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Abstract— Adaptive control of systems with poorly known
or unmodeled unstable zero dynamics remains a challenging
problem. This paper presents an extension of retrospective cost
adaptive control (RCAC) called data-driven RCAC (DDRCAC),
which does not require that the zero dynamics be known a
priori. Instead, the method uses online identification to obtain
an approximate model of the plant numerator dynamics for
use in the target model of RCAC. DDRCAC is demonstrated
numerically on systems with linear and nonlinear unstable zero
dynamics that are a priori unknown.

I. INTRODUCTION

Systems with unstable zero dynamics arise in many ap-
plications [1]. For linear systems, unstable zero dynamics
manifest themselves as nonminimum-phase (NMP) zeros.
For nonlinear systems, the zero dynamics are characterized
by control inputs that make the output identically zero. These
systems are difficult to control due to limitations on plant
inversion.

Systems with unstable zero dynamics are especially diffi-
cult to control when the zero dynamics are unknown. This
case occurs in hypersonic vehicles, whose zero dynamics are
poorly modeled due to the complex aerodynamics [2]–[6].

The present paper applies indirect adaptive control to
systems with uncertain, unstable zero dynamics. The starting
point for this work is retrospective cost adaptive control
(RCAC), which is a discrete-time adaptive control technique
that is applicable to stabilization, command following, and
disturbance rejection. RCAC is described in [7], [8], and
various applications are considered in [9]–[11].

The modeling information needed by RCAC is used to
specify the target model Gf , which defines the retrospective
cost function. In the SISO case, the required minimal model-
ing information is the relative degree, the sign of the leading
numerator coefficient, and any NMP zeros. In the MIMO
case, the required minimal modeling information needed to
specify Gf is an open problem.

In practice, however, a plant may be NMP, but the NMP
zeros may be uncertain. If the plant has NMP zeros that are
poorly modeled, then RCAC may or may not cancel them,
depending on the accuracy of the knowledge of the NMP
zeros as well as the aggressiveness of the controller. The
tendency of RCAC to cancel NMP zeros is exploited in [12],
where unstable pole locations are used as estimates of the
NMP zeros.
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The present paper extends RCAC to address the problem
of unknown NMP zeros, especially for the MIMO case.
This approach, called data-driven retrospective cost adaptive
control (DDRCAC) [13], uses online system identification to
construct Gf . In particular, closed-loop identification using
recursive least squares (RLS) is used to identify an infinite-
impulse-response (IIR) model whose numerator is used to
update a finite-impulse-response (FIR) target model Gf,k at
each step. This technique can be applied to both SISO and
MIMO systems. This paper develops DDRCAC and applies
this technique to linear NMP systems as well as nonlinear
systems with unstable nonlinear zero dynamics.

Since DDRCAC relies on online identification, we in-
vestigate the effect of the sensor noise on the closed-loop
performance. In order to examine this sensitivity, we apply
DDRCAC to a system with an unknown NMP zero with
increasing levels of sensor noise. Furthermore, we present an
example in which the transients that arise due to poor iden-
tification lead to improved identification accuracy, which, in
turn, facilities closed-loop control using DDRCAC.

II. COMMAND-FOLLOWING PROBLEM
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Fig. 1: Block diagram representation of the adaptive servo problem. The
objective is to have the performance variable Eyk follow commands rk ,
where E is a matrix that selects the components of the measurement yk. The
adaptive controller Gc,k has access to noisy measurements yk = y0,k+vk
and the adaptation variable zk = rk − Eyk, and computes uk. The plant
G is acted upon by uk and wk, and produces the output y0,k.

We consider the servo loop shown in Figure 1, where rk
is the command and wk is the disturbance. The plant output
is y0,k, and the measurement is given by yk = y0,k + vk,
where vk is sensor noise. The performance variable is the
signal Eyk, where the matrix E selects components of yk
that are required to follow the command rk. The command-
following error is thus zk

4
= rk − Eyk. The inputs to the

adaptive feedback controller Gc,k are the measurement yk
and the command-following error zk. Note that zk also
serves as the adaptation variable, as denoted by the diagonal
line passing through Gc,k. The objective is to minimize the
adaptation variable, that is, the command-following error, in
the presence of the disturbance and sensor noise.

Note that the servo loop in Figure 1 involves two plants
in feedback, namely, G and EG. In practice, each of these
plants may be either minimum phase or nonminimum phase,
and the presence of NMP zeros in either plant may impact
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robustness and achievable performance. In the special case
where yk is the full state of G, it follows that G has no zeros
and thus is minimum phase. In the present paper, we focus
exclusively on the output-feedback case where G is NMP
and EG = G. Furthermore, rk ∈ Rp, yk ∈ Rp, zk ∈ Rp, and
uk ∈ Rm.

The plant G is modeled as the strictly-proper discrete-time
input-output (IO) system

y0,k = −
n∑
i=1

Aiy0,k−i +

n∑
i=`

Biuk−i + wk−1, (1)

yk = y0,k + vk, (2)

where k is the step, n is the system window length, y0,k ∈
Rp is the output, yk ∈ Rp is a noisy measurement of y0,k,
uk ∈ Rm is the control, wk ∈ Rp is the disturbance, 0 <
` < n is an integer, and Ai ∈ Rp×p, Bi ∈ Rp×m are system
coefficient matrices. In the cases wk = 0, vk = 0,

G(q)
4
=
(
Ipq

n +
n∑
i=1

Aiq
n−i
)−1 n∑

i=`

Biq
n−i, (3)

is the transfer-function from uk to yk, where q is the forward-
shift operator.

III. DATA-DRIVEN RETROSPECTIVE COST ADAPTIVE
CONTROL

DDRCAC consists of two components, namely, online
identification and RCAC. The online identification uses RLS
to fit an IIR IO model using yk and uk data obtained
during closed-loop operation. A second implementation of
RLS is used to update the RCAC adaptive controller using a
target model constructed from the latest identified model.
In particular, at each step we construct the target model
Gf,k as an FIR filter whose numerator is identical to the
numerator of the latest identified IIR model. Both RLS
implementations use data-dependent variable-rate forgetting
(VRF). The following result is RLS with VRF from [14] that
is used to implement DDRCAC.

Proposition 1: For all k ≥ 0, let Yk ∈ RlY ,
Φk ∈ RlY ×lΘ , λk ∈ (0, 1], and define ρk

4
=
∏k
j=0 λj .

Let Θ0 ∈ RlΘ , and let P0 ∈ RlΘ×lΘ be positive definite.
Furthermore, for all k ≥ 0, denote the minimizer of

Jk(Θ)
4
=

k∑
i=0

ρk
ρi

(Yi − ΦiΘ)T(Yi − ΦiΘ)

+ ρk(Θ−Θ0)TP−1
0 (Θ−Θ0). (4)

where Θ ∈ RlΘ , by Θk+1
4
= argmin

Θ ∈ RlΘ
Jk(Θ). Then, for

all k ≥ 0, Θk+1 is given by

Pk+1 = 1
λk
Pk − 1

λk
ΦT
k (λkIlY + ΦkPkΦT

k )−1ΦkPk, (5)

Θk+1 = Θk + Pk+1ΦT
k (Yk − ΦkΘk). (6)

A. Online Identification

We fit a strictly-proper linear IO model of the form

yk = −
η∑
i=1

Fi,kyk−i +

η∑
i=1

Gi,kuk−i, (7)

to yk and uk, where η is the model window length, and Fi ∈
Rp×p and Gi ∈ Rp×m are the model coefficient matrices
that are to be updated. To perform this update recursively
we define the plant identification error

zp,k(θp)
4
= yk − φp,kθp, φp,k

4
=


−yk−1

...
−yk−η
uk−1

...
uk−η


T

⊗ Ip ∈ Rp×lθp ,

(8)
θp,k

4
= vec [ F1,k · · · Fη,k G1,k · · · Gη,k ] ∈ Rlθp , (9)

The cost (4) with Yk −ΦkΘ = zp,k(θp) is minimized using
Proposition 1 with

Yk
4
= yk, Φk

4
= φp,k, Θ

4
= θp, λk

4
= λp,k, (10)

which recursively produces the minimizer θp,k+1.

B. Retrospective Cost Adaptive Control

Define the dynamic compensator

uk
4
= satα(φkθc,k), φk

4
=


uk−1

...
uk−nc
yk−1

...
yk−nc


T

⊗ Im ∈ Rm×lθ , (11)

nc is the controller window length, lθ = ncm(m + p), and
θc,k is a vector of controller coefficients to be optimized.
The definition (11) represents an IIR controller whose output
is saturated by a multivariable saturation function satα. In
particular, each entry xi of a vector x is independently
saturated by the corresponding entry αi of α, to produce
each entry satαi(xi) of satα(x). That is

satαi
(xi)

4
=

{
xi, |xi| < αi,

sign(xi)αi, |xi| ≥ αi.
(12)

Next, define the retrospective cost variable

ẑk(θc)
4
= zk +Nkφ̄kθc −NkŪk ∈ Rp, (13)

which, assuming that Ru and R∆u are nonzero, is stacked
with

−Ruφkθc ∈ Rm, R∆u(uk−1 − φkθc) ∈ Rm, (14)

where

φ̄k
4
=

 φk−1
...

φk−η

 ∈ Rηm×lθ , Ūk
4
=

 uk−1
...

uk−η

 ∈ Rηm, (15)

Nk
4
=

[ −1p×m 0 · · · 0 ] , Gi,k+1 = 0,

[ −G1,k+1 · · · −Gη,k+1 ] , otherwise,
(16)

zk
4
= rk − yk, (17)

Ru ∈ Rm×m is the positive-semidefinite control weighting,
R∆u ∈ Rm×m is the positive-semidefinite control move
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weighting, Gi,k+1 ∈ Rp×m for i = 1, . . . , η are the nu-
merator coefficients of the identified model, Nk ∈ Rp×ηm,
rk ∈ Rp is the command, and zk ∈ Rp is the command-
following error and the adaptation variable. Note that the
identification update at step k can be performed before
the adaptive control update and thus Gi,k+1 are available
for the construction of Nk at step k. The cost (4) with
Yk − ΦkΘ = ẑk(θc) is minimized using Proposition 1 with

Yk
4
= zk −NkŪk ∈ Rp, (18)

which, assuming that Ru and R∆u are nonzero, is stacked
with

0 ∈ Rm, R∆uuk−1 ∈ Rm, (19)

and

Φk
4
= −Nkφ̄k ∈ Rp×lθ , (20)

which, assuming that Ru and R∆u are nonzero, is stacked
with

Ruφk ∈ Rm×lθ , R∆uφk ∈ Rm×lθ , (21)

and Θ
4
= θc, λk

4
= λc,k, which recursively produces the

minimizer θc,k+1.
For all examples in this paper, θp,k and θc,k are initialized

as 0 in order to reflect the absence of additional prior
modeling information. In addition, for both implementations
of RLS P0 = p0IlΘ where p0 > 0 is a tuning hyperparameter.

C. Data-Dependent Variable Rate Forgetting
For data-dependent variable-rate forgetting, we define

λp,k
4
=

1

1 + γfτ1,τ2,k[zp,k(θp,k)]
, λc,k

4
=

1

1 + γfτ1,τ2,k(zk)
,

(22)

which are the time-varying data-dependent plant-
identification and control forgetting factors, respectively,
where

fτ1,τ2,k(xk)
4
=


ξn
ξd
− 1, ξn

ξd
> 1,

0, ξn
ξd
≤ 1 or ξd = 0,

(23)

ξn
4
=

(
1

τ1

k∑
i=k−τ1

xT
i xi

)1/2

, ξd
4
=

(
1

τ2

k∑
i=k−τ2

xT
i xi

)1/2

, (24)

xk is a vector and τ1 < τ2 are integers. The terms ξn and ξd
are the average norms of xk over periods of length τ1 and
τ2, respectively. The integer τ2 is chosen to be large so that
ξd approximates the long-term variation of the xk, whereas
τ1 is chosen to be small so that ξn approximates the short-
term variation of the xk, Consequently, the case ξn

ξd
> 1

implies that the variation of xk is greater in the recent past
than over a longer time interval. The function f is used in
DDRCAC to suspend forgetting when the variation of the
error drops below a threshhold determined by the ratio ξn

ξd
.

This technique thus prevents DDRCAC from forgetting due
to sensor noise rather than due the magnitude of the noise-
free command-following error. A list of hyperparameters to
be selected for DDRCAC is presented in Table I.

Parameter Description Selection

η Model window length Integer ≥ 1

nc Controller window length Integer ≥ 1

Ru Control weighting ruIm, ru ≥ 0

R∆u Control move weighting r∆uIm, r∆u ≥ 0

α Control saturation level vector Actuator saturation

p0 Initial RLS covariance scaling p0 > 0

γ Forgetting parameter 0 ≤ γ < 1

τ1, τ2 Forgetting window lengths Integers τ2 > τ1

TABLE I: Tuning hyperparameters that need to be selected for DDRCAC.

IV. APPLICATION TO NMP SYSTEMS

In this section, DDRCAC is applied to NMP systems. The
first example is SISO and unstable, and the second example
is MIMO and asymptotically stable. Within the context of the
linear discrete-time IO model (1), NMP zeros are associated
with the zero dynamics. In particular, if the first nonzero
coefficient B` in (1) has full column rank, then setting y0,k ≡
0 and wk ≡ 0 in (1) yields the zero dynamics

uk = −(BT
` B`)

−1BT
`

n∑
i=`+1

Biuk+`−i. (25)

G has a NMP transmission zero if and only if the zero
dynamics (25) are unstable.

Example 1. Harmonic command following for an un-
stable SISO NMP system with step-disturbance rejection.
Consider the discrete-time, IO system
y0,k = 1.4y0,k−1 − 1.1y0,k−2 + uk−1 − 1.3uk−2 + wk−1,

(26)

which has the unstable linear zero dynamics
uk = 1.3uk−1. (27)

Hence (26) has unstable poles 0.7 ± 0.781 rad/sample and
NMP zero 1.3 rad/sample. The disturbance wk is a step
of height 0.5, the sensor noise vk is a zero-mean Gaussian
sequence with standard deviation 0.001, and the command
is rk = sin 0.23k. For DDRCAC we set η = 2, nc = 8,
Ru = R∆u = 0, α = 3, p0 = 104, γ = 0.1, τ1 = 30, and
τ2 = 100. Figures 2, 3 show that the harmonic command is
followed asymptotically and the disturbance is rejected.

To investigate the inter-dependence between online-
identification and RCAC we repeat the example with p0 =
10−4. This value of p0 corresponds to less aggressive iden-
tification and control. Consequently, poor identification of
the true plant is expected, which in turn is expected to
result in poor closed-loop performance. Figure 4(a) shows
a large transient in yk between k = 43 and k = 110
that corresponds to poor command-following performance.
The poor command-following performance is a result of the
insufficient modeling information in Gf,43, which in turn is
due to the poor model of the system at k = 43, as shown in
Figure 4(d). The transient in yk causes a large change in the
identification coefficients between k = 43 and k = 80, as
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shown in Figure 4(b), which leads to an identified model
at k = 71 that approximately captures the poles of the
true system, as shown in Figure 4(e). The large change in
the identification coefficients causes a large change in the
controller coefficients between k = 71 and k = 110 as shown
in Figure 4(c). At k = 110 the identified model captures
the poles and NMP zero of the true system as shown in
Figure 4(f) and thus, for k > 110 Gf,k contains the modeling
information required by RCAC. Consequently, for k > 110
asymptotic command following is achieved. The poles and
zeros of the plant and identified model are shown in Figure
4(d)–(f) at k = 43, k = 71, and k = 110. This investigation
shows that, when the model is poor, the resulting transient
response of yk provides additional persistence of excitation,
which enhances identification accuracy.

Next, we repeat the example with varying levels of sensor
noise. The absolute error from these simulations, and the
poles and zeros of the identified model are shown in Figure 5.
Increasing levels of sensor noise degrade the identification of
the poles and zeros, and thus the performance of DDRCAC.
Note that, although the accuracy of the identified poles and
zeros is poor in the case σ(vk) = 1, closed-loop stability is
maintained. �
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Fig. 2: Example 1: Harmonic-command following and step-disturbance
rejection for an unstable SISO NMP system. The signal-to-noise ratio
between yk and vk is 64 dB.
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Fig. 3: Example 1: Harmonic-command following and step-disturbance
rejection for an unstable SISO NMP system. The identification coefficients,
identification forgetting factor, controller coefficients, and controller forget-
ting factor are shown.

Example 2. Multi-step command following for an asymp-
totically stable MIMO NMP system. Consider (1) with

A1 = I2, A2 =

[
0.3 0

0 0.4

]
, B1 =

[
−1 4

3 6

]
, B2 =

[
3.2 −0.8
−0.6 −1.2

]
.

(28)
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Fig. 4: Example 1: Harmonic-command following and step-disturbance
rejection for an unstable SISO NMP system using a small value p0. (a)
shows that, between k = 43 and k = 110, the command-following error has
a large transient. (b) shows that, due to the transient in yk, the identification
coefficients undergo a large change between k = 43 and k = 80. Note that,
the update of the numerator of the identified model lags the update of the
identification of the denominator. (c) shows that, due to the large change
in the identification coefficients, the controller coefficients undergo a large
change between k = 71 and k = 110. (d), (e), and (f) show the poles and
zeros of the true system (blue) and the identified model (red) at k = 43,
k = 71, and k = 110, respectively.
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Fig. 5: Example 1: Harmonic-command following and step-disturbance
rejection for an unstable SISO NMP system. The absolute command-
following error |zk| is shown for four cases with different levels of sensor
noise σ(vk). Higher levels of sensor noise degrade closed-loop performance.
The poles and zeros of the identified model at the end of each simulation
are also shown. The poles and zeros of the true system are shown in black.

The transmission zeros, channel zeros, and poles of G are
shown in Figure 6. G has NMP channel and transmission
zeros, and is asymptotically stable. Using (25) the zero dy-

namics for this system are given by uk =

[
1.2 0

−0.5 0.2

]
uk−1.

Note that the eigenvalues of the matrix that defines the zero
dynamics are 0.2 and 1.2 which are the transmission zeros
of G. The disturbance wk and sensor noise vk are zero-mean
Gaussian sequences with standard deviation 0.001 and 0.01,
respectively, and the command is given by

rk =


r1, 0 ≤ k < 150,

r2, 150 ≤ k < 300,

r3, 300 ≤ k < 450,

r4, k ≥ 450,

, (29)
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r1
4
=

[
0.2

0

]
, r2

4
=

[
1.5

1.25

]
, r3

4
=

[
−1.25
−1.5

]
, r4

4
=

[
−0.25
0.15

]
.

(30)

For DDRCAC we set η = 2, nc = 8, Ru = R∆u = 0,
α = [ 0.25 0.25 ]T, p0 = 104, γ = 0.1, τ1 = 30, and
τ2 = 100. Figures 7, 8 show that the multi-step command is
followed asymptotically. �
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Fig. 6: Example 2: Transmission zeros, channel zeros, and poles of the
system where Gi,j is the (i, j) entry of the MIMO transfer function G.
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Fig. 7: Example 2: Multi-step command following for an asymptotically
stable MIMO NMP system. The signal-to-noise ratio between yk and vk is
[ 40 41 ]T dB. The control uk and the control saturation levels are shown.

V. APPLICATION TO NONLINEAR IO SYSTEMS WITH
NONLINEAR UNSTABLE ZERO DYNAMICS

In this section, DDRCAC is applied to nonlinear discrete-
time IO systems of the form

y0,k = −
n∑
i=1

Aiy0,k−i +B`uk−`

+ h(uk−1−`, . . . , uk−n) + wk−1, (31)

yk+1 = y0,k+1 + vk+1, (32)

where 0 < ` < n is an integer, and h : Rm×· · ·×Rm → Rp.
The first example is SISO and asymptotically stable, and the
second example is MIMO and unstable. Both examples have
nonlinear unstable zero dynamics. If B` has full column rank,
then setting y0,k ≡ 0 and wk ≡ 0 yields the zero dynamics

Fig. 8: Example 2: Multi-step command following for an asymptotically
stable MIMO NMP system. The identification coefficients, identification
forgetting factor, controller coefficients, and controller forgetting factor are
shown.

uk = −(BT
` B`)

−1BT
` h(uk−1, . . . , uk+`−n). (33)

Note that, despite the fact that the examples in this section
have nonlinear zero dynamics, the identification model (7)
is linear.

Example 3. Multi-step command following for an asymp-
totically stable SISO system with unstable nonlinear zero
dynamics. Consider the discrete-time, IO system

y0,k = 0.9y0,k−1 − uk−2 + uk−3 + u3
k−3 + wk−1. (34)

This system has unstable nonlinear zero dynamics

uk = (1 + u2
k−1)uk−1, (35)

and is open loop unstable. The disturbance wk and sensor
noise vk are zero-mean Gaussian sequences with standard
deviation 0.001 and 0.01, respectively, and the command is

rk =

{
1, 0 ≤ k < 300,

−1, k ≥ 300.
(36)

For DDRCAC we set η = 3, nc = 8, Ru = 0, R∆u =
0.3, α = 1, p0 = 104, γ = 0.1, τ1 = 30, and τ2 = 100.
Figures 9, 10 show that the multi-step command is followed
asymptotically. �
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Fig. 9: Example 3: Multi-step command following for an asymptotically
stable SISO system with unstable nonlinear zero dynamics. The signal-to-
noise ratio between yk and vk is 40 dB.
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Fig. 10: Example 3: Multi-step command following for an asymptotically
stable SISO system with unstable nonlinear zero dynamics. The identifica-
tion coefficients, identification forgetting factor, controller coefficients, and
controller forgetting factor are shown.

Example 4. Multi-step command following for an un-
stable MIMO system with unstable nonlinear zero dynamics
and harmonic disturbance rejection. Consider (31) with

A1 =

[
−0.4 −1
0 −1.1

]
, B1 =

[
1 0

0 1

]
, (37)

h(uk−1) =

[
| sinu1,k−1|u1,k−1 + u2,k−1

| cosu2,k−1|u2,k−1

]
. (38)

Note that the system is open-loop unstable. Using (25) the
unstable nonlinear zero dynamics for this system are given

by uk =

[
| sinu1,k−1| 1

0 | cosu2,k−1|

]
uk−1. The harmonic

disturbance is given by wk = 0.05 sin 0.33k, the sensor noise
vk is a zero-mean Gaussian sequence with standard deviation
0.01, and the command is given by (30). For DDRCAC we
set η = 2, nc = 8, Ru = R∆u = 0, α = [ 0.6 0.6 ]T,
p0 = 104, γ = 0.2, τ1 = 30, and τ2 = 100. Figures 11–12
show that the multi-step command is followed asymptotically
and the harmonic disturbance is rejected. �
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Fig. 11: Example 4: Multi-step command following and harmonic distur-
bance rejection for an unstable MIMO system with unstable nonlinear zero
dynamics. The signal-to-noise ratio between yk and vk is [ 44 42 ]T dB.
The control uk and the control saturation levels are shown.

Fig. 12: Example 4: Multi-step command following and harmonic distur-
bance rejection for an unstable MIMO system with unstable nonlinear zero
dynamics. The identification coefficients, identification forgetting factor,
controller coefficients, and controller forgetting factor are shown.
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