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Flexible Robot Dynamics and Con-
trol by Rush D. Robinett, III, Clark R.
Dohrmann, G. Richard Eisler, John T.
Feddema, Gordon G. Parker, David G.
Wilson, and Dennis Stokes, Kluwer
Academic/Plenum Publishers, 2002,
339 pp., US$89.50, ISBN 0-306-46724-0.
Reviewed by Lyanne George.

This book, one of the few works
available on the subject, presents a
thorough overview of flexible robots,
including modeling, system identifica-
tion, and control. The authors
include many exercises and example
problems, and an overhead gantry
robot is used as a recurring example
throughout the book to reinforce the

concepts and techniques introduced.
The real strength of this book is the
implementation of the techniques
introduced on robots at Sandia
National Laboratory (SNL), however.
According to the preface, this book is
the culmination of more than ten
years of research, and the authors’
extensive expertise clearly shines
through.

The first part of the book provides
necessary background information
along with a complete introduction to
flexible robot modeling. Input shap-
ing techniques can, theoretically,
remove residual vibration in flexible
systems if the system damping ratio
and natural frequencies are known.
Hence, system identification and
modeling are critical to successful
implementation of such systems, and
an entire chapter is devoted to it. Lin-
ear and nonlinear least-squares tech-
niques are discussed, and concepts
are solidified using the overhead
gantry robot. Of particular interest
are discussions of some of the real-
life problems inherent in modeling
flexible systems. Alternative model-
ing methods, including homotopy
methods and backward propagation
techniques, are introduced as
additional tools. A nonlinear least-
squares method is used to calculate
the period of oscillation of a gantry
robot, and the result is used to
design input-shaping techniques that
produced swing-free motion on a
gantrylike robot at SNL.

The real meat of the text begins
with the fifth chapter, which starts
with a description of the technique of
input shaping and the constrained
optimization problem for designing
optimal trajectories. The methods of
recursive quadratic programming
and homotopy are introduced to
approximate minimum-time and
tracking-error tip trajectories. Since
input-shaping problems can often be
expressed as optimal control prob-
lems, an alternative method based on
dynamic programming is introduced.
The implementation of optimal trajec-

tories on the Sandia two-link flexible
manipulator is presented. as well as
an experiment demonstrating open-
loop input shaping on a slewing, flexi-
ble rod.

The last few chapters of the text
delve into closed-loop control sys-
tem design tools. Basic application
of potential difference (PD), lag sta-
bilization, proportional-integral dif-
ferential (PID), and linear-quadratic-
Gaussian (LQG) control techniques
are described. Flexibility in the links
is especially challenging when the
sensors and tip point are not colocat-
ed. A combination of feedforward and
LQG techniques is used to develop an
optimal controller, and the results
are applied to a two-link flexible
robot at SNL. The final chapters intro-
duce more complex control methods,
including nonadaptive and adaptive
sliding mode control, both of which
are applied to a slewing beam at SNL.

When Least Is Best: How Mathe-
maticians Discovered Many Clever
Ways to Make Things as Small (or
as Large) as Possible by Paul Nahin,
Princeton University Press, 2004, 370
pp., US$29.95, ISBN 0-691-07078-4.
Reviewed by Dennis S. Bernstein.

The development of control theory
is often described in terms of a classi-
cal frequency-domain phase followed
by a modern time-domain phase.
However, this order of events tends
to obscure the fact that the underly-
ing mathematics for modern control
predates the classical control era.
When Kalman and others developed
the modern theory of linear-quadratic
control in the late 1950s and early
1960s, they drew on a rich collection
of ideas such as the calculus of varia-
tions developed in the 18th century,
Lyapunov methods developed in the
late 19th century, and matrix methods
developed since the mid-19th century.
Thus, existing mathematics support-
ed the development of control theory
in directions that were distinct from
the frequency domain methods of
Nyquist and Bode.
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The convoluted history of control
theory can be mind bending for a stu-
dent trying to fit the intellectual
pieces together. I learned linear sys-
tems theory in 1976 from Wolovich's
book, taught by his post-doc Panos
Antsaklis at Brown University, only to
enroll the following year in a course
at the University of Michigan given by
Lamberto Cesari on the calculus of
variations and optimal control. Prof.
Cesari gave wonderful insights into
the relationship between the calculus
of variations and optimal control the-
ory, showing how the maximum prin-
ciple was the culmination of 250
years of research in the calculus of
variations. As an undergraduate, I
had seen Bode plots used in a circuits
course to analyze the stability of feed-
back amplifiers, but the intellectual
distance from Bode plots to compan-
ion forms to Hamiltonians was far
beyond my comprehension. I was
clueless about their connections.  As
many years passed, I discovered and
read Lee and Markus, Bryson and Ho,
Chen, and Kwakernaak and Sivan,
which eventually—but sometimes
painfully—helped fill in and connect
the pieces of the puzzle.

Today, our pedagogy has become
much better. We’re careful to help
students bridge the gap between
Nyquist and Bode on the one hand
and the linear quadratic regulator on
the other. But it is still not easy. Root
locus is about output feedback, as is
Nyquist. But the linear-quadratic reg-
ulator (LQR), presented as a more
advanced topic, is downright primi-
tive in requiring full-state information.
The output feedback linear quadratic
Gaussian (LQG) controller is often
downplayed because of its reliance
on stochastic (or, in more modern
presentations, function-theoretic)
foundations. Along the way, students
might face the complexities of time-
varying systems, which are certainly
beautiful and important, but present
a technical stumbling block and are
orthogonal to classical analysis. So
the student faces a long road in

reaching the point at which modern
methods can address the problems to
which root locus and Nyquist apply.

Once sufficient modern control
theory is developed to address single-
input, single-output (SISO) linear
time-invariant systems (assuming the
student does not get discouraged and
move on to other pursuits), the fun
begins in connecting the modern with
the classical. What Nyquist strategy
does LQG use to stabilize a system?
Does LQG try to mimic root locus?
Does LQG have guaranteed gain and
phase margins? How can LQG be
robustified? How can linear-quadratic
methods be used to place poles? The
serendipitous connections between
the modern and the classical are fas-
cinating, but the methods seem
worlds apart.

Let’s face it, despite our best
efforts, most education, on first sight,
is like setting up a few trees and hop-
ing a forest appears. Like watching a
movie for the first time, students
have virtually no perspective on the

subject matter. Concepts, definitions,
and techniques must be mastered as
they fly by, and there is limited con-
text for the ideas. How can I teach in
such a way that the student sees the
big picture? How can I explain to stu-
dents that LQR and LQG are really
modern manifestations of the mathe-
matics of the calculus of variations,
the same subject that governs
Lagrangian dynamics, the same sub-
ject that Lamberto Cesari traced out
in class from Euler to Pontryagin, and
that Lee and Markus and Kwakernaak
and Sivan carried yet further to the
engineering borders of Nyquist and
Bode? I see students struggle to tie
these ideas together from course to
course, and I see their frustration.
How many students today, who bene-
fit from the streamlined teaching of
classical and modern control, glimpse
the connections between Lagrange
and LQG? More to the point: Is the
calculus of variations a mere footnote
to our subject, or does it play a cen-
tral role that has been overshadowed

Galileo’s analysis of the descent time along a circular arc. Galileo used a piece-
wise linear approximation to show that the descent time is independent of the
starting point along the arc. Nahin shows that the descent time along a circular arc
is about 1.5% slower than along the optimal brachistochrone curve. (Figure reprint-
ed with permission of Princeton University Press.)
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by the need to solve matrix Riccati
equations and compute Lie brackets?

Much of the tension I've alluded to
is simply related to the issue of opti-
mality versus no optimality. It is not
uncommon to hear practicing engi-
neers question the value of “optimali-
ty.” Does it matter whether the
system is optimal so long as it meets
specifications? What good is an opti-
mal control that is not robust or does
not address a constraint on (fill in the
blank)? What good is an optimal con-
trol that takes too much effort to
develop when the optimal solution is
only a few percent better than a
nonoptimal control? All of these are
valid questions, and each has its
place in certain contexts. But the
short answer is this: The notion of
optimality is of immense power, and
it is effective in many practical situa-
tions. This is where Nahin’s book
comes in.

Nahin’s book is a tour de force
about the deep intellectual threads
that surround the notion of optimali-
ty. In physics, engineering, and math-
ematics, while touching on a wide
range of applications, Nahin asks
over and over again: What is the opti-
mal solution, and why does it matter?
Since I’ve spent most of my profes-
sional career thinking about optimali-
ty in one form or another, I was

skeptical about whether or not I
would find anything new in this book.
But I was astounded to find some-
thing new and interesting on virtually
every page. Some examples:

● Preface: Torricelli’s funnel,
which has finite volume and
can be filled, but has infinite
surface area and cannot be
painted; and a slick proof that
an irrational number raised to
an irrational power can be
rational.

● Chapter 1: An optimization
problem that is not amenable
to calculus, but whose solution
can be discerned by some
clever insight; an optimization
problem that is amenable to
calculus, but whose solution
can be arrived at by algebra;
and the use of the arithmetic
mean-geometric mean inequali-
ty in optimization a recurring
tool in the book.

● Chapter 2: The ancient isoperi-
metric problem of Dido on max-
imal area, how it remained
unsolved until modern times;
the fact that there exists a fig-
ure in the plane whose area is
equal to the area of the period
at the end of this sentence and
which contains a line segment 1
million light years in length that
can be rotated 360◦ within the
figure (the shape of the figure is
a little hard to picture); and the
fact that there are two consecu-
tive prime numbers the gap
between which is greater than a
googolplex (don't ask what they
are).

● Chapter 3: Optimization prob-
lems involving the viewing of a
painting, the rings of Saturn,
folding envelopes, carrying a
pipe around a corner in a hall-
way, the maximum height of
mud ejected from a wheel, and
other daily concerns.

● Chapter 4: Snell’s law, the path
of light, and the feud between
Descartes and Fermat.

● Chapter 5: The power of the
calculus, the aiming of basket-
balls and cannon, Kepler’s wine
barrel, L’Hospital’s pulley prob-
lem, United Parcel Service
package size constraints, and
the geometry of rainbows.

● Chapter 6: Galileo’s piecewise
linear analysis of the descent of
a particle sliding along the arc
of a circle; the discovery of the
minimum-time brachistochrone
curve by Jacob Bernoulli,
arrived at by an argument
based on the minimum-time
path of light in a variable-densi-
ty medium, his bias against
Newton, and Newton’s anony-
mously published solution to
the problem; the isochronous
property of both the circle and
brachistochrone, which states
that the descent time is inde-
pendent of the starting location
along the curve (a sufficiently
fascinating fact that it appears
in chapter 96 of Moby Dick and
which left me wondering which
paths are isochronous since a
straight line is clearly not); the
fact that Bernoulli’s brachis-
tochrone is about 1.5% faster
than Galileo's circular arc and
that a brachistochrone tunnel
dug from New York to Los
Angeles would entail a travel
time of a mere 28 minutes,
assuming frictionless sliding
and requiring no propulsion;
the fact that a launch angle of
45◦ maximizes the range of a
golf ball, whereas 56.466◦ maxi-
mizes the arc length; the Euler-
Lagrange equation of the
calculus of variations and its
proof formulated by Lagrange
at age 19; the hyperbolic cosine
shape of the catenary loaded
by its own weight as compared
to the parabolic shape of a
string under uniform loading;
the rigorous solution of the
isoperimetric problem of Dido
by Weierstrass; the theory of
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soap bubble shapes by Plateau,
who was blinded by an optics
experiments he performed dur-
ing his Ph.D. research; and a
brief illustration of optimal con-
trol theory.

● Chapter 7: Hofmann’s solution
of Steiner’s problem on mini-
mum distance to the sides of a
triangle and its use by Delta Air-
lines to save money on its
phone bill; the traveling sales-
man problem, linear program-
ming, and a tutorial on dynamic
programming along with a brief
biography of IEEE Medal of
Honor recipient Richard Bell-
man with emphasis on the fact
that IEEE is an engineering soci-
ety rather than a mathematical
society.

For a control audience, the con-
nections between control and opti-
mization consist of the lengthy dis-
cussion on the calculus of varia-
tions and the tutorial on dynamic
programming. My only (minor) disap-
pointment was the lack of more dis-
cussion about the nature of optimality
in mechanics; that is, the least action
principle, which is the specialization
of Hamilton’s principle to conserva-
tive systems. This underlying princi-
ple of mechanics is not, in fact, a
statement of optimality but rather one
of stationarity. While Nahin was care-
ful to point out the absence of opti-
mality, I wish he had further clarified
and explored this point, which is
rarely discussed in the literature. 

When Least Is Best is clearly the
result of immense effort. The author’s
notes suggest that most of the book
was written in a single year, which is
amazing. Not only are many topics
covered, but mathematical details
abound. The author, who is known
for popular treatments of technical
subjects (An Imaginary Tale: The
Story of i, Dueling Idiots and Other
Probability Puzzlers, The Science of
Radio, Oliver Heaviside: Sage in Soli-
tude, Time Travel), just seems to get
better and better.

The book was produced with
painstaking care. While there surely
are errors somewhere, this eagle-
eyed editor-in-chief spotted none. I
would guess that the book has rough-
ly half as many figures as pages, all
drawn with great accuracy. To say
the price of the book is reasonable
would be an understatement.

Who might find this book of inter-
est? The book is really a popular
book of mathematics that touches on
a broad range of problems associated
with optimization. Some mathemati-
cal sophistication, as well as calculus,
is needed to follow the details. But
much in this book could be digested
by high school students, even with-
out calculus. The flavor and richness
of the subject matter cannot help but
whet the curiosity of neophytes.
Undergraduate and graduate engi-
neering students of all disciplines will
find something that relates to their
coursework. Finally, for those of us
who work and teach in the control
area, this book provides a valuable
service in reminding us of the intel-
lectual roots of our subject, thereby
helping us understand from where
our field has evolved and, indirectly,
where its future lies.

Linear Time-Invariant Systems by
Martin Schetzen, IEEE Press, Wiley
Inter-Science, 2003. Reviewed by Jessy
W. Grizzle.

This interesting book covers the
usual topics that one would expect to
find in an engineering textbook on
continuous-time signals, systems, and
transforms. What sets it apart are the
author’s attempt to be more mathe-
matically careful than the typical
engineering undergraduate textbook
and his appeal to philosophy when
discussing the ramifications of sys-
tems theory and systems concepts.
The level of the presentation is defi-
nitely advanced undergraduate, so if
you are looking for an introductory
textbook, this is probably not a good
choice. On the other hand, if you
wish to direct a good student to a

more advanced textbook, read on!
Personally, at the University of

Michigan, when teaching our continu-
ous-time signals and systems course
to sophomores and juniors, I am
obliged to trade off mathematical
rigor for computational examples and
motivational discussions on how I
use systems concepts in my profes-
sional life as a control engineer. So,
while most of my students can deter-
mine if a signal is Fourier trans-
formable or not, almost all of them
believe that every linear time-invari-
ant (LTI) system has a convolution
representation, even though this is
false. In fact, essentially all introduc-
tory signals and systems textbooks
present a proof that requires continu-
ity of the system as a mapping from
input signals to output signals, but
not all systems are continuous in the
required sense.

Is this misconception a horrible
miscarriage of academic responsi-
bility? Probably not. I am sure that
we mislead the typical undergradu-
ate by leaving out certain hypothe-
ses in almost every subject we
teach them at Michigan, and yet we
still seem to turn out highly sought-
after engineers. Nevertheless, each
semester, I invariably have a few
students who are sufficiently mathe-
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