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Abstract— We present a discrete-time adaptive control law
that is effective for systems that are MIMO and either
minimum phase or nonminimum phase. The adaptive control
algorithm provides guidelines concerning the modeling infor-
mation needed for implementation. This information includes
a sufficient number of Markov parameters to capture the sign
of the high-frequency gain as well as the nonminimum-phase
zeros. No additional information about the poles or zeros need
be known. In this paper, recursive least-squares estimation is
used for concurrent Markov parameter estimation. We present
numerical examples to illustrate the algorithm’s effectiveness

in handling nonminimum-phase zeros as plant changes occur.

I. INTRODUCTION

Adaptive control algorithms can be classified as either

direct or indirect, depending on whether they employ an ex-

plicit plant parameter estimation algorithm within the overall

adaptive scheme; see [1]–[4]. Most direct adaptive control

algorithms, with the exception of universal adaptive control

algorithms [5], require some prior modeling information,

such as the sign of the high-frequency gain. By updating

the required modeling information, perhaps through closed-

loop identification, a direct adaptive control algorithm can

be converted to a hybrid direct and indirect adaptive control

algorithm, which may have greater versatility in practice.

The goal of the present paper is to present a hybrid

direct and indirect discrete-time adaptive control algorithm

as an extension of the direct adaptive control algorithm

developed in [6]–[10], demonstrated on the NASA generic

transport model in [11], and demonstrated on flow control

problems in [12]. This algorithm, based on a retrospective

cost optimization (RCO), requires prior estimates of the

Markov parameters of the transfer function from the control

inputs to the performance variables. These Markov parameter

estimates capture the sign of the high-frequency gain as well

as the locations of the nonminimum-phase zeros (if any) in

the relevant transfer function. Since no parameter estimation

is performed online, this algorithm is a direct adaptive control
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algorithm. In some applications, however, prior modeling or

identification is not possible, whereas, in other applications,

the dynamics of the plant may change unexpectedly during

operation. In both cases, the required Markov parameters

must be estimated online.

The present paper investigates the performance of the

RCO-based adaptive control algorithm with concurrent

Markov-parameter estimation. The resulting adaptive control

algorithm is thus a hybrid direct and indirect algorithm.

For parameter estimation we use a standard recursive least-

squares (RLS) algorithm. The scenario we consider uses

discrete-time RCO direct adaptive control with prior esti-

mates of the Markov parameters , and the RLS identification

algorithm operates concurrently with the control adaptation

to update the Markov parameters when a plant change occurs.

We demonstrate the hybrid direct and indirect RCO algo-

rithm on several numerical examples. Of particular interest

is the case in which a plant change occurs, in which a

mininimum phase zero becomes nonminimum phase. These

results are noteworthy since nonminimum-phase zeros are

known to be challenging for adaptive control algorithms [13].

Numerical results show that the algorithm is able to update

the Markov parameters and maintain system stability. These

numerical examples are intended to provide motivation for

future proofs of stability and convergence.

II. PROBLEM FORMULATION

Consider the MIMO discrete-time system

x(k + 1) = Ax(k) + Bu(k) + D1w(k), (1)

y(k) = Cx(k) + D2w(k), (2)

z(k) = E1x(k) + E0w(k), (3)

where x(k) ∈ R
n, y(k) ∈ R

ly , z(k) ∈ R
lz , u(k) ∈ R

lu ,

w(k) ∈ R
lw , and k ≥ 0. Our goal is to develop an adaptive

output feedback controller under which the performance

variable z is minimized in the presence of the exogenous

signal w. Note that w can represent either a command signal

to be followed, an external disturbance to be rejected, or

both. For example, if D1 = 0 and E0 6= 0, then the

objective is to have the output E1x follow the command

signal −E0w. On the other hand, if D1 6= 0 and E0 = 0,

then the objective is to reject the disturbance w from the

performance measurement E1x. The combined command

following and disturbance rejection problem is addressed

when D1 and E0 are block matrices. More precisely, if D1 =
[

D̂1 0
]

, E0 =
[

0 Ê0

]

, and w(k) =

[

w1(k)
w2(k)

]

, then
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the objective is to have E1x follow the command −Ê0w2

while rejecting the disturbance w1. Lastly, if D1 and E0 are

empty matrices, then the objective is output stabilization, that

is, convergence of z to zero.

Model reference adaptive control (MRAC) is a special case

of (1)–(3), where the performance variable z is the difference

between the measured output of the plant and the output of

the reference model. For MRAC, the exogenous command

w is available to the controller as an additional measurement

variable, as shown in Figure 1.

Fig. 1. Model reference adaptive control problem.

III. CONTROLLER CONSTRUCTION

In this section we formulate an adaptive control algorithm

for the general control problem represented by (1)–(3). We

use a strictly proper time-series controller of order nc, such

that the control u(k) is given by

u(k) =

nc
∑

i=1

Mi(k)u(k − i) +

nc
∑

i=1

Ni(k)y(k − i), (4)

where, for all i = 1, . . . , nc, Mi ∈ R
lu×lu and Ni ∈ R

lu×ly

are given by the adaptive law presented below. The control

can be expressed as

u(k) = θ(k)φ(k), (5)

where

θ(k)
△
=

[

N1(k) · · · Nnc
(k) M1(k) · · · Mnc

(k)
]

,

and the regressor vector is given by

φ(k)
△
=





















y(k − 1)
...

y(k − nc)
u(k − 1)

...

u(k − nc)





















∈ R
nc(lu+ly). (6)

For positive integers p and pc ≥ p, we define the extended

performance vector Z(k) ∈ R
plz , and the extended control

vector U(k) ∈ R
pclu by

Z(k)
△
=







z(k)
...

z(k − p + 1)






, U(k)

△
=







u(k)
...

u(k − pc + 1)






.

From (5), it follows that the extended control vector U(k)
can be written as

U(k)
△
=

pc
∑

i=1

Liθ(k − i + 1)φ(k − i + 1), (7)

where

Li
△
=





0(i−1)lu×lu

Ilu

0(pc−i)lu×lu



 ∈ R
pclu×lu . (8)

Next, we define the retrospective performance vector

Ẑ(θ̂, k)
△
= Z(k) − B̄zu

[

U(k) − Û(θ̂, k)
]

, (9)

where θ̂ ∈ R
lu×nc(lu+ly), B̄zu ∈ R

plz×pclu is given by (25)

below, and

Û(θ̂, k)
△
=

pc
∑

i=1

Liθ̂φ(k − i + 1). (10)

Taking the vec of (9) yields

Ẑ(θ̂, k) = f(k) + D(k)vec θ̂, (11)

where

f(k)
△
= Z(k) − B̄zuU(k), (12)

D(k)
△
=

pc
∑

i=1

φT(k − i + 1) ⊗
(

B̄zuLi

)

, (13)

and ⊗ represents the Kronecker product.

Now, consider the retrospective cost function

J(θ̂, k)
△
= ẐT(θ̂, k)Ẑ(θ̂, k) (14)

+ α(k)tr

[

(

θ̂ − θ(k)
)T (

θ̂ − θ(k)
)

]

,

where α(k) > 0 is the learning rate. The learning rate

α(k) affects convergence speed of the adaptive control algo-

rithm. As α(k) is increased, convergence speed is lowered.

Likewise, as α(k) is decreased, converge speed is raised.

Substituting (11) into (14) yields

J(θ̂, k) = c(k) + bT(k)vec θ̂ +
(

vec θ̂
)T

A(k)vec θ̂, (15)

where

A(k) = DT(k)D(k) + α(k)I, (16)

b(k) = 2DT(k)f(k) − 2α(k)vec θ(k), (17)

c(k) = fT(k)f(k) + α(k)tr
[

θT(k)θ(k)
]

. (18)

Since A(k) is positive definite, J(θ̂, k) has the strict global

minimizer θ(k + 1) given by

θ(k + 1) = −
1

2
vec−1(A−1(k)b(k)). (19)

The novel feature of the adaptive control algorithm is

the use of the retrospective correction filter (9). This filter

provides an inner loop to the adaptive control law by

modifying the performance variable Z(k) based on the

difference between the actual past control inputs U(k) and
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the recomputed past control inputs Û(θ̂, k), assuming that

the current controller θ̂ had been used in the past.

In the case z = y, using the retrospective performance

variable ẑ(k)
△
=

[

Ilz 0lz×lz · · · 0lz×lz

]

Ẑ(θ(k), k)
in place of y in the regressor vector (6) results in faster

convergence.

IV. TIME-SERIES MODELING

The adaptive controller (5) and (19) requires limited model

information of the plant (1)–(3); however, the controller does

require knowledge of B̄zu. The B̄zu matrix is constructed

from the plant’s Markov parameters.

Consider the time-series representation of (1)–(3) given by

z(k) =

n
∑

i=1

−αiz(k − i) +

n
∑

i=d

βiu(k − i) +

n
∑

i=0

γiw(k − i),

(20)

where α1, . . . , αn ∈ R, βd, . . . , βn ∈ R
lz×lu , γ0, . . . , γn ∈

R
lz×lw , and the relative degree d is the smallest positive

integer i such that the ith Markov parameter Hi
△
= E1A

i−1B

is nonzero. Note that βd = Hd.

Next, consider the µ-MARKOV model of (20) obtained

from µ successive back-substitutions of (20) into itself, and

given by

z(k) = −

n
∑

i=1

αµ,iz(k − µ − i) +

µ
∑

i=d

Hzu,iu(k − i)

+
n

∑

i=1

βµ,iu(k − µ − i) +

µ
∑

i=0

Hzw,iw(k − i)

+

n
∑

i=1

γµ,iw(k − µ − i), (21)

where αµ,i ∈ R, βµ,i ∈ R
lz×lu , γµ,i ∈ R

lz×lw , Hzu,i ∈

R
lz×lu , Hzw,i ∈ R

lz×lw , and µ ≥ d. Thus, the µ-MARKOV

transfer function from u to z is given by

Gµ,zu(z) =
1

pµ(z)

(

Hdzµ+n−d + · · · + Hµzn
)

+
1

pµ(z)

(

βµ,1zn−1 + · · · + βµ,n

)

, (22)

where pµ(z)
△
= zµ+n + αµ,1zn−1 + · · · + αµ,n. This system

representation is nonminimal, overparameterized, and has

order n + µ. Note that the coefficients of the terms zn+µ−1

through zn in the denominator are zero.

The Laurent series expansion of Gzu(z) about z = ∞ is

Gzu(z) =

∞
∑

i=d

z−iHzu,i. (23)

Truncating the numerator and denominator of (22) is equiv-

alent to the truncated Laurent series expansion of Gzu(z)
about z = ∞. Thus, the truncated Laurent series expansion

of Gzu(z) is

Ḡµ,zu(z)
△
=

µ
∑

i=d

z−iHzu,i. (24)

Next, define pc
△
= p + µ and the resulting block-Toeplitz

control matrix B̄zu ∈ R
plz×pclu is

B̄zu
△
=







0lz×dlu Hzu,d · · · Hzu,µ 0lz×lu(p−1)

...
. . .

. . .

0lz×dlu 0lz×lu(p−1) Hzu,d · · · Hzu,µ






.

(25)

The leading zeros in the first row of B̄zu account for the

nonzero relative degree d. The advantage in constructing B̄zu

using the Markov parameters Hzu,d, . . . , Hzu,µ as opposed

to using all of the numerator coefficients of Gµ,zu is ease of

identification.

Note that for a single-input, single-output system, some of

the roots of the polynomial

H(z)
△
= Hzu,dzµ−d + Hzu,d+1zµ−d−1 + · · · + Hzu,µ−1z

+ Hzu,µ (26)

can be shown to approximate the nonminimum-phase zeros

from u to z that lie outside of a circle in the complex plane

centered at the origin with radius equal to the spectral radius

of A. Thus, knowledge of Hzu,d, . . . , Hzu,µ encompasses

knowledge of the nonminimum-phase zeros from u to z that

lie outside of the spectral radius of A. In fact, if the transfer

function from u to z is minimum phase, then we choose

µ = d, which requires knowledge of only a single Markov

parameter, namely, Hd. The minimum-phase case with z =
y is considered in [8] using a gradient-based adaptive law

rather than the adaptive law (19). Under the minimum-phase

assumption, [8] proves asymptotic convergence of z to zero.

V. RECURSIVE LEAST-SQUARES MARKOV PARAMETER

UPDATE

To obtain the required Markov parameters for constructing

B̄zu, we implement the standard recursive least-squares

(RLS) algorithm as in [14] for the µ-MARKOV plant struc-

ture (21). We initialize the parameter matrix to zero and the

covariance matrix of the parameter estimation error to the

identity matrix. At each time step, we take the computed

Markov parameters Hi, i = 0, . . . , µ, and construct B̄zu as

in (25). The identification input for RLS is taken to be the

output of the adaptive controller, that is, the control input

u to the plant, while the identification output for RLS is

taken to be the performance variable z. The closed-loop

system including the RCO adaptive control algorithm with

concurrent RLS identification for Markov parameter, and

thus B̄zu, updates is shown in Figure 2. No probing input is

used to identify the Markov parameters, and disturbances are

assumed to be present while the online identification takes

place.

VI. NUMERICAL EXAMPLES

We now present numerical examples to illustrate the

response of the RCO adaptive control algorithm with concur-

rent RLS identification. We consider a sequence of examples

with increasing complexity. In each case, we start with a

nominal plant in closed loop with the RCO adaptive control
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Fig. 2. Closed-loop system including the RCO adaptive control algorithm
with concurrent RLS identification for Markov parameter updates.

algorithm and concurrent RLS identification. At some time

during the simulation, a plant change occurs, which requires

updating the Markov parameters for the adaptive controller.

As RLS identification runs concurrently with the adaptive

controller, the Markov parameters are updated in real time.

Each plant can be viewed as a sampled-data discretization

of a continuous-time plant sampled at Ts = 0.01 sec. All

examples assume z = y.

Each example, unless otherwise noted, is a disturbance

rejection problem, that is, E0 = 0, with unknown sinusoidal

disturbance given by

w(k) =

[

sin 2πν1kTs

sin 2πν2kTs

]

, (27)

where ν1 = 5 Hz and ν2 = 13 Hz. The RCO adaptive

control algorithm requires no information about w. With each

plant realized in controllable canonical form, we take D1 =
[

I2

0

]

, and, therefore, the disturbance is not matched.

A. Example: Change in control effectiveness

Consider a stable, minimum-phase, SISO plant with poles

0.5±0.5, −0.5±0.5, ±0.9, and ±0.7; and zeros 0.3±0.7,

−0.7 ± 0.3, and ±0.5. Let nc = 15, p = 1, µ = 3, and

α = 25. The closed-loop response is shown in Figure 3.

The control is turned on at t = 5 sec, and the performance

variable reduces to zero. At t = 15 sec, the system suffers a

75% loss of control effectiveness, that is, the control input

u entering the plant is multiplied by a scaling factor λ =
0.25. The Markov parameters are updated online, and the

performance variable reduces to zero. Figure 4 shows a time-

history plot of the first 3 Markov parameters obtained from

online RLS identification.

B. Example: Change in zero characteristics

Consider a stable, minimum-phase, SISO plant with poles

0.5±0.5, −0.5±0.5, ±0.9, and ±0.7; and zeros 0.3±0.7,

−0.7 ± 0.3, and ±0.5. Let nc = 20, p = 1, µ = 20, and

α = 1000. The closed-loop response is shown in Figure 5.

The control is turned on at t = 5 sec, and the performance

variable reduces to zero. At t = 15 sec, the minimum-phase

zero at z = 0.5 is changed to a nonminimum-phase zero
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Fig. 3. Closed-loop disturbance rejection response for a stable, minimum-
phase, SISO plant. The control is turned on at t = 5 sec, and, at t = 15 sec,
the system suffers a 75% loss of control effectiveness. The controller order
is nc = 15 with parameters p = 1, µ = 3, α = 25.
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Fig. 4. Time history of the first 3 Markov parameters obtained from online
RLS identification. The control is turned on at t = 5 sec, and, at t = 15 sec,
the system suffers a 75% loss of control effectiveness. The estimated Markov
parameters are used in the adaptive controller update law.

at z = 2. After a transient, the adaptive control algorithm

reduces the performance variable to zero.

C. Example: Change in poles and zeros

Consider an order n = 8 FIR, nonminimum-phase, SISO

plant with zeros 0.3 ± 0.7, −0.7 ± 0.3, 0.5, and 2. Let

nc = 15, p = 1, µ = 10, and α = 25. The closed-loop

response is shown in Figure 6. The control is turned on at

t = 5 sec, and the performance variable reduces to zero.

At t = 15 sec, the nonminimum-phase zero at z = 2 is

changed to a minimum-phase zero at z = 0.5 and the plant’s

poles are changed to 0.5 ± 0.5, −0.5 ± 0.5, and ±0.7.

After a transient, the adaptive control algorithm reduces the

performance variable to zero.

D. Example: Change in relative degree

Consider a stable, nonminimum-phase, SISO plant with

poles 0.5 ± 0.5, −0.5 ± 0.5, ±0.9, and ±0.7; and zeros

0.3 ± 0.7, −0.7 ± 0.3, 0.5, and 2. Let nc = 15, p = 2,
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Fig. 5. Closed-loop disturbance rejection response for a stable, minimum-
phase, SISO plant. The control is turned on at t = 5 sec, and, at t = 15 sec,
one of the plant’s minimum-phase zeros is replaced with a nonminimum-
phase zero. The controller order is nc = 20 with parameters p = 1, µ =

20, α = 1000.
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Fig. 6. Closed-loop disturbance rejection response for an FIR,
nonminimum-phase, SISO plant. The control is turned on at t = 5 sec,
and, at t = 15 sec, the plant’s nonminimum-phase zero is replaced with
a minimum-phase zero and the plant’s poles are relocated to stable poles
away from the origin. The controller order is nc = 15 with parameters
p = 1, µ = 10, α = 25.

µ = 10, and α = 50. The closed-loop response is shown

in Figure 7. The control is turned on at t = 5 sec, and the

performance variable reduces to zero. At t = 15 sec, the

plant’s relative degree is changed from d = 2 to d = 4
by adding two poles at the origin. The RLS algorithm

identifies the shifted Markov parameters due to the latency

and recovers performance. Without RLS, the RCO algorithm

is shown in [9] to be sensitive to unknown delays.

E. Example: Command following with change in zeros

We now consider a step-command following problem with

command given by a square wave of frequency 2πν3Ts

where ν3 = 0.1 Hz. With the plant realized in controllable

canonical form, we take D1 = 0 and E0 = −1.

Consider a stable, nonminimum-phase, SISO plant with

poles 0.5 ± 0.5, −0.5 ± 0.5, ±0.9, and ±0.7; and zeros

0.3 ± 0.7, −0.7 ± 0.3, 0.5, and 2. Let nc = 15, p = 2,
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Fig. 7. Closed-loop disturbance rejection response for a stable,
nonminimum-phase, SISO plant. The control is turned on at t = 5 sec, and,
at t = 15 sec, the plant’s relative degree changes from d = 2 to d = 4.
The controller order is nc = 15 with parameters p = 2, µ = 10, α = 50.

µ = 25, and α = 250. The closed-loop response is shown

in Figure 8. The control is turned on at t = 5 sec, and the

performance variable reduces to zero. At t = 15 sec, the

minimum-phase zero at z = 0.5 disappears from the plant,

while the nonminimum-phase zero at z = 2 is changed to

a nonminimum-phase zero at z = 2.5. After a transient, the

adaptive control algorithm reduces the performance variable

to zero and follows the step command.
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Fig. 8. Closed-loop command following response for a stable,
nonminimum-phase, SISO plant. The control is turned on at t = 5 sec,
and, at t = 15 sec, one of the plant’s minimum-phase zeros is removed
while the location of the plant’s nonminimum-phase zero is changed. The
controller order is nc = 15 with parameters p = 2, µ = 25, α = 250.

F. Example: MRAC for Missile Longitudinal Dynamics

We now present a numerical example for MRAC of mis-

sile longitudinal dynamics under an off-nominal or damage

situation. The MRAC control architecture is shown in Figure

1. The basic missile longitudinal plant of [15] is derived from

the short period approximation of the longitudinal equations
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of motion, given by

ẋ =

[

−1.064 1
290.26 0

]

x + λ

[

−0.25
−331.4

]

u, (28)

y =

[

−123.34 0
0 1

]

x + λ

[

−13.51
0

]

u, (29)

where

x
△
=

[

α

q

]

, y
△
=

[

Az

q

]

,

and λ ∈ (0, 1] represents the control effectiveness. Nominally

λ = 1.

The open-loop system (28), (29) is statically unstable.

To overcome this instability, a classical three-loop autopilot

from [15] is wrapped around the basic missile longitudinal

plant. The adaptive controller then augments the closed-loop

system to provide control in off-nominal cases, that is, when

λ < 1. The autopilot and adaptive controller inputs are

denoted uap and uac, respectively. Thus, the total control

input u = uap+uac. The reference model Gm consists of the

basic missile longitudinal plant with λ = 1 and the classical

three-loop autopilot. An actuator saturation of ±30 deg is

included in the model, but no actuator or sensor dynamics

are included.

Our goal is to have the missile follow a pitch acceleration

command w consisting of a 1-g amplitude, 1-Hz square

wave. The performance variable z is the difference between

the measured pitch acceleration Az and the reference model

pitch acceleration A∗
z , that is, z

△
= Az − A∗

z . The adaptive

controller is implemented at a sampling rate of 300 Hz. We

take nc = 3, p = 1, and µ = 20. A time-varying learning

rate α is used such that, initially, controller adaptation is fast,

and, as performance improves, the adaptation slows.

Figure 9 shows closed-loop MRAC simulation results.

Initially, λ = 1, and thus, the adaptive controller is not

used. At t = 5 sec, we change λ = 0.5, but, to demon-

strate autopilot-only control, we do not turn on the adaptive

controller. At t = 10 sec, the adaptive controller is turned on.

After a transient, the augmented controllers result in better

performance than the autopilot-only control.

VII. CONCLUSION

We presented a hybrid direct and indirect RCO adaptive

control algorithm and demonstrated its effectiveness through

numerical examples. The adaptive control algorithm requires

a sufficient number of Markov parameters to capture the

sign of the high-frequency gain as well as the nonminimum-

phase zeros. No additional information about the poles or

zeros need be known. Recursive least-squares estimation was

used for concurrent Markov parameter updating. Future work

includes the development of Lyapunov-based stability and

robustness analysis for the RCO adaptive control algorithm.
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[5] A. Ilchmann, Non-Identifier-Based High-Gain Adaptive Control. Lon-
don, England: Springer-Verlag, 1993.

[6] R. Venugopal and D. S. Bernstein, “Adaptive disturbance rejection
using ARMARKOV/Toeplitz models,” IEEE Trans. Contr. Sys. Tech.,
vol. 8, pp. 257–269, 2000.

[7] H. R. Sane, R. Venugopal, and D. S. Bernstein, “Disturbance rejection
using ARMARKOV adaptive control with simultaneous identifica-
tion,” IEEE Trans. Contr. Sys. Tech., vol. 9, pp. 101–106, 2001.

[8] J. B. Hoagg, M. A. Santillo, and D. S. Bernstein, “Discrete-time
adaptive command following and disturbance rejection with unknown
exogenous dynamics,” IEEE Trans. Autom. Contr., vol. 53, pp. 912–
928, 2008.

[9] M. A. Santillo and D. S. Bernstein, “Inherent robustness of minimal
modeling discrete-time adaptive control to flight anomalies,” in Proc.

Guid. Nav. Contr. Conf., Honolulu, HI, August 2008, AIAA-2008-
7289.

[10] ——, “A retrospective correction filter for discrete-time adaptive
control of nonminimum phase systems,” in Proc. Conf. Dec. Contr.,
Cancun, Mexico, December 2008, pp. 690–695.

[11] M. S. Holzel, M. A. Santillo, J. B. Hoagg, and D. S. Bernstein, “Adap-
tive control of the NASA generic transport model using retrospective
cost optimization,” in Proc. AIAA Guid. Nav. Contr. Conf., August
2009, AIAA-2009-5616.

[12] M. S. Fledderjohn, Y.-C. Cho, J. B. Hoagg, M. A. Santillo, W. Shyy,
and D. S. Bernstein, “Retrospective cost adaptive flow control using a
dielectric barrier discharge actuator,” in Proc. AIAA Guid. Nav. Contr.

Conf., August 2009, AIAA-2009-5857.
[13] B. Anderson, “Topical problems of adaptive control,” in Proc. Euro-

pean Contr. Conf., Kos, Greece, July 2007, pp. 4997–4998.
[14] L. Ljung, System Identification: Theory for the User, 2nd ed. Upper

Saddle River, NJ: Prentice-Hall Information and Systems Sciences,
1999.

[15] C. Mracek and D. Ridgely, “Missile longitudinal autopilots: Con-
nections between optimal control and classical topologies,” in AIAA

Guidance, Navigation, and Control Conference and Exhibit, San
Francisco, CA, Aug. 15-18, 2005, AIAA-2005-6381.

ThA10.1

3471


