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We provide a detailed description of retrospective-cost based adaptive control, which is a
discrete-time adaptive control law for stabilization, command following, and disturbance
rejection that is effective for systems that are unstable, MIMO, and/or nonminimum phase.
The adaptive control algorithm includes guidelines concerning the modeling information
needed for implementation. This information includes the sign of the high-frequency gain as
well as the nonminimum-phase zeros. Except when the plant has nonminimum-phase zeros
whose absolute value is less than the plant’s spectral radius, the required information can
be approximated by a sufficient number of Markov parameters. No additional information
about the poles or zeros need be known, and no matching conditions are required. We
apply this adaptive control technique to NASA’s Generic Transport Model to illustrate
disturbance rejection under unknown, reduced controller authority.

I. Introduction

Unlike robust control, which chooses control gains based on a prior, fixed level of modeling uncertainty,
adaptive control algorithms tune the feedback gains in response to the true plant and exogenous signals,
that is, commands and disturbances. Generally speaking, adaptive controllers require less prior modeling
information than robust controllers, and thus can be viewed as highly parameter-robust control laws. The
price paid for the ability of adaptive control laws to operate with limited prior modeling information is the
complexity of analyzing and quantifying the stability and performance of the closed-loop system, especially
in light of the fact that adaptive control laws, even for linear plants, are nonlinear.

Stability and performance analysis of adaptive control laws often entails assumptions on the dynamics of
the plant. For example, a widely invoked assumption in adaptive control is passivity,1 which is restrictive
and difficult to verify in practice. A related assumption is that the plant is minimum phase,2, 3 which may
entail the same difficulties. In fact, sampling may give rise to nonminimum-phase zeros whether or not the
continuous-time system is minimum phase,4 which must ultimately be accounted for by any adaptive control
algorithm implemented digitally on a sampled-data control system. Beyond these assumptions, adaptive
control laws are known to be sensitive to unmodeled dynamics and sensor noise,5, 6 which necessitates robust
adaptive control laws.7

In addition to these basic issues, adaptive control laws may entail unacceptable transients during adap-
tation, which may be exacerbated by actuator limitations.8–10 In fact, adaptive control under extremely
limited modeling information, such as uncertainty in the sign of the high-frequency gain,11, 12 may yield a
transient response that exceeds the practical limits of the plant. Therefore, the type and quality of the
available modeling information as well as the speed of adaptation must be considered in the analysis and
implementation of adaptive control laws. These issues are stressed in.13

Adaptive control laws have been developed in both continuous-time and discrete-time settings. In the
present paper we consider discrete-time adaptive control laws since these control laws can be implemented
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directly in embedded code for sampled-data control systems without requiring an intermediate discretization
step that may entail loss of stability margins. References on discrete-time adaptive control include.2, 3, 14–20

In,2 a discrete-time adaptive control law with guaranteed stability is developed under a minimum-phase
assumption. Extensions given in3 based on internal model control21 and Lyapunov analysis also invoke this
assumption. To circumvent the minimum-phase assumption, the zero annihilation periodic control law19

uses lifting to move all of the plant zeros to the origin. The drawback of lifting, however, is the need for
open-loop operation during alternating data windows.

Motivated by the adaptive control laws given in3 and,20 the goal of the present paper is to develop a
discrete-time adaptive control law that is effective for nonminimum-phase systems. The control law given
in20 lacks a proof of stability, but is known numerically to be effective on nonminimum-phase plants without
recourse to lifting. Accordingly, we present an adaptive control algorithm that extends the retrospective
cost optimization approach used in.20 In particular, we define an extended retrospective cost that includes
control weighting as well as a learning rate, which can be used to adjust the rate of controller convergence and
thus the transient behavior of the closed-loop system. Unlike,20 which uses a gradient update, the present
paper uses a Newton-like update for the controller gains as the closed-form solution to a convex optimization
problem. No off-line calculations are needed to implement the algorithm. A key aspect of this extension is
the fact that the required modeling information is given by the Markov parameters from the control inputs
to the performance variables. Except when the plant has nonminimum-phase zeros whose absolute value is
less than the plant’s spectral radius, we show that the relative degree, sign of the high-frequency gain, and
nonminimum-phase zeros can be approximated by a sufficient number of Markov parameters. No matching
conditions are required on either the plant uncertainty or the disturbances.

The goal of the present paper is to review the details of the RCF adaptive control algorithm and apply
it to the NASA Generic Transport Model (GTM).22–24 We consider the problem of rejecting wind gusts
under both full and limited control surface effectiveness. The controller adapts for the full 6DOF dynamics
of the aircraft. All simulations use only three measurements, namely, roll angle, yaw rate, and altitude. No
measurement of velocity is used by the adaptive controller.

II. Problem Formulation

Consider the MIMO discrete-time system

x(k + 1) = Ax(k) + Bu(k) + D1w(k), (1)

y(k) = Cx(k) + D2w(k), (2)

z(k) = E1x(k) + E0w(k), (3)

where x(k) ∈ Rn, y(k) ∈ Rly , z(k) ∈ Rlz , u(k) ∈ Rlu , w(k) ∈ Rlw , and k ≥ 0. Our goal is to develop an
adaptive output feedback controller under which the performance variable z is minimized in the presence
of the exogenous signal w. In (1)–(3), w can represent either a command signal to be followed, an external
disturbance to be rejected, or both. For example, if D1 = 0 and E0 6= 0, then the objective is to have the
output E1x follow the command signal −E0w. On the other hand, if D1 6= 0 and E0 = 0, then the objective
is to reject the disturbance w from the performance variable E1x. The combined command following and
disturbance rejection problem is addressed when D1 and E0 are suitably partitioned matrices. More precisely,

if D1 =
[

D11 0
]

, E0 =
[

0 E02

]

, and w(k) =

[

w1(k)

w2(k)

]

, then the objective is to have E1x follow the

command −E02w2 while rejecting the disturbance D11w1. Lastly, if D1 and E0 are zero matrices, then the
objective is output stabilization, that is, convergence of z to zero. We assume that the open-loop system
(1)–(3) is stabilizable and detectable and that measurements of y and z are available for feedback. If the
command signal is included as a component of y, then the adaptive controller has a feedforward architecture.
For disturbance rejection problems, the controller does not require measurements of the external disturbance
w.

Model reference adaptive control (MRAC) is a special case of (1)–(3), where z △
= y1 − ym is the difference

between the measured output y1 of the plant G and the output ym of a reference model Gm. For MRAC, the
exogenous command w is assumed to be available to the controller as an additional measurement variable
y2, as shown in Figure 1.
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Figure 1: Model reference adaptive control problem with performance variable z.

III. ARMAX Modeling

Consider the ARMAX representation of (1), (3), given by

z(k) =

n
∑

i=1

−αiz(k − i) +

n
∑

i=1

βiu(k − i) +

n
∑

i=0

γiw(k − i), (4)

where α1, . . . , αn ∈ R, β1, . . . , βn ∈ Rlz×lu , and γ0, . . . , γn ∈ Rlz×lw . We define the relative degree d ≥ 1 as

the smallest positive integer i such that the ith Markov parameter Hi
△
= E1Ai−1B ∈ Rlz×lu is nonzero. Note

that, if d = 1, then H1 = β1, whereas, if d ≥ 2, then β1 = . . . = βd−1 = H1 = . . . = Hd−1 = 0 and Hd = βd.
Letting the data window size p be a positive integer, we define the extended performance vector Z(k) ∈

Rplz and U1(k) ∈ Rqclu by

Z(k)
△
=









z(k)
...

z(k − p + 1)









, U1(k)
△
=









u(k − 1)
...

u(k − qc)









, (5)

where qc
△
= n + p − 1. The data window size p has a small but noticeable effect on transient behavior; we

choose p = 1 for all of the numerical examples in this paper. Now, (4) can be written in the form

Z(k) = Wzwφzw(k) + BzuU1(k), (6)

where

Wzw
△
=











−α1Ilz · · · −αnIlz 0lz · · · 0lz γ0 · · · γn 0lz×lw · · · 0lz×lw

0lz

. . .
. . .

. . .
.
.. 0lz×lw

. . .
. . .

. . .
.
..

...
. . .

. . .
. . . 0lz

...
. . .

. . .
. . . 0lz×lw

0lz · · · 0lz −α1Ilz · · · −αnIlz 0lz×lw · · · 0lz×lw γ0 · · · γn











, (7)

Bzu
△
=















β1 · · · βn 0lz×lu · · · 0lz×lu

0lz×lu

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0lz×lu

0lz×lu · · · 0lz×lu β1 · · · βn















∈ Rplz×qclu , (8)
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and

φzw(k)
△
=























z(k − 1)
...

z(k − p − n + 1)

w(k)
...

w(k − p − n + 1)























. (9)

Note that Wzw and Bzu have block-Toeplitz structure.

IV. Controller Construction

To formulate an adaptive control algorithm for (1)–(3), we use a strictly proper time-series controller of
order nc such that the control u(k) is given by

u(k) =

nc
∑

i=1

Pi(k)u(k − i) +

nc
∑

i=1

Qi(k)y(k − i), (10)

where, for all i = 1, . . . , nc, Pi(k) ∈ Rlu×lu and Qi(k) ∈ Rlu×ly . The controller order nc is determined
by standard control guidelines in terms of stabilization and disturbance rejection. The control (10) can be
expressed as

u(k) = θ(k)φ(k), (11)

where

θ(k)
△
=

[

Q1(k) · · · Qnc
(k) P1(k) · · · Pnc

(k)
]

∈ Rlu×nc(lu+ly) (12)

is the controller gain matrix, and the regressor vector φ(k) is given by

φ(k)
△
=























y(k − 1)
...

y(k − nc)

u(k − 1)
...

u(k − nc)























∈ Rnc(lu+ly). (13)

We define the extended control vector U(k) ∈ Rpclu by

U(k)
△
=









u(k − 1)
...

u(k − pc)









, (14)

where pc
△
= n + r + p − 2 and r ≥ 1. From (11), it follows that the extended control vector U(k) can be

written as

U(k) =

pc
∑

i=1

Liθ(k − i)φ(k − i), (15)

where

Li
△
=







0(i−1)lu×lu

Ilu

0(pc−i)lu×lu






∈ Rpclu×lu . (16)
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Next, we define the retrospective performance vector Ẑ(θ̂, k) ∈ Rplz by

Ẑ(θ̂, k)
△
= Wzwφzw(k) + BzuU1(k) − B̄zu

[

U(k) − Û(θ̂, k)
]

, (17)

where θ̂ ∈ Rlu×nc(lu+ly), B̄zu ∈ Rplz×pclu is the surrogate input matrix, and

Û(θ̂, k)
△
=

pc
∑

i=1

Liθ̂φ(k − i) (18)

is the recomputed extended control vector. Substituting (6) into (17) yields

Ẑ(θ̂, k) = Z(k) − B̄zu

[

U(k) − Û(θ̂, k)
]

. (19)

The matrix B̄zu is discussed in Section VI. Note that, since γ0, . . . , γn are unknown, it follows that Wzw is
unknown, even if w (and thus φzw) is known.

Taking the vec of (19) yields

Ẑ(θ̂, k) = f(k) + D(k)vec θ̂, (20)

where

f(k)
△
= Z(k) − B̄zuU(k) ∈ Rplz , (21)

D(k)
△
=

pc
∑

i=1

φT(k − i) ⊗
(

B̄zuLi
)

∈ Rplz×nclu(lu+ly), (22)

and ⊗ represents the Kronecker product. Now, consider the retrospective cost function

J(θ̂, k)
△
= ẐT(θ̂, k)R1(k)Ẑ(θ̂, k) + 2ẐT(θ̂, k)R12(k)û(θ̂, k + 1)

+ ûT(θ̂, k + 1)R2(k)û(θ̂, k + 1) + tr

[

R3(k)
(

θ̂ − θ(k)
)T

R4(k)
(

θ̂ − θ(k)
)

]

, (23)

where R1(k) ∈ Rplz×plz , R12(k) ∈ Rplz×lu , R2(k) ∈ Rlu×lu , R3(k) ∈ Rnc(lu+ly)×nc(lu+ly), R4(k) ∈ Rlu×lu ,
[

R1(k) R12(k)

RT
12(k) R2(k)

]

is positive semidefinite, R3(k) and R4(k) are positive definite, and

û(θ̂, k)
△
= θ̂φ(k). (24)

Substituting (20) into (23) yields

J(θ̂, k) = c(k) + bT(k)vec θ̂ +
(

vec θ̂
)T

M(k)vec θ̂, (25)

where

M(k)
△
= DT(k)R1(k)D(k) + 2DT(k)

[

φT(k) ⊗ R12(k)
]

+
[

φ(k)φT(k)
]

⊗ R2(k) + R3(k) ⊗ R4(k), (26)

b(k)
△
= 2DT(k)R1(k)f(k) + 2

[

φ(k) ⊗ RT
12(k)

]

f(k) − 2 [R3(k) ⊗ R4(k)] vec θ(k), (27)

c(k)
△
= fT(k)R1(k)f(k) + tr

[

R3(k)θT(k)R4(k)θ(k)
]

. (28)

Since M(k) is positive definite, J(θ̂, k) has the strict global minimizer θ(k + 1) given by

θ(k + 1) = −
1

2
vec−1

[

M−1(k)b(k)
]

, (29)
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which requires the inverse of a positive-definite matrix of size plz ×plz. Equation (29) is the adaptive control
update law. Note that B̄zu (which appears in f(k) and D(k)) must be specified in order to implement (29).

In the special case

R1(k)
△
= Iplz , R12(k)

△
= 0plz×lu , R2(k)

△
= 0lu , (30)

R3(k)
△
= α(k)Inc(lu+ly), R4(k)

△
= Ilu , (31)

where α(k) > 0 is a scalar, (26)–(28) become

M(k) = DT(k)D(k) + α(k)I, (32)

b(k) = 2DT(k)f(k) − 2α(k)vec θ(k), (33)

c(k) = fT(k)f(k) + α(k)tr
[

θT(k)θ(k)
]

. (34)

We use the weightings (30), (31) for all of the examples in this paper. The weighting parameter α(k)
introduced in (31) is called the learning rate since it affects the convergence speed of the adaptive control
algorithm. As α(k) is increased, a higher weight is placed on the difference between the previous controller
coefficients and the updated controller coefficients, and, as a result, convergence speed is lowered. Likewise,
as α(k) is decreased, convergence speed is raised. By varying α(k), we can effect tradeoffs between transient
performance and convergence speed.

In the particular case z = y, using the retrospective performance variable ẑ in place of y in the regressor
vector (13) yields faster convergence. Therefore, for z = y, we redefine (13) as

φ(k)
△
=























ẑ(k − 1)
...

ẑ(k − nc)

u(k − 1)
...

u(k − nc)























. (35)

The novel feature of the adaptive control algorithm given by (11) and (29) is the use of the retrospective
correction filter (RCF) (19), as shown in Figure 2 for p = 1. RCF provides an inner loop to the adaptive
control law by modifying the extended performance vector Z(k) in terms of the difference between the actual

past control inputs U(k) and the recomputed control inputs Û(θ̂, k), as given by (19).

V. Markov-Parameter Polynomial

By recursively substituting (1) into (3), it follows that z(k) can be represented by

z(k) = E1Arx(k − r) + H1u(k − 1) + H2u(k − 2) + · · · + Hru(k − r)
+ Hzw,0w(k) + Hzw,1w(k − 1) + · · · + Hzw,rw(k − r), (36)

where r ≥ d, Hzw,0
△
= E0, and, for all i > 0, Hzw,i

△
= E1Ai−1D1. In terms of the backward-shift operator

q−1, (36) can be rewritten as

z(k) = E1Arq−rx(k) +
[

H1q−1 + H2q−2 + · · · + Hrq−r] u(k)

+
[

Hzw,0 + Hzw,1q−1 + · · · + Hzw,rq−r] w(k). (37)

Shifting (37) forward by r steps gives

z(k + r) = E1Arx(k) + pr(q)u(k) + Wr(q)w(k), (38)

where

Wr(q)
△
= Hzw,0qr + Hzw,1qr−1 + Hzw,2qr−2 + · · · + Hzw,r (39)
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Figure 2: Closed-loop system including adaptive control algorithm with the retrospective correction filter (dashed
box) for p = 1.

and

pr(q)
△
= H1qr−1 + H2qr−2 + · · · + Hr. (40)

We call pr(q) the Markov-parameter polynomial. Note that pr(q) is a matrix polynomial in the MIMO case
and a polynomial in the SISO case. Furthermore, since H1 = · · · = Hd−1 = 0 when d ≥ 2, it follows that,
for all r ≥ d ≥ 1, pr(q) can be written as

pr(q) = Hdqr−d + Hd+1qr−d−1 + · · · + Hr. (41)

The Markov-parameter polynomial pr(q) contains information about the relative degree d and, in the SISO
case, the sign of the high-frequency gain, that is, the sign of Hd. We show below that pr(q) also contains

information about the transmission zeros of Gzu(z)
△
= E1(zI − A)−1B, which is given by

Gzu(z) =
1

zn + α1zn−1 + · · · + αn

(

β1zn−1 + β2zn−2 + · · · + βn
)

. (42)

Recall that βd = Hd.
In order to relate the transmission zeros of Gzu to pr(q), the Laurent series expansion of Gzu about

z = ∞ is given by

Gzu(z) =

∞
∑

i=1

z−iHi. (43)

This expansion converges uniformly on all compact subsets of {z : |z| > ρ(A)}, where ρ(A) is the spectral
radius of A [25, Theorem 13, p. 186]. By truncating the summation in (43), we obtain the truncated Laurent
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expansion Ḡr,zu of Gzu, given by

Ḡr,zu(z)
△
=

r
∑

i=1

z−iHi =
1

zr

(

H1zr−1 + · · · + Hr−1z + Hr
)

=
1

zr pr(z). (44)

Consequently, the Markov parameter matrix polynomial pr(q) is closely related to the truncated Laurent
expansion of Gzu.

V.A. Approximation of Outer Nonminimum-Phase Zeros

In the case of MIMO systems, pr(q) is a matrix polynomial and thus does not have roots in the sense
of a polynomial. We therefore require the notion of a Smith zero [?, p. 259]. Specifically, z ∈ C is a Smith
zero of pr(q) if the rank of pr(z) is less than the normal rank of pr(q), that is, the maximum rank of pr(ξ)
taken over all ξ ∈ C. The notion of a Smith zero of a matrix polynomial is a direct consequence of the Smith
decomposition.

Definition V.1. Let ξ ∈ C be a transmission zero of Gzu. Then, ξ is an outer zero of Gzu if |ξ| ≥ ρ(A).
Otherwise, ξ is an inner zero of Gzu.

The following result shows that the Smith zeros of the Markov parameter matrix polynomial pr(q)
asymptotically approximate each outer transmission zero of Gzu.

Fact V.1. Let ξ ∈ C be an outer transmission zero of Gzu. For each r, let Rr
△
= {ξr,1, . . . , ξr,mr } denote

the set of Smith zeros of pr(q). Then, there exists a sequence {ξr,ir }∞r=1 that converges to ξ as r → ∞.

The following specialization to SISO transfer functions shows that the roots of pr(q) asymptotically
approximate each outer zero of Gzu.

Fact V.2. Consider lu = lz = 1, and let ξ ∈ C be an outer zero of Gzu. For each r, let Rr
△
=

{ξr,1, . . . , ξr,r−d} be the set of roots of pr(q). Then, there exists a sequence {ξr,ir }∞r=1 that converges to ξ as
r → ∞.

The following examples illustrate Fact V.2 by showing that, as r increases, roots of the Markov-parameter
polynomial pr(q), and hence, roots of the numerator of the truncated transfer function Ḡr,zu, asymptotically
approximate each outer nonminimum-phase zero of Gzu. The remaining roots of pr(q) are either located
at the origin or form an approximate ring with radius close to ρ(A). These roots are spurious and have no
effect on the adaptive control algorithm.

Example V.1 (SISO, nonminimum phase, stable plant). Consider the plant Gzu with d = 2, H2 = 1, poles
0.5 ± 0.5, −0.5 ± 0.5, ±0.95, ±0.7, minimum-phase zeros 0.3 ± 0.7, −0.7 ± 0.3, and outer nonminimum-
phase zeros 1.25, −1.5. Table 1 lists the approximated nonminimum-phase zeros obtained as roots of pr(q) as
a function of r. Note that as r increases, the outer nonminimum-phase zeros are more closely approximated
by roots of pr(q). See Figure 3. �

r rootsnmp(pr(q))

6 {0.944,-1.537}
8 {1.170,-1.502}
10 {1.207,-1.498}
15 {1.240,-1.499}
20 {1.248,-1.500}
25 {1.250,-1.500}

Table 1: Approximated nonminimum-phase zeros obtained as roots of pr(q) as a function of r for the stable,
nonminimum-phase plant in Example V.1. As r increases, the outer zeros are more accurately modeled.
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Figure 3: Roots of p20(q) for the stable, nonminimum-phase plant in Example V.1. The dashed line denotes ρ(A) =
0.95. Note that the roots outside ρ(A) are close to the outer nonminimum-phase zeros −1.5 and 1.25. The remaining
roots are either located at the origin or form an approximate ring with radius close to ρ(A).

Example V.2 (SISO, nonminimum phase, unstable plant). Consider the plant Gzu with d = 2, H2 = 1,
poles 0.5±0.5, −0.5±0.5, ±0.7, −0.95, 1.4, minimum-phase zeros 0.3±0.7, −0.7±0.3, outer nonminimum-
phase zero −1.5, and inner nonminimum-phase zero 1.25. Figure 4 shows the roots of p25(q). Note that
the root of p25(q) outside ρ(A) is close to the outer nonminimum-phase zero −1.5. However, the inner
nonminimum-phase zero 1.25 is not approximated by a root of p25(q). The remaining roots are either located
at the origin or form an approximate ring with radius close to ρ(A). �

V.B. Approximation of Inner Nonminimum-Phase Zeros

Example V.2 illustrates that the roots of pr(q) approximate each outer nonminimum-phase zero of Gzu.
However, inner nonminimum-phase zeros of Gzu are not approximated by roots of pr(q). To overcome this
deficiency, we can use information about the plant’s unstable poles to create a modified Markov-parameter
polynomial p̃r(q) whose roots approximate each nonminimum-phase zero of Gzu. For illustration, assume
that the SISO plant Gzu has a unique unstable pole ζ ∈ C whose absolute value is greater than all other
poles of Gzu. Then, we define

G̃zu(z)
△
=

z − ζ
z

Gzu(z) = Gzu(z) −
ζ
z

Gzu(z)

=

∞
∑

i=d

z−iHi −
∞
∑

i=d

z−(i+1)ζHi =

∞
∑

i=d

z−i [Hi − ζHi−1]

=
∞
∑

i=d

z−iH̃i, (45)

where, for i = 1, 2, . . . , H̃i
△
= Hi − ζHi−1 are the modified Markov parameters, and H0 = 0. By repeating

this operation for each unstable pole of Gzu, the roots of the modified Markov-parameter polynomial

p̃r(q)
△
= H̃dqr−d + H̃d+1qr−d−1 + · · · + H̃r (46)

can approximate each nonminimum-phase zero of Gzu. The following example illustrates this process.
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Figure 4: Roots of p25(q) for the unstable, nonminimum-phase plant in Example V.2. The dashed line denotes
ρ(A) = 1.4. Note that the root of p25(q) outside ρ(A) is close to the outer nonminimum-phase zero −1.5. However,
the nonminimum-phase zero 1.25 is not approximated by a root of p25(q). The remaining roots are either located at
the origin or form an approximate ring with radius close to ρ(A).

Example V.3 (Ex. V.2 with pole information). Reconsider Example V.2, where the inner nonminimum-
phase zero 1.25 is not approximated by a root of pr(q). Using knowledge of the unstable pole 1.4 to construct
p̃r(q) given by (46), Figure 5 shows the roots of p̃25(q). Note that the roots outside ρ(Ã), where Ã is the
dynamics matrix of a minimal realization of G̃zu, are close to the nonminimum-phase zeros of Gzu. The
remaining roots are either located at the origin or form an approximate ring with radius close to ρ(Ã). �

VI. Construction of B̄zu

We present four constructions for B̄zu based on the available modeling information.

VI.A. Bzu-Based Construction

If Bzu given by (8) is known, then, with r = 1, B̄zu can be chosen to be equal to Bzu. In this case, (17)
becomes

Ẑ(θ̂, k) = Wzwφzw(k) + BzuÛ(θ̂, k). (47)

This construction of B̄zu captures information about the relative degree d, the sign of the high-frequency
gain, and exact values of all transmission zeros of Gzu, that is, both minimum-phase and nonminimum-phase
transmission zeros.

VI.B. Nonminimum-Phase-Zero-Based Construction

Consider lu = lz = 1, r = 1, and assume that Hd and the nonminimum-phase zeros of Gzu are known.
Then we define the nonminimum-phase numerator polynomial N(q) to be the polynomial whose roots are
equal to the nonminimum-phase zeros of Gzu, that is,

N(q)
△
= Hdqm + β̃1qm−1 + · · · + β̃m, (48)
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Figure 5: Roots of p̃25(q) for the unstable, nonminimum-phase plant in Example V.3. The dashed line denotes
ρ(Ã) = 0.95, where Ã is the dynamics matrix of a minimal realization of G̃zu. Note that the roots outside ρ(Ã) are
close to the inner and outer nonminimum-phase zeros of Gzu. The remaining roots are either located at the origin
or form an approximate ring with radius close to ρ(Ã).

where m ≥ 0 is the number of nonminimum-phase zeros in Gzu, and β̃1, . . . , β̃m ∈ R. If m = 0, that is, Gzu
is minimum phase, then N(q) = Hd. The nonminimum-phase-zero-based construction of B̄zu is thus given
by

B̄zu =











H1 · · · Hd β̃1 · · · β̃m 0lz×lu · · · 0lz×lu 0lz×lu · · · 0lz×lu

0lz×lu

. . .
. . .

. . .
. . .

. . .
. . .

. . .
.
..

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...

0lz×lu · · · 0lz×lu H1 · · · Hd β̃1 · · · β̃m 0lz×lu · · · 0lz×lu











. (49)

This construction of B̄zu captures information about the relative degree d, the sign of the high-frequency
gain, and exact values of all nonminimum-phase zeros of Gzu. Note that, in the minimum-phase case, the only
required modeling information is Hd. A MIMO extension of this construction, utilizing the Smith-McMillan
form of Gzu, is presented in.26

VI.C. r-MARKOV-Based Construction

Replacing k with k − 1 in (4) and substituting the resulting relation back into (4) yields a 2-MARKOV
model. Repeating this procedure r − 1 times yields the r-MARKOV model of (1)–(3)

z(k) =

n
∑

i=1

αr,iz(k − r − i + 1) +

r−1
∑

i=d

Hiu(k − i) +

n
∑

i=1

βr,iu(k − r − i + 1)

+

r−1
∑

i=0

Hzw,iw(k − i) +

n
∑

i=1

γr,iw(k − r − i + 1), (50)
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where, for i = 1, . . . , n, the coefficients αr,i ∈ R, βr,i ∈ Rlz×lu , and γr,i ∈ Rlz×lw are given by

α1,i
△
= −αi, β1,i

△
= βi, γ1,i

△
= γi,

...
...

...

αr,i
△
= αr−1,1α1,i + αr−1,i+1, βr,i

△
= αr−1,1β1,i + βr−1,i+1, γr,i

△
= αr−1,1γ1,i + γr−1,i+1,

...
...

...

αr,n
△
= αr−1,1α1,n, βr,n

△
= αr−1,1β1,n, γr,n

△
= αr−1,1γ1,n.

(51)

Note that βr,1 = Hr and γr,1 = Hzw,r. We represent (50) with w = 0 as the r-MARKOV transfer function

Gr,zu(z) =
1

zr+n−1 + αr,1zn−1 + · · · + αr,n

·
(

H1zr+n−2 + · · · + Hr−1zn + Hrzn−1 + βr,2zn−2 + · · · + βr,n
)

. (52)

The system representation (52) is nonminimal since its order is n + r − 1, and thus (52) includes poles that
are not present in the original model. Furthermore, note that the coefficients of the terms zn+r−2 through zn

in the denominator are zero. These facts are irrelevant for the following development. Using the numerator
coefficients of (52), the r-MARKOV-based construction of B̄zu is given by

B̄zu =















H1 · · · Hr βr,2 · · · βr,n 0lz×lu · · · 0lz×lu

0lz×lu

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . . 0lz×lu

0lz×lu · · · 0lz×lu H1 · · · Hr βr,2 · · · βr,n















. (53)

This construction of B̄zu captures information about the relative degree d, the sign of the high-frequency
gain, and exact values of all transmission zeros of Gzu, that is, both minimum-phase and nonminimum-phase
transmission zeros.

VI.D. Markov-Parameter-Based Construction

Using the numerator coefficients of (44), the Markov-parameter-based construction of B̄zu is given by

B̄zu =















H1 · · · Hr 0lz×lu · · · 0lz×lu 0lz×lu · · · 0lz×lu

0lz×lu

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...

0lz×lu · · · 0lz×lu H1 · · · Hr 0lz×lu · · · 0lz×lu















. (54)

The Markov parameters are the numerator coefficients of a truncated Laurent series expansion of Gzu about
z = ∞. The Markov parameters contain information about the relative degree d, the sign of the high-
frequency gain, and, as shown by Fact V.2 for the SISO case, approximate values of all outer nonminimum-
phase zeros of Gzu. The advantage in using B̄zu given by (54) rather than (53) is that βr,2, . . . , βr,n need
not be known. If, however, Gzu has inner nonminimum-phase zeros and the unstable poles of Gzu whose
absolute values are greater than at least one inner nonminimum-phase zero are known, then we replace the
Markov parameters H1, . . . , Hr in (54) by the modified Markov parameters H̃1, . . . , H̃r given in (45). If these
poles are not known, then B̄zu can be chosen to be Bzu, the nonminimum-phase zero form given by (49), or
the r-MARKOV form given by (53).
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VII. Adaptive Control of GTM

We now apply RCF adaptive control to the Generic Transport Model (GTM), a twin-engine transport-
class nonlinear aircraft simulation developed at NASA Langley Research Center for aviation safety research.
Specifically, we use RCF control for disturbance rejection and command-following under nominal and failure
conditions. All of the examples are based around a nominal trim condition with the following parameters:

1. Flight path angle of 0.00 deg.

2. Body x−, y−, and z-axis velocities of 161.66, 0.00, and 7.12 ft/s.

3. Angular velocities in roll, pitch, and yaw of 0.00, 0.00, and 0.00 degrees/s.

4. Latitude, longitude, and altitude of 37.03 degrees, -76.5 degrees, and 625.48 ft.

5. Roll, pitch, and yaw angles of 0.077, 2.52, and 90 degrees.

Additionally, for all of the examples below we choose the performance variable vector

z =







Φ

r
(h − href) /30






, (55)

where the roll angle Φ, body yaw rate r, and altitude h are in rad, rad/s, and ft, respectively. Note that
the altitude is scaled by 30 so that its magnitude is comparable to the remaining performance variables.
Here href represents the desired altitude. We do not assume that air speed is measured, and we will use the
Markov-parameter-based construction of B̄zu, given by (54).

Example VII.1 (Nominal Disturbance Rejection). We begin with a disturbance rejection example in which
there is a periodic downward wind gust of 0.2 ft/s with a period of 100 sec as shown in Figure 6. As a basis
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Figure 6: Downward wind gusts.

of comparison, the nominal aircraft response is shown in Figure 7, where it can be seen that the aircraft
altitude does not stabilize at the nominal trim condition. Next, we apply RCF adaptive control to the aircraft
to stabilize the aircraft at its nominal trim condition. For the adaptive control law we let the measurement
vector be identical to the performance variable vector y = z, and choose r = 5, nc = 1, p = 1, and α = 10. As
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inputs we choose the rudder, elevator, and ailerons. The nominal linearized model between control surfaces
and performance variables is provided by the GTM simulation. Figure 8 shows the aircraft response when
RCF adaptive control is applied. It can be seen that the altitude is stabilized and approaches the nominal
trim condition. Figure 9 shows the control surface deflections due to the control law.

Example VII.2 (Disturbance Rejection with Elevator Failure). Consider again disturbance rejection of the
periodic wind gust as shown in Figure 6, where we now introduce an effectiveness failure in the elevator. That
is, the elevator commands are now taken to be 75% less effective than the nominal model dictates, although
this change is not modeled by Bzu. We consider the same controller parameters as in the failure-free case.
Figure 10 shows that, despite the failure, the altitude is again stabilized and all of the performance variables
approach their trim values. Figure 11 shows the control surface deflections due to the control law.

Example VII.3 (Nominal Command Following). Next, we consider command following of the altitude
doublet shown in Figure 12, in the presence of zero-mean Gaussian North, East, and Vertical winds with
covariances of 0.0001 ft/s. For this case, href represents the commanded altitude. We also augment the
measurement vector to include the doublet command, that is,

y =











Φ

r
(h − href) /30

href/30











. (56)

Note that since y now includes the command, the adaptive control law contains both feedback and feedforward
components. We choose the controller parameters r = 5, nc = 1, p = 1, and α = 10, as in the previous
examples. Figure 13 shows the aircraft response to the altitude doublet command under RCF adaptive control.
Figure 14 shows the control surface deflections due to the control law.

Example VII.4 (Command Following with Elevator Failure). We again consider command following of the
altitude doublet as shown in Figure 12 in the presence of Gaussian North, East, and Vertical winds, where
we introduce an effectiveness failure in the elevator, now taken to be 75% less effective than the nominal
model dictates. We consider the same controller parameters as in the failure-free case. Figure 15 shows that,
despite the failure, the performance variable vector is able to follow the altitude doublet. Figure 16 shows the
control surface deflections due to the control law.

VIII. Conclusion

We presented a detailed description of retrospective-cost based adaptive control, which is a discrete-time
adaptive control law capable of stabilization, command following, and disturbance rejection for systems that
are unstable, MIMO, and/or nonminimum phase. We then illustrated the effectiveness of the RCF algorithm
for disturbance rejection and command following on NASA’s Generic Transport Model both nominally and
under unknown, reduced controller authority.
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Figure 7: Nominal aircraft response to downward wind gusts shown in Figure 6.
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Figure 8: Aircraft response to periodic downward wind gusts shown in Figure 6 under RCF adaptive control. The
solid lines represent true aircraft response, while the dashed lines represent desired performance.
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Figure 9: Aircraft control surface deflections due to the RCF adaptive control in response to the downward wind
gusts shown in Figure 6.
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Figure 10: Aircraft response under RCF adaptive control to downward wind gusts shown in Figure 6 with a 75%
reduction in elevator effectiveness. The solid lines represent true aircraft response, while the dotted lines represent
desired performance.
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Figure 11: Aircraft control surface deflections due to RCF adaptive control in response to the downward wind gusts
shown in Figure 6 with a 75% reduction in elevator effectiveness.
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Figure 12: Commanded altitude doublet.
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Figure 13: Aircraft response to doublet command as shown in Figure 12 under RCF adaptive control. The solid lines
represent true aircraft response, while the dashed lines represent commanded performance.
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Figure 14: Aircraft control surface deflections due to RCF adaptive control in response to the altitude doublet
command shown in Figure 12.
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Figure 15: Aircraft response under RCF adaptive control to altitude doublet command as shown in Figure 12 with
a 75% reduction in elevator effectiveness. The solid lines represent true aircraft response, while the dashed lines
represent commanded performance.
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Figure 16: Aircraft control surface deflections due to RCF adaptive control in response to the altitude doublet
command as shown in Figure 12 with a 75% reduction in elevator effectiveness.
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