGURE 8 (a) A mass with an external force, f, acting on it. (b) The 
external force f is applied to the terminal to the left of m.
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MODELING EXTERNAL FORCES
Consider mass m  pictured in Figure 8, where f is an exter-
nal force acting on it. Using Newton’s second law, it follows 
from Figure 8 that

 ( ) ( ) ( ) ( ) .m v t f t f t f tp 1 2 1= + -  (62)

Since ,v v2 1=  it follows that ( , )f v1 1  and ( )v2 2,f  are related by

 
( )
( )

( )
( )

( )f t
v t

m f t
v t

f t1
0 1 0

p2

2

1

1
= +

-= ; = ;G E G E (63)

or, equivalently,

 
( ) ( )

( )
( )
( ) .

f t f t
v t

m f t
v t

1
0 1

p2

2

1

1

+
== ; =G E G  (64)

MODELING STRUCTURES WITH BOUNDARY 
CONDITIONS

Example 3: The Single-Degree-of-Freedom Structure
Consider the structure depicted in Figure 9(a), where exter-
nal force f is applied to the mass. The inerter, spring, and 
dashpot are connected in parallel, and the mass is con-
nected in series with the inerter, spring, and dashpot. 
 Figure 9(b) shows the physical terminals of the structure. It 

The Derivation of Ppar
e consider the parallel connection of n 2=  power trans-

mission matrices; the case of n  power transmission ma-

trices follows by induction. First, define

 P
p
p

p
p

,

,

,

,
1

1 11

1 21

1 12

1 22
= ; E (S13)

 P
p
p

p
p

,

,

,

,
2

2 11

2 21

2 12

2 22
= ; E (S14)

so that

 , ,
f
v

P
f
v

f
v

P
f
v

12

2
1

11

1

22

2
2

21

1
= =; ; ; ;E E E E  (S15)

where v2  is the common velocity of the physical output termi-

nals of P1  and .P2  It follows that

 ,v p f p v, ,2 1 21 11 1 22 1= +  (S16)

 ,v p f p v, ,2 2 21 21 2 22 1= +  (S17)

which imply that

 ,p f p
p

v p
p p

v,
,

,

,

, ,
1 11 11

1 21

1 11
2

1 21

1 11 1 22
1= -  (S18)

 .p f p
p

v p
p p

v,
,

,

,

, ,
2 11 21

2 21

2 11
2

2 21

2 11 2 22
1= -  (S19)

Adding (S18) and (S19) yields

 ,p f p f v v, ,1 11 11 2 11 21 2 1a d+ = -  (S20)

where

 .p
p p

p
p p

,

, ,

,

, ,

1 21

1 11 1 22

2 21

2 11 2 22
d = +
9  (S21)

Next, dividing (S16) by P ,1 21  and (S17) by ,P ,2 21  adding the re-

sulting equations, and dividing by b  yields

 ( ) .v f f v1
2 11 21 1b b

c
= + +  (S22)

Now, substituting (S22) into (S20) results in

 ( ) .p f p f f f v, ,1 11 11 2 11 21 11 21 1b
a

b
ac

d+ = + + -c m  (S23)

Next, summing

 f p f p v, ,12 1 11 11 1 12 1= +  (S24)

 f p f p v, ,22 2 11 21 2 12 1= +  (S25)

yields

 ( ) .f f p f p f p p v, , , ,12 22 1 11 11 2 11 21 1 12 2 12 1+ = + + +  (S26)

Substituting (S23) into (S26) gives

 

( )

[ ( ) ( [ ]) ]

( ) .det det

f f f f p p v

f f p p v

f f p
P

p
P v

1

1

, ,

, ,

, ,

12 22 11 21 1 12 2 12 1

11 21 1 12 2 12 1

11 21
1 21

1

2 21

2
1

b
a

b
ac

d

b
a ac b d

b
a ac b

+ = + + + + -

= + + + + -

= + + - +

c

c

m

m; ; E E

 

(S27)

Now consider the case where P1  and P2  represent series 

connections of masses, springs, and dashpots. It follows that 

det detP P 11 2= = , and thus (S27) implies that

 [ ( ) ( ) ] .f f f f v1
12 22 11 21

2
1b

a ac b+ = + + -  (S28)

Combining (S22) and (S28) yields (57). This proves (57) in the 

case where P1  and P2  are each the power transmission ma-

trices of the series connections of masses, springs, and dash-

pots. Note that detP 1par = .

Consider the case where P1  and P2  are each either the power 

transmission matrices of the series connections of masses, springs, 

and dashpots (as in the previous instance) or the power transmis-

sion matrices of the series connections of parallel connections of 

masses, springs, and dashpots. In this case, det detP P 11 2= = , 

and again (57) holds. Continuing in a similar fashion, it follows that, 

for all structures constructed from series and parallel connections 

of masses, springs, and dashpots, (57) holds. 

W
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follows from (57) that the power transmission matrix P of 
the parallel inerter-spring-dashpot connection is given by

 ( )P
b c k

1 0

1p
p p

p
2

=
+ +

.> H  (65)

The wall is assumed to be an inertially nonrotating mas-
sive body, and it serves as physical terminal T1  and refer-
ence terminal .T0  Let f1  represent the force applied to the 
wall by the spring and dashpot, and since T0  is colocated 

with ,T1  it follows that .v 01 =  Viewing the left edge of the 
mass as physical terminal ,T2  let v2  represent the velocity 
of the mass. Since no force is applied to the left edge of the 
mass, it is clear that .f 02 =  Using the boundary conditions 
v 01 =  and ,f 02 =  it follows from (64) that
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( )

( )

( ) ( )

( )
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f t
v t
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f t

f t
b c k
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f t
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f t

1
0 1
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p p
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p p
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p p
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2 2
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1 2

2
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2 1

=
+ +

=

+
+ +

+ +
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S
S
S
S
S

= ; > ;

V

X

W
W
W
W
W

G E H E

 

(66)

It thus follows that

 ( )
( )

( ),f t
b c k

m b c k
f t

p p
p p

2

2

1=
+ +

+ + +
 (67)

 ( ) ( ) .v t
b c k

f t
p p

p
2 2 1=

+ +
 (68)

Combining (67) and (68) yields

 ( )
( )

( ) .v t
m b c k

f t
p p
p

2 2=
+ + +

 (69)

Alternatively, solving (68) for f1  gives

 ( ) ( ),f t
b c k

v tp
p p

1

2

2=
+ +

 (70)

which expresses the unknown force f1  applied to the wall 
by the structure in terms of .v2  Substituting f1  given by (70) 
into (67) and solving for v2  yields (69). Although this differ-
ent derivation of (69) involves more steps, it utilizes (68), 
which can be viewed as a feedback connection, as illus-
trated in Figure 10 [where H denotes the transfer function 
in (68)]. This feedback connection specifies the unknown 
reaction force f1  applied by the wall in terms of the veloc-
ity, ,v2  of the mass. 

Example 4: The Two-Degrees-of-Freedom Structure
Consider the structure pictured in Figure 11(a), where the 
external force f is applied to the first mass. Note that the 
springs and masses are connected in series. Figure 11(b) shows 
the physical terminals of the structure. Using the boundary 
conditions v 01 =  and ,f 02 =  it follows from (63) that

( ) ( , ) ( , ) ( , ) ( , )
( ) ( )

v t P m P k P m P k
f t f t0
0 0p p p pm s m s

2
2 2 1 1

1
= +

-c m; ; ;E E E
 (71)
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1 2 1
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+ + + +

- +

+ + -
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R
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S

V

X

W
W
W
W
W

 (72)

as illustrated in Figure 12(a). Therefore,

f

m

b
k

c

b

kmf2 + f = f T2 T1 f1
v1 = 0v2 c

(a)

(b)

FIGURE 9 (a) An inerter, spring, and dashpot are connected in paral-
lel; this substructure is connected in series with a mass. The external 
force f is applied to the mass, which is sprung. (b) The physical termi-
nal T1 is attached to the wall and thus has zero velocity. The physical 
terminal T2 is attached to the left side of the mass and is free.

f

f f2 = 0

v2
P2

P2

P1

P1

f1

f1

v1 = 0

v1 = 0

f

f

f2 = 0

v2

H

(a)

(b)

FIGURE 10 (a) A block diagram of the single-degree-of-freedom 
structure in Figure 9 represented as the product of two elementary 
power transmission matrices. The external force f is added to f2, 
which is zero since the mass is sprung. The goal is to determine 
the transfer function from the external force f to the velocity v2 of 
m2. (b) A modification of the block diagram in (a). The transfer 
function H given by (70) specifies the force f1 on the wall in terms 
of v2. By relating v2 to f1, H closes a feedback loop.
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[ ( ) ] ( )

( ) ( ),
m m k m k m k m k k f t

k m k f t

0 p p

p
1 2

4
1 2 2 1 2 2

2
1 2 1

1 2
2

2

= + + + +

- +
 

(73)

 ( ) [( ) ( ) ( )] .v t k k m k k f t k f t1 p p p p2
1 2

1
3

1 2 1 1= + + -  (74)

Solving (73) for ( )f t1  yields

 ( )
( )

( )
( ) .f t

m m k m k m k m k k
k m k

f t
p p

p
1

1 2
4

1 2 2 1 2 2
2

1 2

1 2
2

2
=

+ + + +

+
 (75)

Finally, substituting (75) into (74) gives

 ( )
( ) ( )

( ) .v t
m k m k k m

k
f t

p p p
p

2
1

2
1 2

2
2 2 2

2
2

=
+ + +

 (76)

Alternatively, solving (73) for ( )f t  produces

 ( )
( )

( )
( ) .f t

k m k
m m k m k m k m k k

f t
p

p p
1 2

2
2

1 2
4

1 2 2 1 2 2
2

1 2
1=

+

+ + + +
 (77)

Next, substituting ( )f t  given by (77) into (74) results in

 ( )
( ) [( ) ( ) ]

( ( ) )
( ) .v t

k m k m k m k k m
k m m k m k m k m k k

f t
p p p p

p p p
2

1 2
2

2 1
2

1 2
2

2 2 2
2

2 1 2
4

1 2 2 1 2 2
2

1 2
1=

+ + + +

+ + + +

 
(78)

Therefore,

 ( )
( ( ) )

( ) [( ) ( ) ]
( ),f t

k m m k m k m k m k k
k m k m k m k k m

v t
p p p

p p p p
1

2 1 2
4

1 2 2 1 2 2
2

1 2

1 2
2

2 1
2

1 2
2

2 2 2
2

2=
+ + + +

+ + + +

 (79)

which expresses the unknown force f1  applied by the wall 
in terms of .v2  Substituting ( )f t1  given by (79) into (74) and 
solving for ( )v t2  yields (76). While this derivation of (76) 
is more tedious, it utilizes (79), which can be viewed as a 
feedback connection, as depicted in Figure 12(b), where H 
denotes the transfer function in (79). This feedback con-
nection specifies the unknown reaction force f1  applied 
by the wall. 

ENERGY TRANSMISSION MATRICES  
FOR STRUCTURES
An energy transmission matrix, E, of a structure with phys-
ical terminals T1  and T2  is a 2 2#  matrix that describes 
the relationship between the forces f1  and f2  and the posi-
tions q1  and q2  of T1  and ,T2  as shown in Figure 13(a). As 
depicted in Figure 13(b), E satisfies

 
( )
( ) ( )

( )
( )

f t
q t E

f t
q tp

2

2

1

1
= ,= =G G  (80)

where

 .E
e
e

e
e

11

21

12

22
= ; E  (81)

Note that e11  is a force transmissibility, e12  is a stiffnance, e21  
is a compliance, and e22  is a position transmissibility. The 

entries of a transmission matrix consist of two transmis-
sibilities, one stiffnance and one compliance.

Relating energy transmission matrices to power trans-
mission matrices using v qp1 1=  and v qp2 2=  yields

f2 = 0
v1 = 0
f1

v2

T2
T1m2

m2

k2

k2

k1

k1

m1

m1

f

f

(a)

(b)

FIGURE 11 (a) A structure with two masses and two springs. (b) The 
springs k1 and k2 and masses m1 and m2 are connected in series, 
and the external force f is applied to the terminal to the left of m1.

f2 = 0

f2 = 0

v1 = 0

v1 = 0

f1

f1
v2

v2

P4 P3 P2 P1

P4 P3 P2 P1

f

f

H

(a)

(b)

FIGURE 12 (a) A block diagram of the two-degrees-of-freedom struc-
ture in Figure 11 represented as the product of four elementary power 
transmission matrices. The external force f is added to the output of 
m2. The goal is to determine the transfer function from the external 
force f to the velocity v2 of m2. (b) A modification of the block diagram 
in (a). The transfer function H given by (79) specifies the force f1 on 
the wall in terms of v2. By relating v2 to f1, H closes a feedback loop.

f2 T2 T1 f1
f1

q1
q1q2

f2

q2

Structure
E

(a) (b)

FIGURE 13 (a) A structure relating force f1 and position q1 to force f2 
and position q2. The forces f1 and f2, which are absolute (through) 
variables, are applied to the physical terminals T1 and T2, respec-
tively. The positions q1 and q2 of T1 and T2, respectively, are rela-
tive (across) variables defined relative to the reference terminal, 
T0. (b) The input–output representation of (5) showing the input 
signals f1 and q1 and output signals f2 and q2. The energy trans-
mission matrix E(p) of the structure represents the relationship be-
tween the force and position of one physical terminal to the force 
and position of another physical terminal.
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 .E P
p
p

p

p

1
0

0
1

1
0

0
p p

p

p

11

21

12

22
= => ; >H E H  (82)

The elementary energy transmission matrices for the mass, 
inerter, spring, and dashpot are given by

 ( , ) ,E m
m1

0 1
p

p
m

2

=
3 ; E  (83)

 ( , ) ,E b
b

1 0
11p

p2
in =

3 > H  (84)

 ( , ) ,
k

E k
1
1

0
1ps =

3 > H  (85)

 ( , ) .E c
c

1 0
11p

p
d =

3 > H  (86)

As in the case of the elementary power transmission matrices,

 ( , ) ( , )
( , ) ( , ) .

det det
det det

E m E b

E k E c 1
p p

p p
m in

s d

=

= = = (87)

The energy transmission matrices for series and parallel 
connections satisfy the rules given for power transmis-
sion matrices.

Example 5: Energy Analysis of the  
Single-Degree-of-Freedom Structure
Consider the structure in Figure 9(a), where external force f 
is applied to the mass. The inerter, spring, and dashpot are 
connected in parallel, and the mass is connected in series 
with the inerter, spring, and dashpot. Figure 14 shows the 
physical terminals of the structure. It follows from (57) that 
the energy transmission matrix E of the parallel inerter-
spring-dashpot connection is given by

 ( ) .E
b c k

1
1

0
1p

p p2
=

+ +
> H  (88)

Let f1  represent the force applied to the wall by the spring 
and dashpot, and since T0  is colocated with ,T1  it follows 
that .q 01 =  Viewing the left edge of the mass as physical ter-
minal ,T2  let q2  represent the position of the mass from the 
reference terminal, .T0  Because no force is applied to the left 
edge of the mass, it follows that .f 02 =  Using the boundary 
conditions q 01 =  and ,f 02 =  it follows from (64) that

 

( )
( )

( )

( ) ( )

( )
.

f t
q t

m

b c k

f t

f t
b c k

m
f t

b c k
f t

1
0 1

1 0
1 0

1

1

p

p p

p p
p

p p

2

2

2

1

1 2

2

1

2 1

=
+ +

=

+
+ +

+ +

R

T

S
S
S
S
S

= ; > ;

V

X

W
W
W
W
W
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(89)

It thus follows that

 ( )
( )

( ),f t
b c k

m b c k
f t

p p
p p

2

2

1=
+ +

+ + +
 (90)

 ( ) ( ) .q t
b c k

f t1
p p

2 2 1=
+ +

 (91)

Combining (90) and (91) results in

 ( )
( )

( ) .q t
m b c k

f t1
p p

2 2=
+ + +

 (92)

Finally, as in the case of power transmission matrices, 
the feedback connection is shown in Figure 15, where H 
denotes the transfer function that satisfies

 ( ) ( ) ( ),f t H q tp1 2=  (93)

that is,

 ( ) .H b c kp p p2= + +  (94)
 

f2 + f = f T2 m

b

k

c

T1 f1

q1 = 0
q2

FIGURE 14 The physical terminal T1 is attached to the wall and thus 
has zero position. The physical terminal T2 is attached to the left 
side of the mass and is free.

f
f

f2 = 0

f
f

f2 = 0

q1 = 0

q1 = 0

q2

q2

E2 E1

E1E2

f1

f1

H

(a)

(b)

FIGURE 15 (a) A block diagram of the single-degree-of-freedom 
structure in Figure 9 represented as the product of two elementary 
energy transmission matrices. The external force f is added to f2, 
which is zero since the mass is sprung. The goal is to determine 
the transfer function from the external force f to the position q2 
of m2. (b) A modification of the block diagram in (a). The transfer 
function H given by (94) specifies the force f1 on the wall in terms 
of q2. By relating q2 to f1, H closes a feedback loop.
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POWER TRANSMISSION MATRICES  
FOR ELECTRICAL SYSTEMS
In electrical systems, power is the product of potential E 
and current I. The unit of potential is the volt, where 1 V = 1  
joule/coulomb (J/C). The unit of current is the ampere, 
where 1 A = 1 C/s. Current is the derivative of charge Q, 
that is, I Q= o . The product EI has the dimensions of 
power, whose unit is the watt, where 1 W = (1 V)(1 A) = 
(1 J/C)(1 C/s) = 1 J/s.

As with structures, power transmission matrices can be 
defined for circuits. This can be done by expressing an anal-
ogy between mechanical systems and electrical systems 
and recasting the results obtained for mechanical systems. 
Taking advantage of the fact that the product of current and 
potential has the dimensions of power, this can be done by 
1) associating force ( f ) with potential (E) and velocity (v) 
with current (I) (the fE-vI analogy) or 2) associating force (f) 
with current (I), and velocity (v) with potential (E) (the fI-vE 
analogy). These analogies, which are shown in Table 2, have 
various traditional names. For instance, fE-vI has names 
including the Maxwell analogy, direct analogy, impedance 
analogy, and effort-flow analogy, whereas fI-vE is termed 
the Firestone analogy, inverse analogy, mobility analogy, 
and across-through analogy.

One argument in favor of fE-vI is that the units of 
potential [joule per coulombs (volts)] and the units of cur-
rent [coulombs per second (amperes)] are closely aligned, 
respectively, with the units of force [joules per meter 
(newtons)] and the units of velocity (meters per second). 
Hence, fE-vI merely entails replacing meters with cou-
lombs, and transforming mechanical systems to electrical 
systems involves replacing m, c, and k with L, R, and 1/C, 
respectively. Under this analogy, the reference terminal for 
power transmission matrices is defined in terms of a cur-
rent level.

In fI-vE, force units (newtons) are analogous to cur-
rent units [coulombs per second (amperes)], and veloc-
ity units (meters per second) are analogous to potential 
units [joule/coulombs (volts)]. The reference terminal 
for power transmission matrices is defined in terms of 
potential E. Transforming mechanical systems to electri-
cal systems necessitates replacing m, c, and k with C, 1/R, 
and 1/L, respectively.

There are two reasons why fE-vI may seem to be more 
natural than fI-vE as an analogy to mechanical systems. As 
noted, replacing meters with coulombs transforms force 
to potential and velocity to current. The analogy between 
mass and inductance reflects the fact that a mass stores 
kinetic energy due to velocity v while an inductor stores 
“kinetic” energy due to the flow of charge (current). Simi-
larly, the analogy between stiffness and the reciprocal of 
capacitance reflects the storage of potential energy. These 
energy analogies are less clear for fI-vE. On the other hand, 
the reference terminal for fE-vI is a current level, in contrast 
with the reference terminal for fI-vE (which is a potential 

level). The latter is the natural choice in electrical systems. 
This point is discussed in [29].

A longstanding difficulty in applying fI-vE concerns 
the ability to realize capacitors with masses. A capaci-
tor that has one terminal grounded can be realized by a 
mass. The mechanical analogy of an ungrounded capaci-
tor is less obvious. This point is mentioned in [22, p. 20], 
which states, “Nongrounded capacitors have no mechani-
cal analog.” One solution to this problem is discussed 
in [24, p. 234], which uses a transformer to produce an 
“ungrounded” mass. The present article takes advantage 
of the inerter.

Another distinction between fE-vI and fI-vE is the type 
of external source that arises in an analogy to external 
force. In fE-vI, the external source is potential, whereas in 
fI-vE, it is current. Converting a structure to a circuit by 
means of fE-vI yields a circuit with an applied potential, 
while the conversion through fI-vE produces a circuit with 
an applied current.

Two additional mechanical/electrical analogies can be 
defined for power transmission matrices. Replacing E and 
I Q= o  in fE-vI with Q and ,Eo  respectively, yields fQ- .vEo  
The reference terminal for power transmission matrices is 
defined in terms of a potential rate. Although stiffness k 
is analogous to capacitance, neither mass nor viscosity has 
analogs in terms of R, L, or C.

Mechanical 
Variables f q v a m, b c k

Electrical 
analogy  
fE-vI

E IQ= # Q I=o Q I=p o L R 1/C

Electrical 
analogy 
fQ-vEo

IQ= # E Eo Ep C

Electrical 
analogy  
fI-vE

I EU= # EU =o EU =p o C 1/R 1/L

Electrical 
analogy  
fU -vIo

EU= # I Io Ip L

TABLE 2 The mechanical-electrical analogies. In analogy 
fE-vI, the external source is potential, and the position 
and velocity reference terminals are charge and current 
levels, respectively. In analogy fQ − vĖ, the external source is 
current, and the position and velocity reference terminals are 
potential and potential-rate levels, respectively. In analogy 
fl-vE, the position and velocity reference terminals are 
magnetic-flux and potential levels, respectively. In analogy 
fU − vİ, the position and velocity reference terminals are 
current and current-rate levels, respectively. Note that, in 
analogies fQ − vĖ and fU − vİ, m and c have no analogs  
in terms of R, L, and C. A capacitor may represent a mass 
or an inerter, depending on whether or not it is shunted to 
ground.
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Alternatively, replacing I and E in fI-vE by EU = #  and 
Io  in fI-vE, respectively, yields ,f vI-U o  where U  is magnetic 
flux with units of webers and 1  Wb  = 1  V-s. The refer-
ence terminal for power transmission matrices is defined 
in terms of a current rate. While stiffness k is analogous 
to inductance, neither mass nor viscosity have analogs in 
terms of R, L, or C.

It is interesting to note that none of the analogies in Table 2 
explicitly requires a reference terminal that is analogous to 
the unforced particle specified by Newton’s second law for 
force and inertia [21]. In fI-vE, only potential difference is rel-
evant, and there is no need to define an inertial ground. Mass 
is analogous to capacitance, and the idealized model of a 
capacitance assumes the ability to send and receive electrons 
to and from ground without affecting the ground’s poten-
tial. The electrical ground in a circuit is implicitly assumed 
to have infinite capacity. Specifically, the earth ground pro-
vides an approximately infinite volume that can absorb or 
lose electrons without losing its charge neutrality. Analo-
gously, in structural applications, an inertially nonrotating 
massive body provides a reference point for defining the 
inertial acceleration of a particle subject to forcing. As in the 

case of the earth ground, whose neutrality is unaffected by 
accumulating or shedding charge, the inertial velocity of an 
inertially nonrotating massive body is unaffected by forces. 
Consequently, under fI-vE, Newton’s second law f = mpv is 
precisely I = CpE, where an electrical ground with infinite 
capacity plays the role of an inertial frame.

Although the choice has pros and cons, we adopt the 
analogy fI-vE. Under it, electrical impedance is the transfer 
function from current to potential. The analogous trans-
fer function is from force to velocity, which, according to 
Table 1, is mechanical admittance. Under fI-vE, electrical 
impedance and admittance are inconsistent with mechani-
cal impedance and admittance. Within the circuit setting, 
a fourth element can be considered, the memristor, whose 
mechanical analog is the memdashpot. For details, see 
“What Is a Memristor?”

POWER TRANSMISSION MATRICES FOR CIRCUITS
Consider the circuit with physical terminals T1  and T2  
in Figure 16. Under fI-vE, power transmission matrices 
transform current and potential inputs to current and 
potential outputs, that is,

What Is a Memristor?

In the analogy ,fI vE-  force f  and velocity v  are analogous to cur-

rent I  and potential ,E  respectively. The integral of force (mo-

mentum )h  and the integral of velocity (position )q  are analo-

gous to charge Q and magnetic flux ,U  respectively. These four 

mechanical quantities and their electrical analogs can be used 

to label the four vertices of two squares displayed in Figure S2. 

In the electrical case, three of the edges correspond to resistors, 

capacitors, and inductors. The remaining edge can be viewed as 

the relationship between charge and magnetic flux. It might be 

expected that the integration operators would cancel and that the 

remaining edge would be equivalent to resistance. The idealized 

element of the remaining edge turns out to be a hysteretic opera-

tor; this is the memristor [49]. In the mechanical instance, three 

of the edges correspond to masses, springs, and dashpots. The 

remaining edge is a hysteretic dashpot called a memdashpot [50], 

[51], which is the mechanical analog of the memristor.
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FIGURE S2 A memristor and memdashpot. (a) The four vertices of the square correspond to the four electrical variables that are 
analogous to force and velocity and their integrals in .fI vE-  The four edges of the square correspond to resistors, capacitors, and 
inductors; the remaining edge is the memristor, which is an idealized hysteretic device. (b) The mechanical analog of the memris-
tor; that is, the memdashpot.
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 .
I
E P

I
E

2

2

1

1
=; ;E E  (95)

When two circuits are joined, the common physical termi-
nals constitute a node through which current passes. The 
arrows for I1  and I2  indicate the direction of current flow in 
the case where E1  and E2  are constant, ,E E>2 1  and ;I I2 1=  
in this instance, .I I 0>1 2=  In the case where E1  and E2  
are constant, ,E E<2 1  and ,I I2 1=  then ,I I 0<1 2=  and the 
current flows opposite to the indicated direction. This sign 
convention, which is consistent with the one for forces and 
structures, avoids the need for the minus signs that appear 
in the definition of ABCD matrices (as explained in “Power 
Transmission Matrices and ABCD Parameters”).

As a special case, consider the capacitor with physical ter-
minals T1  and T2  and reference terminal T0  that appears in 
Figure 17(a). For a capacitor with capacitance C, it follows that

 ( ) ( ) ( ) ( ).
p p

E t E t
C

I t
C

I t1 1
2 1 1 2- = =  (96)

Thus the elementary power transmission matrix is given by

 ( , ) .P C
C

1 0
11p

p
cap =

3 > H  (97)

For the resistor with resistance R shown in Figure 17(b), 
it follows that

 ( ) ( ) ( ) ( )E t E t RI t RI t2 1 1 2- = =  (98)

and thus

 ( ) ( ) ( ).E t RI t E t2 1 1= +  (99)

Hence, the elementary power transmission matrix is found by

 ( , ) .P R R
1 0

1pres =
3 ; E  (100)

For the inductor with inductance L shown in Figure 17(c), 
it follows that

 ( ) ( ) ( ) ( ).p pE t E t L I t L I t2 1 1 2- = =  (101)

Hence, the elementary power transmission matrix is given by

I2

I2

I1

I1

T2 T1

E2

E2

E1

E1

Circuit

P

(a)

(b)

FIGURE 16 (a) A circuit relating current I1 and potential E1 to current I2 
and potential E2. The currents I1 and I2, which are absolute (through) 
variables, flow through the physical terminals T1 and T2, respectively, 
which are nodes. The arrows for I1 and I2 indicate the direction of cur-
rent flow when E2 > E1 and I2 = I1; in this case, I1 = I2 > 0. When E2 < E1 
and I2 = I1, I1 = I2 < 0, and the current flows opposite to the indicated 
direction. The potentials E1 and E2 of T1 and T2, respectively, are rela-
tive (across) variables defined in relation to the reference terminal T0 
(ground). (b) The power transmission matrix P of the circuit relates 
the current and potential at T1 to the current and potential at T2.

Power Transmission Matrices  
and ABCD Parameters

related representation of power transmission matrices 

is given by ABCD parameters, which have the form

 ,
E
I

P
E

I
2

2

1

1
ABCD=

-
; ;E E  (S29)

where

 .P
A
C

B
DABCD = ; E  (S30)

Consequently, P  can be written in terms of ABCD param-

eters as

 .P
C
A

D
B

=
-

-
; E  (S31)

The minus sign preceding I1  reflects the convention that 

the current is positive in the case where it is flowing into 

either physical terminal [14, p. 11.6].

A

I2 = I1 I2 = I1 I2 = I1T2 T2 T2T1
T1 T1I1 I1I1

E2 E2 E2E1 E1E1

C LR

(a) (b) (c)

FIGURE 17 (a) A capacitor with capacitance C and current I1 = I2 flowing through it with potentials E1 and E2 at its physical terminals T1 
and T2, respectively. (b) A resistor with resistance R and current I1 = I2 flowing through it with potentials E1 and E2 at its physical terminals 
T1 and T2, respectively. (c) An inductor with inductance L and current I1 = I2 flowing through it with potentials E1 and E2 at its physical 
terminals T1 and T2, respectively.
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 ( , ) .P L L
1 0

1p pind =
3 ; E  (102)

Note that power transmission matrices (97), (100), and 
(102) for the capacitor, resistor, and inductor, respectively, 
are analogous to power transmission matrices (14), (23), 
and (19) for the inerter, dashpot, and spring, respectively. 
To obtain an analog for the mass, we consider the shunted 
capacitor in Figure 18(a). Letting I3  denote the current 
through the capacitor, it follows that .I I I2 1 3= +  Since 
E E1 2=  is the potential drop across the capacitor,

 .I I CpE2 1 1= +  (103)

The elementary power transmission matrix for the shunted 
capacitor is produced by

 ( , ) .p
p

P C
C1

0 1cap,sh =
3 ; E  (104)

Likewise, the elementary power transmission matrices for 
the shunted resistor and shunted inductor are given by

 ( ) ,R RP 1

0

1

1
res,sh =

3 = G  (105)

 ( , ) .p pLP L
1

0 1

1
ind,sh =

3 > H  (106)

Note that the shunted capacitor is analogous to the mass, and 
the shunted resistor and shunted inductor are analogous to the 
shunted dashpot and shunted spring, respectively. Observe 
that none of the circuits in Figure 17 is connected to ground, 
and T0  serves as an arbitrary potential reference level; in effect, 
T0  may be a floating ground. However, in Figure 18, all three 
circuits are connected to ground, and T0  is assumed to be an 
earth ground, whose potential is constant.

ENERGY TRANSMISSION MATRICES  
FOR ELECTRICAL SYSTEMS
For energy transmission matrices, the analogies between 
mechanical and electrical systems require a variable that corre-
sponds to position, where the electrical analog of position is the 
integral of the electrical analog of velocity. For fE-vI, the electri-
cal analog of position is charge; for ,fQ vE- o  it is potential; for 
fI-vE, it is magnetic flux; and for ,f vI-U o  it is current.

Under fI-vE, power transmission matrices transform 
current and potential inputs into current and potential 
outputs, according to (95). Energy transmission matrices 
transform current and magnetic-flux inputs into current 
and magnetic-flux outputs, that is,

 ( ) .p
I

E
I2

2

1

1U U
=; ;E E  (107)

The elementary energy transmission matrices for the capac-
itor, resistor, and inductor are given by

 ( , ) ,p
pC

E C
1
1

0
12

cap =
3 > H  (108)

 ( , ) ,p
p
RE R
1 0

1res =
3 > H  (109)

 ( ) .E L L
1 0

1ind =
3 ; E  (110)

RECIPROCITY AND SYMMETRY FOR CIRCUITS
Consider the circuit modeled by the power transmission 
matrix in Figure 16. Shorting terminal T2  to ground yields 

,E 02 =  and (95) becomes

 .
I p

p
p
p

I
E0

2 11

21

12

22

1

1
=; ; ;E E E  (111)

The transfer function G12  from I2  to E1  is given by 

 .G p p p p
p

12
12 21 11 22

21
=

-
 (112)

Alternatively, shorting T1  to ground yields ,E 01 =  and 
(95) becomes

 .
I
E

p
p

p
p

I
0

2

2

11

21

12

22

1
=; ; ;E E E  (113)

The transfer function G21 from I– 1  to E2  is given by

 .G p21 21=-  (114)

The circuit is reciprocal if the transfer functions G12  and G21 
are equal, that is, if and only if ,det P 1=  as in the case of 
structures. This property is demonstrated in [14, p. 11.3].

A circuit is symmetric if reversal of its physical ter-
minals yields the same power transmission matrix. 

I2 I2 I2
T2 T2 T2

T1 T1 T1I1 I1I1

E2 E2 E2E1 E1
E1C LR

(a) (b) (c)

FIGURE 18 (a) A shunted capacitor with capacitance C and currents I1 and I2 flowing through its physical terminals T1 and T2 with poten-
tials E1 and E2, respectively. (b) A shunted resistor with resistance R and currents I1 and I2 flowing through its physical terminals T1 and 
T2 with potentials E1 and E2, respectively. (c) A shunted inductor with inductance L with currents I1 and I2 flowing through its physical 
terminals T1 and T2 with potentials E1 and E2, respectively.
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As in structures, a circuit is symmetric if and only if 
the diagonal entries of its power transmission matrix 
are equal, that is, if and only if the current and potential 
transmissibilities are equal. Symmetric power transmis-
sion matrices play a role in the analysis of transmission 
lines as described in “Power Transmission Matrices and 
Transmission Lines.”

SERIES AND PARALLEL CONNECTION OF CIRCUITS
The power transmission matrices produced by (97)–(106) are 
special cases of the circuits shown in Figure 19. The circuit 
with impedance Z1  in Figure 19(a) is not grounded. There-
fore, ,I I2 1=  and the power transmission matrix is given by

 ( ) ( ) .p pP Z
1 0

11
1

= ; E  (115)

Likewise, the power transmission matrix for the shunt 
circuit with impedance Z2  in Figure 19(b) is found by

 ( ) ( ) .p pZP
1

0 1

1
2 2= > H  (116)

The circuits in Figure 19(a) and (b) can be connected in 
series, and the corresponding power transmission matrices 
are provided by the rules for series connections of struc-
tures. Consequently, the power transmission matrix for the 
circuit in Figure 19(c) is calculated by

 ( ) ( )
( )

( )

( )
( ) ,p p

p

p

p
pP P

Z

Z

Z
Z

1 1

1
1 2

1

2

2

1
=

+

R

T

S
S
S
SS

V

X

W
W
W
WW

 (117)

whereas the power transmission matrix for the circuit in 
Figure 19(d) results from

 ( ) ( ) ( )
( )

( )
( ) .p p p

p

p
pP P Z

Z

Z
Z

1

1

1
2 1 2

1

1

2=
+> H  (118)

TRANSFORMING STRUCTURES INTO  
CIRCUITS AND VICE VERSA
One of the benefits of analogies is the ability to convert a 
structure into a dynamically equivalent circuit and vice 
versa. As depicted in [20], this can be done under fE-vI by 

Power Transmission Matrices and Transmission Lines

One of the main applications of power transmission matrices 

is to approximate the modeling of transmission lines [5, Ch. 1, 

pp. 200–218], [12, pp. 212–214], [13, pp. 361, 362]. Although 

a transmission is a distributed electrical element, an approxi-

mate model can be constructed by viewing the transmission 

line as the series connection of n  identical power transmission 

matrices. Assuming that each circuit in the series connection 

is symmetric, it follows that

 .
I
E

A
C

B
A

I
E

n

n

n
1

1
=; ; ;E E E  (S32)

Defining

 cosha A1=
3 -  (S33)

 / ,Z B C0 =
3  (S34)

it follows that [12, p. 213]
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A
C

B
A

a

Z
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Z a

a
0

0

=; >E H (S35)

and thus [52, p. 32]

 .
cosh
sinh

sinh

cosh
A
C

B
A

an

Z
an

Z an

an

n

0

0

=; >E H  (S36)

If the transmission line is terminated with the impedance ,Z0  

the input impedance Z in  of the transmission line is produced 

by [12, p. 214]

 ( / ) .sinh cosh
cosh sinhZ E Z an I an

E an Z I an
n n

n n

0

0
in = +

+  (S37)

These expressions can be used to analyze wave propagation 

in transmission lines [5, Ch. 1, pp. 200–218], [12, pp. 214–217].

I2 = I1 I2 I2 I2T2
Z1

Z2

Z1 Z1

Z2
Z2

T2 T2
T2T1 I1 T1 T1 T1I1 I1 I1

E2
E2 E2 E2E1 E1E1 E1

(a) (b) (c) (d)

FIGURE 19 (a) An ungrounded circuit with impedance Z1. (b) A shunted circuit with impedance Z2. (c) An ungrounded circuit with imped-
ance Z1 in series with a shunted circuit with impedance Z2. (d) An ungrounded circuit with impedance Z1 in series with a shunted circuit 
with impedance Z2, where the order of the circuits is reversed relative to (c).
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replacing series connections with parallel connections and 
parallel connections with series connections. Under fI-vE, the 
conversion is more direct, with series connections of struc-
tures replaced by series connections of circuits and likewise 
for parallel connections. To demonstrate that feature, the cir-
cuit analogs of Examples 3 and 4 are constructed. In these 
examples, external forces are replaced by current sources.

Example 6: Circuit Analog of the Single- 
Degree-of-Freedom Structure
Under fI-vE, Figure 20 presents the circuit analog of the 
single-degree-of-freedom structure from Figure 9(a). The 
inerter b, spring k, and dashpot c in parallel in Figure 9(a) 
are replaced by the capacitor C, inductor L, and resistor 
R, respectively. The RLC components are connected in 
series with the capacitor ,C0  which is shunted to ground in 
 analogy to the mass m. Furthermore, the external force f is 
replaced by the current source I. Therefore,

 ( ) .P
C R L

1

1

0

1p
p

p
p

2
=

+ +

R

T

S
S
S
S

V

X

W
W
W
W

 (119)

Note that the parallel connection of the capacitor, induc-
tor, and resistor is linked in series with capacitor C0  (which 
is shunted to ground), as shown in Figure 19. Using the 
boundary conditions E 01 =  and I I2 =  (where I2  denotes 
the current flowing through ),T2  it follows from (118) that
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( ) ( )

( )
,

I t
E t

C

C R L

I t

I t
C R L

C
I t

C R L

I t

1
0 1

1

1

0

1
0

1

1

p

p
p

p

p
p
p

p
p

p

2

0

2

1

1
2

0
2

1

2
1

=
+ +

=

+
+ +

+ +

R

T

S
S
S
S
S
S
SS

R

T

S
S
SS

; ; ;

V

X

W
W
WW
V

X

W
W
W
W
W
W
WW

E E E

 

(120)

where I1 denotes the current flowing through .T1  Next,

 ( )
( )

( ),I t
C R L

C C R L I t
1

1

p
p

p
p

2

0
2

1=
+ +

+ + +
 (121)

 ( ) ( ).E t
C R L

I t
1p

p
p

2
2

1=
+ +

 (122)

Combining (121) and (122) yields

 ( )
( )

( ) .E t
C C R L

I t
1p

p
p

2

0
2

=
+ + +

 (123)

Example 7: Circuit Analog of a Single- 
Degree-of-Freedom Structure
Consider the single-degree-of-freedom structure detailed in 
Figure 21(a), where the mass and inerter are in series, with a 
spring and dashpot in parallel. The transmission matrix of 
the parallel spring–dashpot connection results from

 ( ) .P
c k

1 0

1p
p

p=
+

> H  (124)

Moreover, the parallel spring–dashpot connection is linked 
in series with the inerter and the mass, and thus,
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It follows from (125) that

 ( ) ( )
( ) ( )

( ),f t b c k
mb c m b k m b

f tp
p p2

1=
+

+ + + +
 (126)

T2

E2

I2 = I

E1 = 0

T1I1

R

L

C

C0

FIGURE 20 A circuit analog of the single-degree-of-freedom struc-
ture shown in Figure 9. The capacitors C and C0, the inductor L, 
and the resistor R in parallel are analogous to the inerter, mass, 
spring, and dashpot in parallel. The current source plays the role 
of the external force.

T2

E2

I2 = I

E1 = 0

T1I1

R

L
C

C0

f

m b

k

c

(a)

(b)

FIGURE 21 (a) A single-degree-of freedom structure with a mass 
and inerter in series with a spring and dashpot in parallel. (b) The 
analogous circuit.
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 ( ) ( ) ( ),v t b c k
b c k

f tp p
p p2

1=
+

+ +
 (127)

and thus

 ( )
( ( ) ( ))

( ).v t
bm b m c k b m

b c k
f t

p p p
p p

2

2

=
+ + + +

+ +
 (128)

Under fI-vE, Figure 21(b) shows the circuit analog 
of the single-degree-of-freedom structure displayed in 
Figure 21(a). The parallel connection of the spring k and 
dashpot c, which are connected in series with the inerter 
b in Figure 21(a), is replaced by the  parallel connection 
of the inductor L and resistor R, which are connected 
in series with the capacitor C. The RLC components are 
connected in parallel with capacitor ,C0  which is shunted 
to ground in analogy to the mass m. The external force 
f is replaced by the current source I. In analogy to (65), 
where b, k, and c are analogous to C, 1/L, and 1/R, respec-
tively, the power transmission matrix P of the capacitor-
inductor-resistor connection results from

 ( )
( )

.P
C R L

CLR L R
1 0

1p
p p
p p2

=
+
+ +> H  (129)

Note that the capacitor-inductor-resistor connection is in 
series to capacitor C0  (which is shunted to ground), as in 
Figure 19. Using the boundary conditions E 01 =  and ,I I2 =  
it follows from (118) that
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It thus follows that

 ( ) ( )
( ) ( )

( ),I t C R L
CC LR C C L C C R

I tp
p p0

2
0 0

1=
+

+ + + +
 (131)

 ( ) ( ) ( ) .E t C R L
CLR L R

I tp p
p p

2

2

1=
+
+ +

 (132)

Substituting I1 from (132) into (131) produces

 ( )
( ( ) ( ) )

( ).E t
CC C C R C C L

C R L I t1 1

1 1

p p p

p p
2

0
2

0 0

2

=
+ + + +

+ +
 (133)

Example 8: Circuit Analog of a Two-Degrees- 
of-Freedom Structure
Under fI-vE, Figure 22 displays the circuit analog of the 
of the two-degrees-of-freedom structure in Figure 11(a). 
Masses m1 and m2 and springs k1 and k2 are replaced by 
shunted capacitors C1  and C2  and inductors L1 and L2, 
respectively, which are connected in series. The external 
force f is replaced by the current source I, which is added 
between C1 and L2. In analogy to (72), where m1, m2, k1, 
and k2 correspond to C1, C2, 1/L1, and 1/L2, respectively, 
we have (134), shown at the bottom of the page, and thus,

T2

E2

I2 = 0

E1 = 0
T1

L1C1C2L2

I1

I

FIGURE 22 The circuit analog of the two-degrees-of-freedom struc-
ture in Figure 11. The capacitors C1 and C2 and inductors L1 and L2 
in parallel are analogous to the masses m1 and m2 and the springs 
k1 and k2, respectively. The current source I applied between 
capacitor C1 and inductor L2 is analogous to the external force f 
applied between mass m1 and spring k2.
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+
–

T2
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(b)

FIGURE 23 A resistor-capacitator circuit with a voltage source. In 
(a), only the capacitor is modeled as shunted; in (b), both the resis-
tor and capacitor are modeled as shunted.
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 ( ) ( ) ( ) ( ).E t L t I C L L L L I tp p p2 2 1 1 2
2

1 2 1=- + + +  (136)

Solving (135) for I1 yields
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Substituting (137) in (136) produces

 ( ) ( ),E t
C L C L L

C
L I t1 1
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2 2

2 2
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which is analogous to (76). 

Example 9: Circuit With a Voltage Source
Consider the resistor-capacitator circuit in Figure 23, where 
the goal is to determine the transfer function from the 
input voltage E to current .I2  Only the capacitor is mod-
eled as shunted with the boundary conditions E 01 =  and 

,E E2 =  as seen in Figure 23(a). Using the corresponding 
power transmission matrices yields

 .
pI

E
C

R
I1

0 1
1 0

1 0
2 1
=; ; ; ;E E E E  (139)

Therefore,

 ( ) ( ) ( ),pI t RC I t12 1= +  (140)

 ( ) ( ) .E t RI t1=  (141)

Substituting I1 from (141) into (140) yields

 ( ) ( ) .pI t R C E t1
2 = +` j  (142)

Alternatively, the capacitor and resistor are both mod-
eled as shunted with the boundary conditions E E2 =  and  

,I 01 =  shown in Figure 23(b). Using the corresponding power 
transmission matrices produces

 .
p

R
I
E

C
E

1
0 1

1

0

1

1

02

1
=; ; = ;E E G E  (143)

Therefore,

 ( ) ( ),pI t R C E t1
2 1= +` j  (144)

 ( ) ( ) .E t E t1=  (145)

Substituting E1 from (145) into (144) yields (142). 

CONCLUSIONS
Transmission matrices relate pairs of power-conjugate vari-
ables, where one variable is absolute and the other variable 

is relative. This article presents a self-contained treatment 
of the application of power and energy transmission matri-
ces to modeling mechanical systems composed of masses, 
inerters, springs, and dashpots. The examples illustrate 
the role of feedback connections in deriving transfer func-
tions. The across-through analogy between structures and 
circuits is used to obtain analogous results for electrical 
systems. Through further analogies, this technique can be 
applied to acoustic and thermal systems.

We believe that power and energy transmission matri-
ces provide an elegant approach to modeling structures 
and circuits. Although this technique is at least 80 years 
old, it has gained very little traction in absolute terms and 
relative to the literature on bond graphs. One reason for this 
deficit is that the development of transmission matrices in 
structures and circuits has largely occurred independently, 
and a complete treatment is not available. Another possible 
reason, as we have found, is that care is needed in working 
with transmission matrices to understand the roles of iner-
tial and electrical grounds, include the inerter, and formu-
late conventions for obtaining the correct signs that respect 
Newton’s third law and the direction of current flow.

It is interesting that circuits are composed of three ele-
ments (resistors, inductors, and capacitors), whereas struc-
tures are composed of four elements (masses, inerters, 
springs, and dashpots), with the restriction that a mass can-
not be placed in parallel with an inerter, spring, or dashpot. 
This discrepancy can be traced to the fact that ball-screw and 
rack-and-pinion inerters take advantage of coupling between 
translational and rotational motion, which has no counter-
part in electrical components. Under the analogy fI-vE, a 
capacitor may represent a mass or an inerter; likewise, under 
the analogy fE-vI, an inductor may represent those compo-
nents. The analogies between structures and circuits possess 
subtleties and surprises that warrant future investigation.

In view of the analogy between structures and circuits (not 
to mention acoustics and thermodynamics), it is reasonable to 
expect that modeling techniques applicable in one domain 
are applicable in other ones. For example, Kirchhoff’s current 
law has the mechanical interpretation that the summation 
of forces acting on a particle with zero mass is zero. Under 
the analogy fI-vE, Newton’s second law is equivalent to the 
capacitor equation .I CE= o  Along the same lines, Lagrang-
ian dynamics can be used to model circuits [48]. These and 
other ramifications of dynamical analogies remain to be fully 
explored to facilitate control-system applications.
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