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Abstract— Stewart platforms are complex mechanical devices
used throughout industry for vibration testing and precision
pointing applications. These platforms are nonlinear, strongly
coupled MIMO systems. For a six-degree-of-freedom Stewart
platform, we consider the problem of three-degree-of-freedom
angular-velocity command following. Static nonlinearity inher-
ent in the platform is analyzed, and a closed-loop setup for
adaptive command-following control is described. A review
of the Markov-parameter-based adaptive control algorithm is
given, along with the OKID system identification algorithm, test
procedures, and experimental results.

I. INTRODUCTION

A Stewart platform is a device for producing multi-degree-

of-freedom motion. These devices are widely used in the

entertainment industry, for aircraft simulation, and for testing

the performance and robustness of a wide range of products

in a high-vibration environment [1–3]. Stewart platforms are

available in various realizations; key differentiators include

translational versus rotational actuators, as well as hydraulic

versus electric actuation. These devices range in size from

a few centimeters in size to many meters, with payloads

ranging from below a kilogram to many tons [4–7].

Precision control of a Stewart platform is challenging due

to the kinematic nonlinearity of the device, the dynamics

of the motors and amplifiers, and the fact that the system is

multivariable and highly coupled. An additional complicating

factor concerns the type of measurement signals that are

available, namely, displacement, velocity, or acceleration, as

well as their location on the platform, for example, colocated

with the actuators or with the payload [8].

Control of Stewart-platform motion typically involves real-

time solution of the inverse kinematics. This approach is

computationally intensive and requires an accurate model

that can be linearized [9–11]. In the present work we adopt

an adaptive control approach in which we use measurements

to improve the dynamic performance of the system through

on-line tuning. In particular, we consider the experimental

application of an adaptive control algorithm to a six-degree-

of-freedom Stewart platform in the Vibration, Acoustics, and

Motion Control Laboratory at the University of Michigan, as

shown in Figure 1.

To do this, we first assess the static nonlinearity present

in the system by commanding the platform at low frequency

and by using a six-degree-of-freedom displacement sensor to

measure command-following errors. No analytical or CAD

model of the platform geometry is used or is assumed to

be available in this work. We next focus our attention on

adaptive control for dynamic performance. For this objective,

we use a 3-axis angular velocity sensor for feedback and use

command-following angular-velocity errors as the feedback

signal.

For adaptive control under dynamic conditions, we use

the Markov-parameter-based adaptive control algorithm de-

veloped in [12, 13]. This adaptive control algorithm requires

knowledge of only the first nonzero Markov parameter.

Since the algorithm is fully digital, no discretization is

required, and the algorithm can be implemented directly. The

observer/Kalman filter identification (OKID) algorithm [14]

is used to estimate a bound on the first nonzero Markov

parameter. The adaptive algorithm of [12, 13] assumes that

the plant is minimum phase, an assumption that we do not

attempt to verify for the Stewart platform. The variant of [12,

13] given in [15] is known to be effective for nonminimum

phase systems, but is more computationally intensive.

II. STEWART PLATFORM

The experimental facility, located in the Vibration, Acous-

tics, and Motion Control Laboratory at the University of

Michigan, is a six-degree-of-freedom Stewart platform (see

Figure 1). This platform consists of a 3-foot-square alu-

minum table with threaded holes on a 2-inch-square grid,

supported by six rigid struts, each of which is connected

to the casing of an electric motor. The platform is capable

of motion in six degrees of freedom, that is, surge, heave,

sway, yaw, pitch, and roll. The platform has the ability to
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move in any single axis or any combination of axes. A BEI

Motionpak triaxial accelerometer and gyro sensor is mounted

on the table to measure translational acceleration and angular

velocity [16].

Fig. 1. Six-degree-of-freedom Stewart platform.

The platform is capable of translational displacement up

to ±2.5 inches in each axis, and angular displacement up to

±5 deg in each axis, with acceleration levels up to 9 g with

minimal payload. The frequency response is up to 130 Hz.

The platform carries a payload capacity of 400 lb and is force

rated up to 1440 lb. The platform is actuated by six electric

motors, each driven by a controller and amplifier. Each motor

is capable of 370 ft-lb torque, with a peak power requirement

of 6 kW at 200 VAC, 3-phase power. The amplifiers and

controllers, which are commanded by software, operate in

torque-commanded mode, using digital encoder feedback

from the six motors. A mixer box is used to convert between

user commands and motor torque commands. The mixer

box also contains a linear inverse kinematics model of the

motor/linkage geometry, so as to approximately decouple the

commands and achieve an approximately diagonal transfer-

function matrix.

Communication and control are achieved by means of a

dSPACE 1103 processor connected to a Microsoft Windows-

based PC. Controllers are programmed using Matlab and

Simulink, compiled by Real-Time Workshop, and loaded

onto the dSPACE 1103 for closed-loop operation. Communi-

cation is handled through a terminal board connected to the

PC, which has both analog and digital inputs and outputs.

The terminal board is directly connected to the platform’s

sensors and actuators. The dSPACE 1103 is capable of

storing either one channel of data sampled at 512 Hz for

approximately 2 minutes, or 20 sec of data with all six

channels in use.

Translation and displacement of the platform is measured

by means of a Polhemus Liberty sensor system [17]. This

system uses RF-modulated magnetic signals to determine

displacement in six degrees of freedom. The system, which

uses a receiver and sensor that are noncontacting, can

measure displacement over the full range of motion of the

platform. The accuracy of these measurements is below 0.1

inch and 0.1 deg, while the resolution and repeatability are

approximately an order of magnitude better. The sample rate

for all 6 signals is 240 Hz, and data are obtained through the

RS232 interface of the dSPACE 1103 system. In the present

paper, the Polhemus sensor is used for the static performance

assessment.

The triaxial accelerometer is capable of measuring ac-

celerations up to 10 g, while the triaxial gyro is capable

of measuring angular velocities up to 500 deg/sec. Since

angular displacements are small, we assume that all rotations

commute, which simplifies the interpretation of angular

velocity data. In the present paper, the triaxial gyro is used

for feedback and dynamic performance assessment.

The platform is programmed with inner PID loops to

provide stiffness, damping, and zero steady-state error for

step commands, see Figure 2. These loops, which use

resolver-synthesized encoder signals, stabilize the platform to

a unique displacement and make it possible to close angular

rate loops with angular rate performance variables. Without

an asymptotically stable equilibrium, the platform would drift

under angular rate control.

Fig. 2. Platform inner PID loops, which provide stiffness, damping, and
zero steady-state error for step commands.

III. STATIC PERFORMANCE ASSESSMENT

Our first consideration is to assess the static kinematic

nonlinearity of the platform. Nonlinearity arises from the

motor/linkage geometry in the presence of the mixer-box

inverse kinematics. To quantify the static nonlinearity, we

use an input displacement-command sequence consisting of

low-frequency content for each of the six input channels.

This input command is implemented on the platform, and

output measurements are sampled at 512 Hz. A comparison

plot of displacement command and output response is shown

in Figure 4 for all six channels. The division between

command and output suggests that static nonlinearity is

inherent in the platform. The RMS error between command

and output response is 0.015 in, 0.013 in, 0.016 in, 0.044

deg, 0.039 deg, 0.017 deg for the x, y, z, Rx, Ry, and Rz

channels, respectively. The x, y, and z channels represent

linear displacements, while the Rx, Ry, and Rz channels

represent angular displacements around the X , Y , and Z
axes, respectively.
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Fig. 3. Block diagram of the closed-loop adaptive control architecture for the six-degree-of-freedom Stewart platform.
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Fig. 4. Comparison of displacement command (solid) and output response
(dashed) for all six channels using the Polhemus sensor. The division
between command and output suggests that static nonlinearity is inherent
in the Stewart platform.

These results quantify the kinematic nonlinearity in the

platform. This kinematic nonlinearity can be compensated

for by means of nonlinear inversion or by iterated learning

control [18] using position measurements. However, we now

focus our attention on the dynamic performance of the

platform, namely, the ability of the platform to follow angular

velocity commands.

IV. DYNAMIC PERFORMANCE ASSESSMENT

The block diagram in Figure 3 depicts the closed-loop

adaptive control architecture for the platform. We consider

only triaxial angular displacement commands and triaxial

angular velocity measurements, thus constituting a 3-input,

3-output dynamic subsystem. Translational position com-

mands are set to zero, and the accelerometer measurements

are not recorded. The platform is open-loop commanded

using an angular displacement command that is represented

analytically as a continuous-time signal. The displacement

commands are then discretized and input to the platform.

Since the angular displacement commands are represented

analytically, the corresponding continuous-time derivatives

are available. These derivatives can be viewed as angular

velocity commands, which are compared to the angular

velocity measurements Ṙx, Ṙy , and Ṙz to provide rate

errors. The objective is to reduce the performance variable to

zero, that is, follow angular velocity commands by closed-

loop adaptive control using triaxial angular velocity measure-

ments.

We assess dynamic performance using single-frequency

sinusoids in each axis, as seen in Figure 5. This figure

shows open-loop angular-velocity errors for tonal angular-

displacement commands at 20 Hz, 21 Hz, and 22 Hz with

amplitudes of 0.05 deg about the X , Y , and Z axes,

respectively. The corresponding angular-velocity commands

have frequencies of 20 Hz, 21 Hz, and 22 Hz with amplitudes

of 6.28 deg/sec, 6.60 deg/sec, and 6.91 deg/sec about the

X , Y , and Z axes, respectively. These amplitudes are of

the same order as the open-loop angular-velocity command-

following errors shown in Figure 5.

V. ADAPTIVE ALGORITHM

We now provide a brief overview of the key components

of the Markov-parameter-based adaptive control algorithm

given in [13]. Consider the multi-input multi-output (MIMO)

discrete-time system

x(k + 1) = Ax(k) + Bu(k) + D1w(k), (1)

y(k) = Cx(k) + D2w(k), (2)

where x(k) ∈ R
n, y(k) ∈ R

l, u(k) ∈ R
l, w(k) ∈ R

lw , and

k ≥ 0. Our goal is to design an adaptive output feedback

controller under which the performance variable y converges

to zero in the presence of the exogenous signal w. Note that
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Fig. 5. Open-loop angular-velocity command-following errors for tonal
angular displacement commands at 20 Hz, 21 Hz, and 22 Hz with amplitudes
of 0.05 deg about the X , Y , and Z axes, respectively, or equivalently, tonal
angular velocity commands at 20 Hz, 21 Hz, and 22 Hz with amplitudes of
6.28 deg/sec, 6.60 deg/sec, and 6.91 deg/sec about the X , Y , and Z axes,
respectively. The open-loop angular-velocity command-following errors are
of the same order as the angular velocity commands.

w can represent either a command signal to be followed, an

external disturbance to be rejected, or both.

Next, define the transfer function matrix

Gyu(z)
△
= C(zI − A)−1B =

∞
∑

i=d

z−iHi, (3)

and define d to be the smallest positive integer i such that

the ith Markov parameter Hi
△
= CAi−1B is nonzero. We

make the following assumptions:

(A1) The triple (A,B, C) is controllable and observable.

(A2) If λ ∈ C and rank

[

A − λI B
C 0

]

<

normal rank

[

A − zI B
C 0

]

, then |λ| < 1.

(A3) d is known.

(A4) Hd is nonsingular.

(A5) There exists H̄d ∈ R
l×l such that 2HT

d Hd ≤ HT
d H̄d +

H̄T
d Hd and H̄d is known.

(A6) There exists an integer n̄ such that n ≤ n̄ and n̄ is

known.

(A7) The performance variable y(k) is measured and avail-

able for feedback.

(A8) The exogenous signal w(k) is generated by

xw(k + 1) = Awxw(k), (4)

w(k) = Cwxw(k), (5)

where xw ∈ R
nw and Aw has distinct eigenvalues, all

of which are on the unit circle.

(A9) There exists an integer n̄w such that nw ≤ n̄w and n̄w

is known.

(A10) The exogenous signal w(k) is not measured.

(A11) A,B, C,D1,D2, Aw, Cw, n, nw, and Hd are not

known.

Next, consider the time-series controller

u(k) =

nc
∑

i=1

Mi(k)u(k − i) +

nc
∑

i=1

Ni(k)y(k − i), (6)

where,

nc ≥ (l + 1)n̄ + 2ln̄w − d, (7)

and, for all i = 1, . . . , nc, Mi : N → R
l×l and Ni : N →

R
l×l are given by the adaptive law presented below. The

control can be expressed as

u(k) = θ(k)φ(k), (8)

where

θ(k)
△
=

[

N1(k) · · · Nnc
(k) M1(k) · · · Mnc

(k)
]

(9)

and

φ(k)
△
=





















y(k − 1)
...

y(k − nc)
u(k − 1)

...

u(k − nc)





















. (10)

We define the cost function

J(k)
△
=

1

2
yT(k)y(k), (11)

and define θ̃(k)
△
= θ(k)−θ∗, where θ∗ is the ideal controller

parameter, which, for all k ≥ k0, yields y(k) = Hdθ̃(k −

d)φ(k−d). The time step k0 is given by k0

△
= no+nc+d−m,

where no ≤ lm and m ≤ n. The gradient of J(k) with

respect to θ̃(k − d) is given by

∂J(k)

∂θ̃(k − d)
= HT

d y(k)φT(k − d). (12)

Since, by assumption (A11), Hd is unknown, we replace

Hd in (12) with H̄d, and, in place of (12), we use the

implementable gradient

G(k)
△
= H̄T

d y(k)φT(k − d). (13)

Note that the implementable gradient (13) can be used in

practice due to assumptions (A3), (A5), and (A7).

Finally, the update law for the controller parameter θ(k)
is given by

θ(k + 1) = θ(k − d) − η(k)G(k), (14)

where η : N → [0,∞) is a step-size function. Note that

if G(k) = 0 then η(k) is irrelevant. In accordance with

assumptions (A10) and (A11), the adaptive control law (14)

does not require a measurement of the exogenous signal w(k)
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and does not use knowledge of the exogenous dynamics (4),

(5).

Furthermore, for all k ≥ k0, let ζ(k) ∈ R be such that

0 < infj≥k0
ζ(j) ≤ ζ(k) ≤ supj≥k0

ζ(j) < 2, (15)

and, for all k ∈ N such that G(k) 6= 0, let η(k) ∈ [0,∞)
satisfy

η(k) = 0, if k < k0, (16)

η(k) = ζ(k)ηopt(k), if k ≥ k0, (17)

where

ηopt(k)
△
=

‖y(k)‖2
2

‖G(k)‖2
F

. (18)

Then, for all initial conditions x(0) and θ(0), θ(k) is

bounded, u(k) is bounded, limk→∞ y(k) = 0, and x(k)
satisfying (1) is bounded. A closed-loop stability proof is

given in [13].

VI. MARKOV-PARAMETER ESTIMATION

To estimate the required controller parameters for the

Markov-parameter-based adaptive control algorithm, an

open-loop identification experiment is conducted using band-

limited white noise signals to command simultaneous angular

displacement motion in all three axes, while triaxial angular

velocity sensor measurements are recorded at a sampling rate

of 512 Hz. Translational commands are set to zero through-

out the identification experiment. This setup constitutes a

3-input, 3-output subsystem from angular displacement com-

mands to angular velocity measurements, and hence l = 3.

Data from the open-loop experiment are used with the

OKID algorithm [14] to estimate the Markov parameters of

the plant (A,B, C). This algorithm requires no prior sta-

tistical information and does not rely on sample correlation

or covariance calculations. The OKID algorithm acts as an

optimal observer in the presence of noise [14].

Figure 6 shows the first 50 Markov parameters obtained

from OKID, from commanded triaxial angular displacements

to measured triaxial angular velocities. Each Markov param-

eter has 9 scalar entries corresponding to the transfer function

from the angular displacement command to the measured

angular velocity. From Figure 7, and using engineering

judgment, the relative degree is taken to be d = 7. Therefore,

the bound H̄7 on the first nonzero Markov parameter is

chosen to be

H̄7 =





−0.2 0 0
0 0.2 0
0 0 −0.4



 . (19)

This matrix is used in the following section to conduct a

closed-loop adaptive command-following experiment.
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Fig. 6. All 9 entries of the first 50 Markov parameters from commanded
triaxial angular displacement to measured triaxial angular velocity. Each
curve represents 50 data points.
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step from H̄6 to H̄7 suggests that the relative degree d of the system is 7.

VII. ADAPTIVE CONTROL EXPERIMENT

The objective of the experiment is to follow angular

velocity commands by closed-loop adaptive control using tri-

axial angular velocity sensor measurements. The experiment

injects tonal signals as angular displacement commands. The

command frequencies are chosen to be 20 Hz, 21 Hz, and 22

Hz, respectively, about the X , Y , and Z axes. The amplitude

of the angular displacement command is 0.05 deg in all three

axes. The corresponding angular-velocity commands have

frequencies of 20 Hz, 21 Hz, and 22 Hz with amplitudes of

6.28 deg/sec, 6.60 deg/sec, and 6.91 deg/sec about the X , Y ,

and Z axes, respectively. The 3×3 MIMO adaptive controller

order is chosen to be nc = 35 and ζ(k) ≡ 1/4555555 is used.

Commands and measurements are sampled at a rate of 512

Hz.
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The platform is run in closed-loop for approximately

10 min. A plot comparing open-loop and closed-loop

angular-velocity errors is provided in Figure 8. Here, open-

loop triaxial angular-velocity errors for a period of 20

seconds are seen on the left-hand side, while closed-loop

triaxial angular-velocity errors for the last 20 seconds of the

experiment are seen on the right-hand side. Values of ζ(k)
larger than 1/100000 generally cause the controller to adapt

too quickly, inciting unacceptable transients.
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Fig. 8. Open-loop and closed-loop performance angular-velocity errors
for tonal angular-displacement commands at 20 Hz, 21 Hz, and 22 Hz
with amplitudes of 0.05 deg. The left-hand-side shows open-loop angular-
velocity errors for a period of 20 seconds, while the right-hand-side shows
closed-loop angular-velocity errors for the last 20 seconds of the experiment.
The RMS error is reduced by at least a factor of 2 in all axes.

Using the data from Figure 8, RMS angular-velocity errors

are calculated for each axis. From open-loop to closed-loop,

both X- and Y -axis RMS errors are reduced by a factor of

2, while the Z-axis RMS error is reduced by a factor of 4.

VIII. CONCLUSIONS

We conducted a MIMO closed-loop adaptive command-

following experiment using a six-degree-of-freedom Stewart

platform. An overview of the experimental facility located

at the University of Michigan was given. Static nonlinearity

inherent in the platform was analyzed and a closed-loop

setup to conduct adaptive command-following experiments

was described. A review of the Markov-parameter-based

adaptive control algorithm was given, along with a system

identification algorithm, test procedures, and experimental

results. Closed-loop experiments were shown to reduce RMS

angular-velocity errors by at least a factor of 2 in all axes

during a 10 minute test. Future work includes extending this

experiment to the 6-input, 6-output case.
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