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On Bridging the

“Mind the gap. Mind the gap.”

1 a recent survey [1], 27 researchers provided inputs con-
cerning the state of research in systems and control and
were asked to give their opinions on the major challenges
facing the control communily. Among the challenges
identificd was the-nced to bridge the gap between theory
and practice.

In this article I speculate on some reasons for the existence of
the gap and provide concrefe suggestions for bridging it. Spe-
cifically, I am interested in the following questions:

1. What is the evidence for the existence of the gap?

2. What is the cxtent of the gap?

3. What is the significance of the gap for systems and control
research?

4. What factors have contributed to the gap?

5. What technical rescarch problems are pertinent to bridging
the gap?

6. Why is il important to bridge the gap?

First, a few disclaimers are in order, My perspective on these
questions is from aerospace engineering and reflects my experi-
ences in academia and industry. Furthermore, this article is not
intended to be either a defense or a critique of “academic” re-
search in contrel technology for aerospace engineering or any
other branch of enginecering.

According to my dictionary, “academic” means “very
learned but incxperienced in the world of practical reality.” This
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is not an accurate description of academic researchers. Although
all but one of the survey respondents { 1] hold positions in acade-
mia, many have exlensive industrial and government experi-
ence. Furthermore, several of the respondents in [1] are strongly
in favor of aggressive efforts to bridge the gap. I am encouraged
by their views to present some concrete suggestions of my own.,
Finally, the views I present arc intended to suggest how the
academic side might contribute to bridging the gap between the-
ory and practice. However, there is much the industrial side can
do as well to solve this problem. I believe there is a correspond-
ing burden on control practitioners to articulate their needs and
provide guidance and feedback to the research community.

Evidence for the Gap

1 will comment only briefly on the first three questions. Al-
though many control rescarchers and practitioners would proba-
bly agrec that a theory/practice gap exists, the extent of the gap is
the subject of much debate and can only be cstimated by anec-
dotal evidence. Characterizing and quantifying this gap would
require nontrivial effort and is beyond the scope of this article.
Although there are researchers who are quick to point out suc-
cesses of modern sysicms and control theory rescarch, I person-
ally believe that the gap on the whole is large and warrants
serious introspection by the research community,

The significance of the gap for systems and control research
is a complex and subtle issue. Here I note that (1) basic research
has always benefited from the influence of applications, while
(2) in the long run, the most impoitant developments are those of
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basic research that have deep and long-lasting inlluence, leading
to the conclusion that (3) a balance between theory and applica-
tions is essential. Unfortunately, the time constants for basic re-
search and useful application are gencrally quite different. In
fact, new idcas can require 4 long time from conception fo ex-
ploitation, while the time pressures of applications can divert at-
tention from potentially valuable long-term solutions,

Next, I'll discuss some factors that have contributed to the
gap’s existence (question 4). Then I'1l examine various systems
and control issucs and their relevance 1o bridging the gap (ques-
tion 5). Finally, I'll end by commenting on the importance of
closing the gap (question 6).

Why Does the Gap Exist?
To shed some light on the cxistence of the gap, it is worth-
while to speculate on some of the reasons for its existence.

1. Do control engineers need modern systems and
controf theory?

Generally, new technology is used in practice only when
there is a clear costor pertormance benefit. There are two sides to
technology development, namely, technology push and market
pull, where “market” can reter to either commercial or military/
government applications. In aerospace technology, the latter 1s
usually the technology driver. Although necessity is often called
the mother of invention, the extent to which necessity contrib-
utes to bringing about truly new developments is 2 murky ques-
tion. (Some inventors believe that necessity is actually the
daughter of invention [2], p. 125.) Despile clear needs, new tech-
nologics often require a generation (or more) to mature to the
point of practical usefulness, The reality is surely 4 combination
of both push and pull.

I personally place the pointer to the side of technology push:
Engineers often invent the possible and look for opportunities
they can develop and exploit. The mast important and funda-
mental developments are often inwardly motivated. After all, the
Wright brothers were not [unded by the Air Force, and there was
no pressing need for manned flight. Nor was the transistor devel-
oped out of necessity. In fact, its potential wasn’t cven recog-
nized at tirst in the U.S. (although it was in Japan)., As another
example, the mathematician G. Hardy took satisfaction in the
uselessness of number theory, yet few technologics are hotter to-
day than data encryption. On the other hand, some of the most
important conceptual developments have arisen from the desire
to address real problems. Fourier analysis arose [rom heat flow
problems for which Fourier was ridiculed, and thermodynamics
arose from the boring of cannon [3]. Yet physicists are often
called on to contribute to revolutionary technologies such as ra-
dar and nuclear weapons.

In control engineering practice, “need’” is anebulons concept.
Rarely do engineers consciously design and build a system that
truly cannot be controlled with existing concepts. In many appli-
cations, the plant can be redesigned and additional sensors and
actuators can be implemented to render the control problem
more manageable. Fully actuated mechanical systems are a good
example of this kind of design. Other brute force solutions can be
devised as well, For example, performance specitications can be
lowered, and hardware and manpower budgets can be increased
{or, more commeonly, projects can be canceled), thus eliminating
opportunities for new and innovative, and therefore risky, ideas.
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Al the same time, the opportunities afforded by conceptual
advances incontrol are difficutt to grasp. It can be difficult for re-
scarchers to demonstrate and quantify the advantages ol a new
idea in control where the design process is complex and there are
numerous tradeoffs that interact in intricate ways.

2, What ave the risks of new control methods?

In many applications, especially in aerospace, the control sys-
tent is critical Lo system operation. This is 4 two-edged sword, On
the one hand, control system technology is essential and therefore
will command high priority when it is required. On the other hand,
if the control system fails, the system may be lost, and thus appli-
cations in which human lives or great cost is at stake call for well-
tested methods over novel techniques. Risk reinforces the inertia
associated with the acceptance of new control technology.

Nevertheless, there are many potential applications of control
technology that are not casily designed away. Thesce include
Might control with unusual configurations {(canted tail fins,
oblique wings, tailless aircraft) and nontraditional control appli-
cations (compressor and combustor control, active vibration
control, high angle ol attack flight). However, each of these ap-
plications entails risk and thus, despite potential cost and perfor-
mance advantages, must undergo extensive development before
it can be transitioned to practice.

3. How do publications contribute to the gap?

Bridging the gap, from the researcher’s perspective, requires
that new ideas be communicated to engineers who are in a position
to apply them. I’ll focus on publishing, where there are three main
avenues, namely, journal papers, conference papers, and books.

Much effort in academia is devoted to publishing in journals,
which are strictly limited to demonstrably new ideas. Conse-
quently, journal papers arc extremely terse and arc generally
written for other researchers, not practitioners. Authors of jour-
nal papers are rarely given much space to provide background
and sell-contained, pedagogical exposition that could render
their papers more readable by practitioners and nonspecialists.
This avenue is also slow, typically taking three years from
submittal to publication.

Conference publications are maore timely but are even more
terse than journal papers (they often serve as summaries of re-
sults), and they are not widely available to engineers who do not
attend the conference. However, CD ROM proceedings are
much more accessibie thar bulky hard-copy versions and should
allow larger distribution. [ personally hope that once paper pro-
ceedings are eliminated, authors can be allowed morc publishing
space o develop new ideas.

Books provide an opportunity for researchers to expand and
illustrate new concepts at great length, which is not possible in
journals, Few books written by academic rescarchers, however,
consider sullicient engincering detail to be dircetly usable to
practicing engincers. Some “how to” control books are available
on specialized topics such as motor servos, but few of them truly
advance the state of the art in control practice (nor is it their intent
to do s0).

4. How can publications be rendered more usable?

A control engineer considering a new control algorithm for a
potential application needs to know the answers to the following
questions:
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1. What problems does the control algorithm address (stabili-
zarion, disturbance rejection, tracking, etc.)?

2.To what class of plants does the algorithm apply?

3. What modeling information is needed to design and tunc
the controller?

4. What is the structure of the control algorithm?

5. How is the controller tuned?

6. What sensor/processor/actuator hardware is needed to im-
plement the controller?

A satisfactory conirol paper will provide answers to all these
qucstions in a clear and accessible manner. If this information is
buried in the paper, the reader may have to expend considerable
cftort and thus may become discouraged from lurther consider-
ing the method. For example, if the control {aw is given in trans-
formed variables, the potential uscr must unravel the
transtormations (o determine the roles of the various parameters.
Although this information may be a detail to the writer, it is vital
to the practitioner.

As a further example, a practitioner may be interested in a
special case ol a general procedure. The reader may not have
time to recognize the applicability of the procedure or to under-
stand how the result specializes to useful, special cases. I person-
ally like the “closcd-loop” or “sandwich™ model of paper
writing: concrete, abstract, concrete. That is, motivate the paper
with a conerete or specifie problem, work out the theory in an ab-
stract or gencral context, and, finally, return to the concrete or
specific problem. Tn general, a paper is mast useful to a control
practitioner when it provides and demonstrates operational pro-
cedures for implementing the methods under conditions that are
explicitly stated,

The following remarks are intended to emphasize the rcle-
vance of various topics and issues that 1 believe have signifi-
cance for bridging the gap between theory and practice. Many of
these topics and issues have been extensively studied by the sys-
tems and control community, while others have not. My objec-
tive is to emphasize those aspects that may have some bearing on
the gap.

Bridging the Gap: Modeling Issues

5. Don’t trivialize stabilization.

Although it scems trivial to say so, unstabie plants arc much
more ditficult to control than stable plants. Yet unstable plants
are often viewed simply ag linear plants with onc or more open
right-half-planc poles. (A plant with a chain of integrators or
imaginary poles is also unstable, but less seriously.)

1 believe the distinction between stable and unstable plants is
vastly underemphasized in the research literature, An unstable
plant provides almost no opportunity for on-line identification
and thercfore must rely heavily on analytical modeling and cx-
trapolation from stable regimes. Unstable plants are unforgiving
in the sense that once large deviations occur, saturation limits
may prevent recovery, Furthermore, linearizing a noniinear un-
stable plant may chscure the actial saturation recovery limits,
which are invariably smaller than those of the linearized model.

6. Distinguish between modeling for control architecture

design and modeling for controller implementation.
Control architecture design and controller tuning are strongly

interrelated, but they are effectively distinct tasks in control en-
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gineering practice. Countrol architecture design refers to the se-
lection of sensors and actuators that need to be specified to
achieve a contiol objective. The design of the control architec-
ture and associated hardware usually depends on a solid under-
standing of the relevant physics along with detailed analytical
modeling. In tact, analytical modeling at this stage in the control
engineering process is extremely cost-cffective since it reduces
the need to fabricate and test multiple prototypes.

On the other hand, control architecture design is often only
loosely coupled with controller implementation, that is, the
choice of the control algorithm and its tuning (parameter sct-
tings). In tact, modeling for controller implementation usually
requires information that is distinct from the information needed
for control architecture design in both type and detail. For exam-
ple, although {inite-element modeling and computational fluid
dynamics may provide important information for sensor and ac-
tnator design and placement, these modeling techniques usually
cannot provide the type of detail needed for controtler imple-
mentation, such as plant phase at crossover.

The distinction between modeling for control architecture de-
sign and modeling for controller implementation clavifies the
role of distributed parameter models in control design. Such
madels provide a starting point for the former but have little rele-
vance for the latter.

None of these remarks are intended to minimize the impor-
tance of cither analytical or data-based modeling in control engi-
neering. In fact, both kinds of modeling arc extremely important,
and they arc the responsibility of the control engineer. However,
it is important to recognize what modeling information is needed
and knowable at each stage of the control engineering process.
Atearly stages in control architecture design, the modeling may
be largely analytical and hypothetical, wheteas conwroller imple-
mentation must be strongly linked to the behavior of & specific
hardware realization.

7. Reduce the dependence of analytical and data-based
modeling for controller implementation.

As discussed above, analytical modeling is cssential and
valuable for control architecture design, but it has serious short-
comings for controller implementation. Although control archi-
lecture design often consumes the bulk of control engineering
effort, advances in control algorithms can reduce the need for
both analytical and data-based modeling for controller imple-
mentation.

The objective of robust control is to achieve performance for
a given level of modeling uncertainty; however, robust control
fails to reduce the dependence on either analytical or data-based
modeling significantly. Although robust control methods do not
require a precise madel of the nominal plant dynamics, they do
require that all uncertainty be quantified, and the construction
and verification of such a detailed uncertainty model may require
substantial analysis of prediction models and test data.

The main drawback of robust control is that it treats uncer-
tainty as a static quantity, which forces the control enginecr to
sacrifice performance for robustness. Ultimately, robust control
requires thas the controller gains be decreased to account for un-
cerlainty, thus reducing performance. The inability of a robust
controlier to learn makes this tradeoff unavoidable,

Finally, control engineering must accept the possibility that
any given plant can change in an unexpected and unpredictable
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manner during operation. In fact, seemingly small physical
changes can have a large cffect on plant response. For example,
as lubrication dissipates, bolts loosen, mass distribution
changes, and components wear, the plant dynamics may change
significantly. Thesc unpredictable changes are the responsibility
of the control engineer. Indeed, a major reason for implementing
a feedback control system is to achieve performance in the pres-
ence of uncertainty, and not all uncertainty can be characterized
or predicted.

8. Exploit identification for controller implementation.

No matter how well analytical modeling can be performed,
some identification is always needed. Real hardware abounds
with unmodelable effects and high sensitivitics. [n addition,
modeling a system in piecemeal fashion is of limited use for con-
troller implementation, since components can interact dynami-
cally in complicated ways duc to spurious fecdback paths and
unexpected interactions. The need for identification and hard-
ware testing is crucial, and end-to-cnd identification is desirable
whenever possible. Obviously, identification is only meaningful
after the system has been constructed and data are obtained.

The ability to perform identification depends on the nature of
the plant as well as on the environment, Identification of the un-
controlled plant is generally not feasible if the plant is open-loop
unstable. Tn that case, a stabilizing controller is needed, which
may require analytical modeling or adaptive methods. In addi-
tion, the presence of ambient disturbances can limil the ability to
identify and adapt. In this case, identilication accuracy may be
low and the results of the identification may be nonrepeatable, Tf
ambient disturbances can be climinated, identification is much
casier. (Engines can be turned ofT, whereas turbulent wind noise
around a flying aircraft cannot.) Identification and adaptive sta-
bilization in the presence of exogenous disturbances presents a
severe challenge to control engineering. For this problem, the
control engineer is forced to rely more heavily on analytical
modeling.

Numerous issues of theoretical and practical significance are
associated with tdentification. Since identification is ditficult in
the presence of fast and slow dynamics, a delta-operator identifi-
cation theory would be useful [41. Choosing good identification
signals, especially in the presence of ambient disturbances, is a
problem of practical interest. In some sense a good identilication
signal is “far” from a disturbance signal. Coding ideas may be
useful in this regard,

Nonlincar identification is largely an open area of research
with considerable practical importance. Since all real systems
are nonlinear, it is overly simplistic to apply linear identification
methods and expect that any such method will produce a mean-
ingful linear model. Tsuspect that difficulties observed with lin-
ear identification methods are due to unmodeled nonlincarities
as much as sensor and disturbance noise. We must also recognize
and admit the possibility of systems that have nonrcpeatable be-
havior duc to sensitive dependence on initial conditions, ambient
disturbances, and complex dynamics.

Finally, statistics has been undesutilized by the control com-
munity as a whole for analyzing identification and performance
data, although statistical analysis has been sceing increasing in-
terestin process control, The analysis of any data without carcful
statistical analysis is naive at best.
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Bridging the Gap: Control Issues

9. Respect the distinction between continuous time and
discrete time.

A cruel fact of control engineering life is that most of the sys-
tems we need to conirol operate in continuous time while the
controllers we implement on digital computers operate in dis-
crete time. It can be difficult to reconcile the continuous and the
discrete; sometimes they behave like oil and water. Conse-
quently, the interface between continuous- and discreie-time
systems is a tricky business, and it can have a significant offect
on control system performance. The literature abounds with
transformations between continuous-time and discrete-time dy-
namics such as Tustin’s, exponential, and bilinear. However,
these are merely conveniences that don’t address stability and
performance in a reliable manner.

The continuous/discrete gap is here to stay, since there is no
revolution in analog controller technology on the horizon. Fur-
thermore, even if we could implement continuons-time control-
lers, our identification methods operate on discrete-time data to
produce discrete-time models. Tdentification in continuous time
is not a serious prospect. So with analytical modeling and classi-
cal control in continuous time and with identification in discrete
time, it’s no surprise that the control literature often appears
schizophtenic.

It is tempting to believe that for sulficiently fast computers,
discrete-time systems can be treated as continuous-time systems.
However, there arc fundamental distinctions between discrete-
time and continuous-time systems. For example, discrete-time
control has an inhcrent bandwidth limitation imposed by the
sample rate. A delay in continuous time is an irrational exponen-
tial function, whereas in discrete time it is rational (one nice ben-
cfit of discrete-time models). In addition, a niipotent linear
discrete-time system has finite settling time behavior, whereas a
linear continnous-time system cannol settle in finite time. (A
lime-invariant conlinuous-time system that settles in {inite time
necessarily has non-Lipschitzian dynamics [5].) Finally, the be-
havior of the system between sample instants can affect closed-
loop performance. If the sample interval is short, the intersample
behavior should be henign. Whether this effect can be ignored in
practice is an open question.

There are fundamental obstacles in sampled-data control that
must be treated carefully. First of all, sampling and reconstruc-
tion devices, which provide the interface between the continu-
ous-time and discrete-time worlds, have time-varying dynamics
with inherent limitations, Arbitrarily fast sampling is an unrea-
sonable expectation since faster hardware mercly encourages
engineers lo consider ever faster plants or more computationally
intensive control algorithms, Furthermore, fast sampling can
cause numerical problems with poles aggregating near |, The
delta operator provides a practical solution to this problem [4].
Similarly, zero-order-hold signal reconstruction is a time-vary-
ing operation that produces spurious harmonics. Suppressing
these effects is often required through additional [iltering.

Aliasing is a problem that arises duc to sampling. Folding of
signals and noise is an unavoidable cffect of aliasing, and it is
rarely accounted for cxplicitly in control theories. Aliasing also
causes phase shifts at lower {requencies that can destabilize a
system. 1t is important in practice to determine sample rates and
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design anti-aliasing filters with minimal phase lag to suppress
these effects,

Nonlinear systems are difficult to translate cleanly into dis-
crete time. For cxample, finite escape time can occur in continu-
ous time, but it has no direct counterpart in discrete time,
Capturing nonlincar physics in discrete time is a nontrivial chal-
lenge, especially since our training and intuition are based in
conlinuous time. Exact discretization of some continuous-time
models is discussed in [6].

10. Distinguish real-time computing from off-line computing,

Many of the respondents polled in the survey [1] discussed
the underutilization and potential cxploitation ol recent ad-
vances in computational power. One application of poweriul
computers is to solve very large order Lyapunov and Riceati
cquations, This is reminiscent of the “big drum” approach: Prim-
itive tribes wishing to conununicate with the outside world
might conceive of ever larger drums. These arc cxamples of mis-
guided technology scaling.

The usefulness of any computation must be evaluated in light
of the accuracy of the underlying data, Most measureinents are
good to only about 0. 1%, and many parameters (not to mention
physical effects) are significantly more uncertain, (A stern warn-
ing on the unreliability of data is given in Chapter 27 of [7].)
Massive computation based on erroneous data or hypothetical
models may have qualitative value for insight, but the actual
numbers produced will likely have little connection with reality.
(If insight is the goal, this is not a problem; it’s just important (o
keep these goals distinct.) Computing with uncertain data has
been largely a neglected topic in the scientific community, al-
though the robust control community (to its credit) has given it
scrious atlention.

In control cngineering, large-scale computing is relevant lor
plant and control architecture design, which is largely a qualita-
tive and hypothetical process. Such computing is performed ofT
line and often occurs before the plant and control system arc con-
structed. This computing is usually performed for the sake of
modeling, but it is suspect as a viable approach to controller im-
plementation. On the other hand, controller implementation can
be enhanced by the capability for real-time, on-line computing.
Identification and performance assessment during control sys-
tem operation for adaplive control is one of the main beneficia-
ries of significant real-time computing capability.

There is no real tradeoff between on-line and off-line comput-
ing. They ate distinct tasks that use different kinds of informa-
tion for different purposcs. Off-line computing is based on static
and usually limited information about the system, whercas on-
line computation has continual access to data from the true sys-
tem and its infinitely rich physics as it behaves in possibly unpre-
dictable ways.

11. Always recognize saturation.

Often the first nonlincarity encountered by the control engi-
ncer is saturation. (Here I am referring to amplitude saturatior,
The second nonlinearity encountered is rate saturation.) It is a
universal nonlinearity that will never be circumvenied by any
technological development. Satoration is a lincarizable non-
linearity that has a global impact on the system but has litile ef-
fect on the local behavior of the system.
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A control engineer who has invested in control system hard-
ware is often interested in achieving the best possible perfor-
mance [ron the chosen hardware. Whether or not fuel or energy
constraints are present, this goal may require that the actuators
operate al or near saturation levels. Hence saturation limils are
nol necessarily regions to be avoided, but rather may be sought
$0 as to muximize use of the available control input,

The distinclion between stable and unstable systems is im-
portant when addressing saturation issues. If the plant is open-
loop stable, saturation is only an issuc when performance is
quantified, since the zero control is unsaturated and stabilizing.
On the other hand, globat stabilization of plants with tight-half-
planc poles is impossible in the presence of saturation. There-
fote, maximizing the domain of attraction is the primary objec-
live for unstable plants. Since the domain of attraction is
necessarily bounded, a rare disturbance of high magnitude can
perturb the state and render the equilibrium unrecoverable, (Big
waves can sink big ships.) This problem is eritical when consid-
ering the usc of lecdback on unstable systems,

Saturation may render linearization misleading for unstable
plants. Specifically, lincarizing a nonlinear unstable plant may
obscure the aclual saturation recovery limits, which are invari-
ably smaller than those of the linearized model.,

12. Recognizce limitations duc to sensor noise,

It is important to stress that all real signals are corrupted by
neise, and this noise limits the achievabie performance. Noise
can arise from the sensors and all associated electronics, and its
characleristics are rarely known prior to implementing the con-
trol system hardware. In particular, the noise may be due to de-
tails of grounding and shielding, whose effects are difficult to
predict before the plant and controller have been constructed.

Feeding back control signals feeds back the sensor noise as
well. Therefore, if the disturbance is narrow band but its spec-
trum is not known in advance, a control engineer might be in-
clined to use a controller with broadband gain. However,
feedback in a frequency range where the plant disturbance is not
present will amplity sensor noise. Thus, the presence of sensor
noise forces the control engincer to limit control gains and band-
width, This design issue is often ignored in control design theo-
ries since the sensor noise spectrum is rarely known from
analytical modeling, Furthermore, in 1.QG theory, this con-
straint is difficult Lo handle becavse narrow-band noise gives rise
to a singular estimation problem. Tn any event, real noise is
surely more insidious than idealized noise models.

13. Emphasize the distinction hetween smooth and
nonsmooth nonlinearities.

Although lingarity over 4 range is an oxymoron, it is never-
theless useful. However, nonlinear effects assume greater im-
portance as petformance requirements becotne more stringent.
Many conirel methods consider smooth nonlinearities, which
are linearizable near equiltbria and have an increasing effect over
alarger range of operation. Geometric nonlinearities in robotics
are the prototypical examples of such noniinearitics. Control the-
orists tend to think of these nonlinearities as being well known
and amenable to global transformation techniques,

On the other hand, many control applications are of a preci-
sion nature where the objective is to produce highly accurate mo-
tion over small amplitudes. In this regime, the nonlinearities tend
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to be nonsmooth (that is, not linearizable) and possibly discon-
tinuous, Friction is a commen cxample of 4 nonsmooth non-
linearity. In addition, nonsmooth nonlincarities may possess
memory as well, for cxample, stiction and backlash or hysteresis.
Hysteretic nonlincaritics are usually semistable subsystems [§]
with multiple equilibria where subsystem convergence is [ast
relative to the remaining system dynamics. The memory charac-
teristic is merely the trajectory-dependent sct of equilibria that
the subsystemn converges to during quasi-static operation. The
phase lag nature of such nonlinearitics renders them potentially
destabilizing even at low signal ampliludes.

Classical control theory discusses both smooth and non-
smooth nonlinearities with an emphasis on the former through
absolute stability theory. However, nonsmooth nonlinearities
secem Lo be more prevalent in applications. In fact, while large-
amplitude motions can often be slowed down without major loss
of performance (and this is ofien done in practice), lack of preci-
sion in small-amplitude applications can seriously degrade the
value of the system, [n other words, large robots can be operaied
more slowly if necessary (although it may not be desirable to do
this), but alack of precision in a machining task may not be toler-
able at any speed of operation.

In general, nonsmooth nonlincarities arc casier to identify be-
cause the amplitude range is smaller. However, these non-
linearities come in a wide variety of types, they may be hidden,
and they may change drastically and unexpectedly over different
operating ranges. On the other hand, smooth nonlinearities arc
dilTicult to identify because of the range of operation required to
collect data. Control theorists tend to view such nonlinearities as
well known beeause of the analytical nature of classical mechan-
ics. [n applications such as [light control over a large envelope,
identification of global nonlinearitics can be extremely difficult.

Final Observations

14. Remember the transients.

Control theorists have a fixation with equilibrium-related be-
havior. We seek the steady state becausc it is easy to characterize
and provides a sale haven. Lyapunov stability theory, which con-
tinues to provide arich hunting ground [8], {91, has spoiled us. In
engineering practice, it is often the transients that matter. Colli-
sion avoidance is a good motivaling example. But dealing with
transients is not casy. As 8, Ulam once said, “The infinite we can
do immediately; the finite takes a little longer.”

15, Feedback entails risk.

Most engineering disciplines are open loop in the sense that
errors are not amplified. A 209% crror in the strength of a stiue-
tural member remains just that, and a 50% margin will compen-
sate for the ervor quite nicely. (The Hoover Dam was designed
with a 3x safety factor for those of you living downstream, As far
as [ know, it is not stabilized by feedback loops.) In contrast,
feedback affects dynamic behavior, and “small” errocs can pro-
duce arbitrarily large undesirable cffects (such as instability).
Attempts to guard against this sensitivity assume that modcling
uncertainty is known, yet the control system must have the abil-
ity to cope with unexpected changes as well. Since control sys-
tems are often critical Lo operation with significant losses in the
event of failure, the ability to cope with uncxpected changes is
the responsibility ol the control engineer.
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16. There are no details in control engineering,

There are no “details” in contrel engineering, since cven the
most insignificant “detail” may prove o be important. All engi-
ncering ultimately hinges on details, because real systers must
be built from real, imperfect (not mathematical) components and
must operate under real (nonideal) conditions, This point holds
all the more for control engineering, a complex technology that
depends on many interrelated aspects. The smallest “details”
such as noise, quantization, drift, bias, crosstalk, roundofl,
aliasing, nonlinearities (local or global, smooth or nonsmooth,
memoryless or nonmemaoryless), sataration (amplitude or rate),
delays (known orunknown, fixed or variable), model errors, sen-
sorfactuator dynamics, state constraints, and system changes can
adversely affect control system operation. The gap between the-
ory and practice can be narrowed by systems and control theory
that recognizes the importance of these issues (and surely many
others) and addresses them in a meaningful and useful way.

17. Reduce the dependence on modeling.

[ believe that one of the main culprits in the theory/practice
gap is the modeling dependence imposed by many contro! meth-
ods. [n fact, the modeling requirements imposed by model-based
cantrol methods constitute a severe impediment to the applica-
bility of modern control theory. Analytical modeling is essential
for control architecture design, but it must be used with care for
the purpose of controller implementation.

The success of PID tuning methods relative to modern control
methods is a reminder of this dependence, while model predic-
tive control based on identification is cqually successtul for the
same reason. Therefore, it scems that the extent to which a con-
trol method is used in practice is proportional to its modeling re-
quircinents, making this issue a key factor in the existence of the
gap, The first step toward remedying this problem is to distin-
guish between modeling for control architecture design before
system construction and modeling tor controller implementation
(usually through identification) after system construction.

18. Why bridge the gap?

I have left this question for last because it is the most funda-
mental and most ditTicult. Thus far, [ have suggested that there
are pragmatic reasons for closing the gap between theory and
practice. The transition of new ideas and techniques to applica-
lions ultimately justifics the cost of basic rescarch. Although
there certainly have been successes in the application of modern
ideas to technology, the penetration of modern ideas in many ap-
plications scems (o be fairly limited. Serious attention to techno-
logical needs and constraints is essential for understanding and
correcting this state of affairs.

On the other hand, it is important to keep in mind that basic re-
search is meant to be high risk in terms of payolf, Control engi-
neers with projeet deadlines rarely have the luxury of pursuing
unconventional ideas with uncertain return, That is the rote ot ac-
ademia, where researchers can instantaneously shift research di-
rections and pursue new idcas without management approval
(unlike the usual case in industry), or pursuc a novel idea for
years until it is sufficiently developed to have technological
value. What is largely lacking in the academic setting is motiva-
tion from real applications, T believe that exposure (o such moti-
vation, cven to a limited extent, can have a significant impact on
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increasing the relevance of “academic” research to engineering
practice.
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Author’s Note

[*d like to say that my thinking on this issue
was influenced by my experience in industry
(Harris Corporation, Aerospace Systems Di-
vision, 1984-91) and academia (University of
Michigan, Aerospace Engineering Depart-
ment, 1991-present). But T think it would be
more accurale {0 say that the greatest influ-
ences on my carcer were (1) the Erector Set 1
got when 1 was seven years old and (2) the time [ spent fixing my
car when [ was in college.

Although tinkering can be valuable, what amares me most is
the ahility of the human intellect to solve real-world problems
through abstraction, and yet I see that much of what engincers do
is rooted in empiricisn. I think that a lot of engineering is actu-
ally an art, but teday’s art ollen becomes tomoirow’s science.
And what is surprising about this knowledge is its compressibil-
ity. An insight or breakthrough that took a lifetime to achieve
may become common knowledge for the next generation. The
greatest intellectual achievement of all time (the alphabet) is
taught to preschoolers, while the second-greatest (the caleulus)
is taught to high school students.

My latest favorite quote is by Thomas Hdison; “We don’t
know a millionth of one percent about anything.” T think this is
wotth keeping in mind at the close of the miilenntum.
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